首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
Three successive zones of fault‐related folds disrupt the proximal part of the northern Tian Shan foreland in NW China. A new magnetostratigraphy of the Taxi He section on the north limb of the Tugulu anticline in the middle deformed zone clarifies the chronology of both tectonic deformation and depositional evolution of this collisional mountain belt. Our ~1200‐m‐thick section encompasses the upper Cenozoic terrigenous sequence within which ~300 sampling horizons yield an age span of ~8–2 Ma. Although the basal age in the Taxi He section of the Xiyu conglomerate (often cited as an indicator of initial deformation) is ~2.1 Ma, much earlier growth of the Tugulu anticline is inferred from growth strata dated at ~6.0 Ma. Folding of Neogene strata and angular unconformities in anticlines in the more proximal and distal deformed zones indicate deformation during Miocene and Early Pleistocene times, respectively. In the Taxi He area, sediment‐accumulation rates significantly accelerate at ~4 Ma, apparently in response to encroaching thrust loads. Together, growth strata, angular unconformities, and sediment‐accumulation rates document the northward migration of tectonic deformation into the northern Tian Shan foreland basin during the late Cenozoic. A progradational alluvial–lacustrine system associated with this northward progression is subdivided into two facies associations at Tugulu: a shallow lacustrine environment before ~5.9 Ma and an alluvial fan environment subsequently. The lithofacies progradation encompasses the time‐transgressive Xiyu conglomerate deposits, which should only be recognized as a lithostratigraphic unit. Along the length of the foreland, the locus of maximum shortening shifts between the medial and proximal zones of folding, whereas the total shortening across the foreland remains quite homogeneous along strike, suggesting spatially steady tectonic forcing since late Miocene times.  相似文献   

2.
Magnetostratigraphy from the Kashi foreland basin along the southern margin of the Tian Shan in Western China defines the chronology of both sedimentation and the structural evolution of this collisional mountain belt. Eleven magnetostratigraphic sections representing ~13 km of basin strata provide a two‐ and three‐dimensional record of continuous deposition since ~18 Ma. The distinctive Xiyu conglomerate makes up the uppermost strata in eight of 11 magnetostratigraphic sections within the foreland and forms a wedge that thins southward. The basal age of the conglomerate varies from 15.5±0.5 Ma at the northernmost part of the foreland, to 8.6±0.1 Ma in the central (medial) part of the foreland and to 1.9±0.2, ~1.04 and 0.7±0.1 Ma along the southern deformation front of the foreland basin. These data indicate the Xiyu conglomerate is highly time‐transgressive and has prograded south since just after the initial uplift of the Kashi Basin Thrust (KBT) at 18.9±3.3 Ma. Southward progradation occurred at an average rate of ~3 mm year?1 between 15.5 and 2 Ma, before accelerating to ~10 mm year?1. Abrupt changes in sediment‐accumulation rates are observed at 16.3 and 13.5 Ma in the northern part of the foreland and are interpreted to correspond to southward stepping deformation. A subtle decrease in the sedimentation rate above the Keketamu anticline is determined at ~4.0 Ma and was synchronous with an increase in sedimentation rate further south above the Atushi Anticline. Magnetostratigraphy also dates growth strata at <4.0, 1.4±0.1 and 1.4±0.2 Ma on the southern flanks the Keketamu, Atushi and Kashi anticlines, respectively. Together, sedimentation rate changes and growth strata indicate stepped migration of deformation into the Kashi foreland at least at 16.3, 13.5, 4.0 and 1.4 Ma. Progressive reconstruction of a seismically controlled cross‐section through the foreland produces total shortening of 13–21 km and migration of the deformation front at 2.1–3.4 mm year?1 between 19 and 13.5 Ma, 1.4–1.6 mm year?1 between 13.5 and 4.0 Ma and 10 mm year?1 since 4.0 Ma. Migration of deformation into the foreland generally causes (1) uplift and reworking of basin‐capping conglomerate, (2) a local decrease of accommodation space above any active structure where uplift occurs, and hence a decrease in sedimentation rate and (3) an increase in accumulation on the margins of the structure due to increased subsidence and/or ponding of sediment behind the growing folds. Since 5–6 Ma, increased sediment‐accumulation (~0.8 mm year?1) and gravel progradation (~10 mm year?1) rates appear linked to higher deformation rates on the Keketamu, Atushi and Kashi anticlines and increased subsidence due to loading from both the Tian Shan and Pamir ranges, and possibly a change in climate causing accelerated erosion. Whereas the rapid (~10 mm year?1) progradation of the Xiyu conglomerate after 4.0 Ma may be promoted by global climate change, its overall progradation since 15.5 Ma is due to the progressive encroachment of deformation into the foreland.  相似文献   

3.
The timing of deformation in the northern Zagros Folded Belt is poorly constrained because of the lack of an accurate absolute chronology of the syntectonic sedimentary sequences. The foreland basin infill in the northern part of the Fars arc is composed of supratidal sabkha deposits (Razak Fm), medium‐grained deltaic deposits (Agha Jari Fm) and coarse conglomerates of nearshore fan delta deposits at the base (Bakhtyari Fm, Bk1) and continental alluvial deposits at the top of the section (Bakhtyari Fm, Bk2). A magnetostratigraphic study was carried out in a composite section spanning about 1300 m on the northern flank of the Chahar–Makan syncline. Magnetostratigraphic correlation of the Razak Fm with chron C6n yields an age of 19.7 Ma at the base of the composite section. The transition to Agha Jari Fm is correlated with chron C5Cn, yielding an age of 16.6 Ma. The transition to the conglomerates of the Bakhtyari Fm (Bk1) correlates with the chron C5AD at approximately 14.8 Ma, which is considerably older than previously thought. The base of the Bakhtyari Fm growth strata, and thus the beginning of the deformation in northern Fars, is dated at 14–15 Ma. The topmost preserved Bakhtyari Fm (Bk1) is folded and unconformably overlain by Bakhtyari Fm (Bk2) conglomerates. This indicates that tectonic deformation in northern Zagros was already underway in the Middle Miocene.  相似文献   

4.
The tectonic evolution of the Tian Shan, as for most ranges in continental Asia is dominated by north‐south compression since the Cenozoic India‐Asia collision. However, precollision governing tectonic processes remain enigmatic. An excellent record is provided by thick Palaeozoic – Cenozoic lacustrine to fluvial depositional sequences that are well preserved in the southern margin of the Junggar Basin and exposed along a foreland basin associated to the Late Cenozoic rejuvenation of the Tian Shan ranges. U/Pb (LA‐ICP‐MS) dating of detrital zircons from 14 sandstone samples from a continuous series ranging in age from latest Palaeozoic to Quaternary is used to investigate changes in sediment provenance through time and to correlate them with major tectonic phases in the range. Samples were systematically collected along two nearby sections in the foreland basin. The results show that the detrital zircons are mostly magmatic in origin, with some minor input from metamorphic zircons. The U‐Pb detrital zircon ages range widely from 127 to 2856 Ma and can be divided into four main groups: 127–197 (sub‐peak at 159 Ma), 250–379 (sub‐peak at 318 Ma), 381–538 (sub‐peak at 406 Ma) and 543–2856 Ma (sub‐peak at 912 Ma). These groups indicate that the zircons were largely derived from the Tian Shan area to the south since a Late Carboniferous basin initiation. The provenance and basin‐range pattern evolution of the southern margin of Junggar Basin can be generally divided into four stages: (1) Late Carboniferous – Early Triassic basin evolution in a half‐graben or post‐orogenic extensional context; (2) From Middle Triassic to Upper Jurassic times, the southern Junggar became a passively subsiding basin until (3) being inverted during Lower Cretaceous – Palaeogene; (4) During the Neogene, a piedmont developed along the northern margin of the North Tian Shan block and Junggar Basin became a true foreland basin.  相似文献   

5.
《Basin Research》2018,30(Z1):401-423
The Lobo Formation of southwestern New Mexico consists of spatially variable continental successions attributed to the Laramide orogeny (80–40 Myr), although its age and provenance are virtually undocumented. This study combines sedimentological, magnetostratigraphical and geochronological data to infer the timing and origin of the Lobo Formation. Measured sections of Lobo strata at two locations, Capitol Dome in the Florida Mountains and in the Victorio Mountains, indicate significant differences in depositional environments and sediment provenance. At Capitol Dome, where Lobo strata were deposited above a syncline developed in Palaeozoic strata, deposition took place in fluvial, palustrine and marginal lacustrine settings, with alluvial‐fan deposits only at the top of the formation. Combined magnetostratigraphy and a young U–Pb detrital zircon age suggest deposition of the section at Capitol Dome from ~60 to 52 Ma. The Lobo Formation in the Victorio Mountains was deposited in alluvial‐fan and fluvial settings; the age of deposition is poorly bracketed between 66 ± 2 Ma, the weighted‐mean age of two young zircons, and middle Eocene (~40 Ma), the approximate age of overlying volcanic rocks. U–Pb zircon ages from sandstones at the Victorio and Capitol Dome localities indicate that different source rocks provided sediment to the Lobo Formation. Local Proterozoic basement (~1.47–1.45 Ga) dominated the source of the Lobo Formation in the Victorio Mountains, consistent with abundant granitic clasts that are present in the proximal facies there; a diverse range of grain ages suggest that recycled Lower Cretaceous strata provided the dominant source for Lobo Formation sediment at the Capitol Dome locality. The U–Pb data suggest that the depositional systems at the two sites were not connected. Contrasts in depositional setting and detrital zircon provenance indicate that the Palaeogene Lobo Formation in southwest New Mexico was deposited in an assemblage of local depositional settings, possibly in separate structural basins, as a consequence of Laramide tectonics in the region.  相似文献   

6.
Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia   总被引:3,自引:1,他引:3  
Eastward Andean orogenic growth since the late Oligocene led to variable crustal loading, flexural subsidence and foreland basin sedimentation in the Chaco basin. To understand the interaction between Andean tectonics and contemporaneous foreland development, we analyse stratigraphic, sedimentologic and seismic data from the Subandean Belt and the Chaco Basin. The structural features provide a mechanism for transferring zones of deposition, subsidence and uplift. These can be reconstructed based on regional distribution of clastic sequences. Isopach maps, combined with sedimentary architecture analysis, establish systematic thickness variations, facies changes and depositional styles. The foreland basin consists of five stratigraphic successions controlled by Andean orogenic episodes and climate: (1) the foreland basin sequence commences between ~27 and 14 Ma with the regionally unconformable, thin, easterly sourced fluvial Petaca strata. It represents a significant time interval of low sediment accumulation in a forebulge‐backbulge depocentre. (2) The overlying ~14–7 Ma‐old Yecua Formation, deposited in marine, fluvial and lacustrine settings, represents increased subsidence rates from thrust‐belt loading outpacing sedimentation rates. It marks the onset of active deformation and the underfilled stage of the foreland basin in a distal foredeep. (3) The overlying ~7–6 Ma‐old, westerly sourced Tariquia Formation indicates a relatively high accommodation and sediment supply concomitant with the onset of deposition of Andean‐derived sediment in the medial‐foredeep depocentre on a distal fluvial megafan. Progradation of syntectonic, wedge‐shaped, westerly sourced, thickening‐ and coarsening‐upward clastics of the (4) ~6–2.1 Ma‐old Guandacay and (5) ~2.1 Ma‐to‐Recent Emborozú Formations represent the propagation of the deformation front in the present Subandean Zone, thereby indicating selective trapping of coarse sediments in the proximal foredeep and wedge‐top depocentres, respectively. Overall, the late Cenozoic stratigraphic intervals record the easterly propagation of the deformation front and foreland depocentre in response to loading and flexure by the growing Intra‐ and Subandean fold‐and‐thrust belt.  相似文献   

7.
The Chinese Tian Shan is one of the most actively growing orogenic ranges in Central Asia. The Late Miocene‐Quaternary landscape evolution of northern Tian Shan has been significantly driven by the interaction between tectonic deformations and climate change, further modulated by the erosion of the upstream bedrocks and deposition into the downstream basins. In this study, only the accessible Kuitun River drainage basin in northern Tian Shan was considered, and detrital zircon geochronology and heavy minerals were analyzed to investigate the signature of the driving forces for Miocene sedimentation in northern Tian Shan. This study first confirmed a previously recognized tectonic uplift at ca. 7.0 Ma and further revealed that the basin sediments were mainly derived from the present glacier‐covered ridge‐crest regions during 3.3–2.5 Ma. It is suggested Late‐Pliocene to Early Pleistocene sedimentation was likely a response to the onset of the northern hemispheric glaciation. Although complicated, this study highlights that the tectonic‐climatic interaction during the Late Cenozoic orogenesis can be discriminated in the northern Chinese Tian Shan.  相似文献   

8.
The Xunhua, Guide and Tongren intermontane basin system in the NE Tibetan Plateau, situated near the Xining basin to the N and the Linxia basin to the E, is bounded by thrust fault‐controlled ranges. These include to the N, the Riyue Shan, Laji Shan and Jishi Shan ranges, and to the S the northern West Qinling Shan (NWQ). An integrated study of the structural geology, sedimentology and provenance of the Cenozoic Xunhua and Guide basins provides a detailed record of the growth of the NE Tibetan Plateau since the early Eocene. The Xining Group (ca. 52–21 Ma) is interpreted as consisting of unified foreland basin deposits which were controlled by the bounding thrust belt of the NWQ. The Xunhua, Guide and Xining subbasins were interconnected prior to later uplift and damming by the Laji Shan and Jishi Shan ranges. Their sediment source, the NWQ, is constrained by strong unidirectional paleocurrent trends towards the N, a northward fining lithology, distinct and recognizable clast types and detrital zircon ages. Collectively, formation of this mountain–basin system indicates that the Tibetan Plateau expanded into the NWQ at a time roughly coinciding with Eocene to earliest Miocene continental collision between India and Eurasia. The Guide Group (ca. 21–1.8 Ma) is inferred to have been deposited in the separate Xunhua, Guide and Tongren broken foreland basins. Each basin was filled by locally sourced alluvial fans, braided streams and deltaic‐lacustrine systems. Structural, paleogeographic, paleocurrent and provenance data indicate that thrust faulting in the NWQ stepped northward to the Laji Shan from ca. 21 to 16 Ma. This northward shift was accompanied by E–W shortening related to nearly N–S‐striking thrust faulting in Jishi Shan after 11–13 Ma. A lower Pleistocene conglomerate (1.8–1.7 Ma) was deposited by a through‐flowing river system in the overfilled and connected Guide and Xunhua basins following the termination of thrust activity. All of the basin–mountain zones developed along the Tibetan Plateau's NE margin since Indian–Tibetan continental collision may have been driven by collision‐induced basal drag of old slab remnants in the manner of N‐dipping and flat‐slab subduction, and their subsequent sinking into the deep mantle.  相似文献   

9.
Magnetostratigraphy of sedimentary rock deposited in the Chaka basin (north‐eastern Tibetan Plateau) indicates a late Miocene onset of basin formation and subsequent development of the adjacent Qinghai Nan Shan. Sedimentation in the basin initiated at ~11 Ma. In the lower part of the basin fill, a coarsening‐upward sequence starting at ~9 Ma, as well as rapid sedimentation rates, and northward paleocurrents, are consistent with continued growth of the Ela Shan to the south. In the upper section, several lines of evidence suggest that thrust faulting and topographic development of the Qinghai Nan Shan began at ~6.1 Ma. Paleocurrent indicators, preserved in the basin in the proximal footwall of the Qinghai Nan Shan, show a change from northward to southward flow between 6.5 and 3.8 Ma. At the same location, sediment derived from the Qinghai Nan Shan appears at 6.1 Ma. Finally, the initiation of progressively shallowing dips observed in deformed basin strata and a change to pebbly, fluvial deposits at 6.1 Ma provide a minimum age for the onset of slip on the thrust fault that dips north‐east beneath the Qinghai Nan Shan. We interpret a decrease in sediment accumulation rates since ~6 Ma to indicate a reduction in Chaka basin accommodation space due to active faulting and folding along the Qinghai Nan Shan and incorporation of the basin into the wedge‐top depozone. Declination anomalies indicate the beginning of counter‐clockwise rotation since 6.1 Ma, which we associate with local deformation, not regional block rotation. The emergence of the Qinghai Nan Shan near the end of the Miocene Epoch partitioned the once contiguous Chaka‐Gonghe and Qinghai basin complex. In a regional framework, our study adds to a growing body of evidence that points to widespread initiation and/or reactivation of fault networks during the late Miocene across the north‐eastern Tibetan Plateau.  相似文献   

10.
Located on the southern margin of the Lhasa terrane in southern Tibet, the Xigaze forearc basin records Cretaceous to lower Eocene sedimentation along the southern margin of Asia, prior to and during the initial stages of continental collision with the Tethyan Himalaya in the Early Eocene. We present new measured stratigraphic sections, totalling 4.5 km stratigraphic thickness, from a 60 km E–W segment of the western portion of the Xigaze forearc basin, northeast of the Lopu Kangri Range (29.8007° N, 84.91827° E). In addition, we apply U–Pb detrital zircon geochronology to constrain the provenance and maximum depositional ages of investigated strata. Stratigraphic ages range between ca. 88 and ca. 54 Ma and sedimentary facies indicate a shoaling‐upward trend from deep‐marine turbidites to fluvial deposits. Depositional environments of coeval Cretaceous strata along strike include deep‐marine distal turbidites, slope‐apron debris‐flow deposits and marginal marine carbonates. This along‐strike variability in facies suggests an irregular paleogeography of the Asian margin prior to collision. Paleocene–Eocene strata are composed of shallow marine carbonates with abundant foraminifera such as Nummulites‐Discocyclina and Miscellanea‐Daviesina and transition into fluvial deposits dated at ca. 54 Ma. Sandstone modal analyses, conglomerate clast compositions and detrital zircon U–Pb geochronology indicate that forearc detritus in this region was derived solely from the Gangdese magmatic arc to the north. In addition, U–Pb detrital zircon age spectra within the upper Xigaze forearc stratigraphy are similar to those from Eocene foreland basin strata south of the Indus‐Yarlung suture near Sangdanlin, suggesting that the Xigaze forearc was a possible source of Sangdanlin detritus by ca. 55 Ma. We propose a model in which the Xigaze forearc prograded south over the accretionary prism and onto the advancing Tethyan Himalayan passive margin between 58 and 54 Ma, during late stage evolution of the forearc basin and the beginning of collision with the Tethyan Himalaya. The lack of documented forearc strata younger than ca. 51 Ma suggests that sedimentation in the forearc basin ceased at this time owing to uplift resulting from continued continental collision.  相似文献   

11.
In the northwestern sector of the Zagros foreland basin, axial fluvial systems initially delivered fine-grained sediments from northwestern source regions into a contiguous basin, and later transverse fluvial systems delivered coarse-grained sediments from northeastern sources into a structurally partitioned basin by fold-thrust deformation. Here we integrate sedimentologic, stratigraphic, palaeomagnetic and geochronologic data from the northwestern Zagros foreland basin to define the Neogene history of deposition and sediment routing in response to progressive advance of the Zagros fold-thrust belt. This study constrains the depositional environments, timing of deposition and provenance of nonmarine clastic deposits of the Injana (Upper Fars), Mukdadiya (Lower Bakhtiari) and Bai-Hasan (Upper Bakhtiari) Formations in the Kurdistan region of Iraq. Sediments of the Injana Formation (~12.4–7.75 Ma) were transported axially (orogen-parallel) from northwest to southeast by meandering and low-sinuosity channel belt system. In contrast, during deposition of the Mukdadiya Formation (~7.75–5 Ma), sediments were delivered transversely (orogen-perpendicular) from northeast to southwest by braided and low-sinuosity channel belt system in distributive fluvial megafans. By ~5 Ma, the northwestern Zagros foreland basin became partitioned by growth of the Mountain Front Flexure and considerable gravel was introduced in localized alluvial fans derived from growing topographic highs. Foredeep accumulation rates during deposition of the Injana, Mukdadiya and Bai-Hasan Formations averaged 350, 400 and 600 m/Myr respectively, suggesting accelerated accommodation generation in a rapidly subsiding basin governed by flexural subsidence. Detrital zircon U-Pb age spectra show that in addition to sources of Mesozoic-Cenozoic cover strata, the Injana Formation was derived chiefly from Palaeozoic-Precambrian (including Carboniferous and latest Neoproterozoic) strata in an axial position to the northwest, likely from the Bitlis-Puturge Massif and broader Eastern Anatolia. In contrast, the Mukdadiya and Bai-Hasan Formations yield distinctive Palaeogene U-Pb age peaks, particularly in the southeastern sector of the study region, consistent with transverse delivery from the arc-related terranes of the Walash and Naopurdan volcano-sedimentary groups (Gaveh-Rud domain?) and Urumieh-Dokhtar magmatic arc to the northeast. These temporal and spatial variations in stratigraphic framework, depositional environments, sediment routing and compositional provenance reveal a major drainage reorganization during Neogene shortening in the Zagros fold-thrust belt. Whereas axial fluvial systems initially dominated the foreland basin during early orogenesis in the Kurdistan region of Iraq, transverse fluvial systems were subsequently established and delivered major sediment volumes to the foreland as a consequence of the abrupt deformation advance and associated topographic growth in the Zagros.  相似文献   

12.
S.Liu  S.Yang 《Basin Research》2000,12(1):1-18
Upper Triassic, Lower–Middle Jurassic and Upper Jurassic strata in the western Ordos Basin of North China are interpreted as three unconformity-bounded basin phases, BP-4, BP-5 and BP-6, respectively. The three basin phases were deposited in three kinds of predominantly continental basin: (1) a Late Triassic composite basin with a south-western foreland subbasin and a north-western rift subbasin, (2) an Early–Middle Jurassic sag basin and (3) a Late Jurassic foreland molasse wedge. Within the Late Triassic composite basin BP-4 includes three sequences, S4-1, S4-2 and S4-3. In the south-western foreland subbasin, the three sequences are the depositional response to three episodes of thrust load subsidence, and are mainly composed of alluvial fan, steep-sloped lacustrine delta and fluvial systems in front of a thrust fault-bounded basin flank. In the north-western rift subbasin, the three sequences are the depositional response to three episodes of rift subsidence, and consist of alluvial fan – braid plain and fan delta systems basinward of a normal fault-bounded basin margin. In the sag basin BP-5 includes four sequences, S5-1, S5-2, S5-3 and S5-4, which reflect four episodes of intracratonic sagging events and mainly consist of fluvial, gentle-gradient lacustrine delta and lacustrine systems sourced from peripheral uplifted flanks. BP-6, deposited in the foreland-type basin, includes one sequence, S6-1, which is the depositional response to thrust load subsidence and is composed of alluvial fan systems. The formation and development of these three kinds of basins was controlled by Late Triassic and Jurassic multi-episode tectonism of basin-bounding orogenic belts, which were mainly driven by collision of the North China and South China blocks and subduction of the western Pacific plate.  相似文献   

13.
The synkinematic strata of the Kuqa foreland basin record a rich history of Cenozoic reactivation of the Palaeozoic Tian Shan mountain belt. Here, we present new constraints on the history of deformation in the southern Tian Shan, based on an analysis of interactions between tectonics and sedimentation in the western Kuqa basin. We constructed six balanced cross‐sections of the basin, integrating surface geology, well data and a grid of seismic reflection profiles. These profiles show that the Qiulitage fold belt on the southern edge of the Kuqa basin developed by thin‐skinned compression salt tectonics. The structural styles have been influenced by two major factors: the nature of early‐formed diapirs and the basinward depositional limit of the Kumugeliemu salt. Several early diapirs developed in the western Kuqa basin, soon after salt deposition, which acted to localize the subsequent shortening. Where diapirs had low relief and a thick overburden they tended to tighten into salt domes 3000–7000 m in height. Conversely, where the original diapirs had higher relief and a thinner overburden they tended to evolve into salt nappes, with the northern flanks of the diapirs thrusting over their southern flanks. Salt was expelled forward, up dip along the mother salt layer, tended to accumulate at the distal pinch‐out of Kumugeliemu salt located at the Qiulitage fold belt. Furthermore, the synkinematic strata (6–8 km thick) of the Kuqa basin indicate that during the Cenozoic reactivation of the Tian Shan, shortening of the western Kuqa basin was mainly in the hinterland until the early Miocene. Then, compression spread simultaneously southwards to the Dawanqi anticline, the Qiulitage fold belt and the southernmost blind detachment fold at the end of Miocene. The western Kuqa basin has a shortening of ca. 23 km. We consider that ca. 9 km was consumed from the end of the Miocene (5.2/5.8 Ma) to the early Pleistocene (2.58 Ma) and another ca. 14 km have been absorbed since then. Thus, we obtain a ca. 3.4/2.8 mm year?1 average shortening from 5.2/5.8 to 2.58 Ma, followed by a 60–90% increase in average shortening rate to ca. 5.4 mm year?1 since 2.58 Ma. This suggests that the reactivation of the modern Tian Shan has been accelerating up to the present day.  相似文献   

14.
Late- to post-orogenic basins formed on both sides of the Pan-African – Brasiliano orogen when the Congo and Kalahari Cratons collided with the Rio de la Plata Craton during the formation of western Gondwana. Trace fossil evidence and radiometric age dating indicate that deposits on both sides are coeval and span the Cambrian–Precambrian boundary. A peripheral foreland basin, the Nama Basin, developed on the subducting southern African plate. Lower, craton-derived fluviomarine clastics are overlain by marine platform carbonates and deltaic flysch derived in part from the rising subduction complex along the northern (Damara Belt) and western (Gariep Belt) orogenic margins. Rare, thin volcanic ash layers (tuffs and cherts) are present. Upper sediments consist of unconformable red molasse related to collisional orogenesis. Orogenic loading from the north and west led to crustal flexure and the formation of a remnant ocean that drained to the south and closed progressively from north to south. During final collision SE-, E- and NE-verging nappes overrode the active basin margins. Although younger than most of the post-orogenic magmatism, its setting on the cratonic edge of the subducting plate precluded marked volcanism or granitic intrusion, the only exception being the youngest intrusions of the Kuboos-Bremen Suite dated at 521±6 Ma to 491±8 Ma. Two foreland-type basins, perhaps faulted remnants of a much larger NE–SW elongated retroarc foreland basin, are found west of the Dom Feliciano Belt on the edge of the Rio de la Plata Craton in southern Brazil. In the southern Camaqua Basin, basal fluvial deposits are followed by cyclical marine and coarsening-up deltaic deposits with a notable volcanic and volcaniclastic component. This lower deformed succession, comprising mainly red beds, contain stratabound Cu and Pb–Zn deposits and is overlain unconformably by a fluviodeltaic to aeolian succession of sandstones and conglomerates (with minor andesitic volcanics), derived primarily from an eastern orogenic source and showing southerly longitudinal transport. In the northern Itajaí Basin, sediments range from basal fluvial and platform sediments to fining-up submarine fan and turbidite deposits with intercalated acid tuffs. The Brazilian basins had faulted margins off which alluvial fans were shed. They also overlie parts of the Ribeira Belt. Thrust deformation along the orogenic margin bordering the Dom Feliciano Belt was directed westward in the Camaqua and Itajaí basins, but reactivated strike-slip and normal faults are also present. Late- to post-orogenic granitoids and volcanics of the Dom Feliciano Belt, ranging in age from 568±6 Ma to 529±4 Ma, occur in the foreland basins and are geochemically related to some of the synsedimentary volcanics.  相似文献   

15.
This paper presents new magnetostratigraphic results from a 1100‐m‐thick composite section across the marine to continental sediments of the central part of the SE margin of the Ebro basin (NE Spain). Integration with existing marine and continental biochronological data allows a robust correlation with the geomagnetic polarity time scale. The resulting absolute chronology ranges from 36.3 to 31.1 Ma (Priabonian to Rupelian), and yields an interpolated age of ~36.0 Ma (within chron C16n.2n) for the youngest marine sediments of the eastern Ebro basin. This age is in concordance with a reinterpretation of earlier magnetostratigraphic data from the western South Pyrenean foreland basin, and indicates that continentalization of the basin occurred as a rapid and isochronous event. The basin continentalization, determined by the seaway closure that resulted from the uplift of the western Pyrenees, was probably coincident with a mid‐amplitude eustatic sea level low with a maximum at 36.2 Ma. The base level drop that followed the basin closure and desiccation does not appear associated to a significant sedimentary hiatus along the margins, suggesting a late Eocene shallow marine basin that rapidly refilled and raised its base level after the seaway closing. Rapid basin filling following continentalization predates the phase of rapid exhumation of the Central Pyrenean Axial Zone from 35.0 to 32.0 Ma, determined from the thermochronology data. It is possible then that sediment aggradation at the front of the fold‐and‐thrust belt could have contributed to a decrease in the taper angle, triggering growth of the inner orogenic wedge through break‐back thrusting and underplating. Contrasting sedimentation trends between the western and eastern sectors of the South Pyrenean foreland indicate that basin closing preferentially affected those areas subjected to sediment bypass towards the ocean domain. As a result, sediment ponding after basin closure is responsible for a two‐fold increase of sedimentation rates in the western sector, while changes of sedimentation rates are undetected in the more restricted scenario of the eastern Ebro basin.  相似文献   

16.
Late early–early middle Miocene (Burdigalian–Langhian) time on the island of Corsica (western Mediterranean) was characterized by a combination of (i) postcollisional structural inversion of the main boundary thrust system between the Alpine orogenic wedge and the foreland, (ii) eustatic sealevel rise and (iii) subsidence related to the development of the Ligurian‐Provençal basin. These processes created the accommodation for a distinctive continental to shallow‐marine sedimentary succession along narrow and elongated basins. Much of these deposits have been eroded and presently only a few scattered outcrop areas remain, most notably at Saint‐Florent and Francardo. The Burdigalian–Langhian sedimentary succession at Saint‐Florent is composed of three distinguishing detrital components: (i) siliciclastic detritus derived from erosion of the nearby Alpine orogenic wedge, (ii) carbonate intrabasinal detritus (bioclasts of shallow‐marine and pelagic organisms), and (iii) siliciclastic detritus derived from Hercynian‐age foreland terraines. The basal deposits (Fium Albino Formation) are fluvial and composed of Alpine‐derived detritus, with subordinate foreland‐derived volcanic detritus. All three detrital components are present in the middle portion of the succession (Torra and Monte Sant'Angelo Formations), which is characterized by thin transitional deposits evolving vertically into fully marine deposits, although the carbonate intrabasinal component is predominant. The Monte Sant'Angelo Formation is characteristically dominated by the deposits of large gravel and sandwaves, possibly the result of current amplification in narrow seaways that developed between the foreland and the tectonically collapsing Alpine orogenic wedge. The laterally equivalent Saint‐Florent conglomerate is composed of clasts derived from the late Permian Cinto volcanic district within the foreland. The uppermost unit (Farinole Formation) is dominated by bioclasts of pelagic organisms. The Saint‐Florent succession was deposited during the last phase of the counterclockwise rotation of the Corsica–Sardinia–Calabria continental block and the resulting development of the Provençal oceanic basin. The succession sits at the paleogeographic boundary between the Alpine orogenic wedge (to the east), its foreland (to the west), and the Ligurian‐Provençal basin (to the northwest). Abrupt compositional changes in the succession resulted from the complex, varying interplay of post‐collisional extensional tectonism, eustacy and competing drainage systems.  相似文献   

17.
Understanding the relationships between sedimentation, tectonics and magmatism is crucial to defining the evolution of orogens and convergent plate boundaries. Here, we consider the lithostratigraphy, clastic provenance, syndepositional deformation and volcanism of the Almagro‐El Toro basin of NW Argentina (24°30′ S, 65°50′ W), which experienced eruptive and depositional episodes between 14.3 and 6.4 Ma. Our aims were to elucidate the spatial and temporal record of the onset and style of the shortening and exhumation of the Eastern Cordillera in the frame of the Miocene evolution of the Central Andes foreland basin. The volcano‐sedimentary sequence of the Almagro‐El Toro basin consists of lower red floodplain sandstones and siltstones, medial non‐volcanogenic conglomerates with localised volcanic centres and upper volcanogenic coarse conglomerates and breccia. Coarse, gravity flow‐dominated (debris‐flow and sheet‐flow) alluvial fan systems developed proximal to the source area in the upper and medial sequence. Growing frontal and intrabasinal structures suggest that the Almagro‐El Toro portion of the foreland basin accumulated on top of the eastward‐propagating active thrust front of the Eastern Cordillera. Synorogenic deposits indicate that the shortening of the foreland deposits was occurring by 11.1 Ma, but conglomerates derived from the erosion of western sources suggest that the uplift and erosion of this portion of the Eastern Cordillera has occurred since ca.12.5 Ma. An unroofing reconstruction suggests that 6.5 km of rocks were exhumed. A tectono‐sedimentary model of an episodically evolving thick‐skinned foreland basin is proposed. In this frame, the NW‐trending, transtensive Calama–Olacapato–El Toro (COT) structures interacted with the orogen, influencing the deposition and deformation of synorogenic conglomerates, the location of volcanic centres and the differential tilt and exhumation of the foreland.  相似文献   

18.
The Tombador Formation exhibits depositional sequence boundaries placed at the base of extensive amalgamated fluvial sand sheets or at the base of alluvial fan conglomeratic successions that indicate basinward shifts of facies. The hierarchy system that applies to the Tombador Formation includes sequences of different orders, which are defined as follows: sequences associated with a particular tectonic setting are designated as ‘first order’ and are separated by first‐order sequence boundaries where changes in the tectonic setting are recorded; second‐order sequences represent the major subdivisions of a first‐order sequence and reflect cycles of change in stratal stacking pattern observed at 102 m scales (i.e., 200–300 m); changes in stratal stacking pattern at 101 m scales indicate third‐order sequences (i.e., 40–70 m); and changes in stratal stacking pattern at 100 m scales are assigned to the fourth order (i.e., 8–12 m). Changes in palaeogeography due to relative sea level changes are recorded at all hierarchical levels, with a magnitude that increases with the hierarchical rank. Thus, the Tombador Formation corresponds to one‐first‐order sequence, representing a distinct intracratonic sag basin fill in the polycyclic history of the Espinhaço Supergroup in Chapada Diamantina Basin. An angular unconformity separates fluvial‐estuarine to alluvial fan deposits and marks the second‐order boundary. Below the angular unconformity the third‐order sequences record fluvial to estuarine deposition. In contrast, above the angular unconformity these sequences exhibit continental alluvial successions composed conglomerates overlain by fluvial and eolian strata. Fourth‐order sequences are recognized within third‐order transgressive systems tract, and they exhibit distinct facies associations depending on their occurrence at estuarine or fluvial domains. At the estuarine domain, they are composed of tidal channel, tidal bar and overlying shoreface heterolithic strata. At the fluvial domain the sequences are formed of fluvial deposits bounded by fine‐grained or tidal influenced intervals. Fine grained intervals are the most reliable to map in fourth‐order sequences because of their broad laterally extensive sheet‐like external geometry. Therefore, they constitute fourth‐order sequence boundaries that, at the reservoir approach, constitute the most important horizontal heterogeneity and, hence, the preferable boundaries of production zones. The criteria applied to assign sequence hierarchies in the Tombador Formation are based on rock attributes, are easy to apply, and can be used as a baseline for the study of sequence stratigraphy in Precambrian and Phanerozoic basins placed in similar tectonic settings.  相似文献   

19.
The Sichuan Basin and the Songpan‐Ganze terrane, separated by the Longmen Shan fold‐and‐thrust belt (the eastern margin of the Tibetan Plateau), are two main Triassic depositional centres, south of the Qinling‐Dabie orogen. During the Middle–Late Triassic closure of the Paleo‐Tethys Ocean, the Sichuan Basin region, located at the western margin of the Yangtze Block, transitioned from a passive continental margin into a foreland basin. In the meantime, the Songpan‐Granze terrane evolved from a marine turbidite basin into a fold‐and‐thrust belt. To understand if and how the regional sediment routing system adjusted to these tectonic changes, we monitored sediment provenance primarily by using detrital zircon U‐Pb analyses of representative stratigraphic samples from the south‐western edge of the Sichuan Basin. Integration of the results with paleocurrent, sandstone petrology and published detrital zircon data from other parts of the basin identified a marked change in provenance. Early–Middle Triassic samples were dominated by Neoproterozoic (~700–900 Ma) zircons sourced mainly from the northern Kangdian basement, whereas Late Triassic sandstones that contain a more diverse range of zircon ages sourced from the Qinling, Longmen Shan and Songpan‐Ganze terrane. This change reflects a major drainage adjustment in response to the Late Triassic closure of the Paleo‐Tethys Ocean and significant shortening in the Longmen Shan thrust belt and the eastern Songpan‐Ganze terrane. Furthermore, by Late Triassic time, the uplifted northern Kangdian basement had subsided. Considering the eastward paleocurrent and depocenter geometry of the Upper Triassic deposits, subsidence of the northern Kangdian basement probably resulted from eastward shortening and loading of the Songpan‐Ganze terrane over the western margin of the Yangtze Block in response to the Late Triassic collision among Yangtze Block, Yidun arc and Qiangtang terrane along the Ganze‐Litang and Jinshajiang sutures.  相似文献   

20.
The Salar de Atacama forms one of a series of forearc basins developed along the western flank of the Central Andes. Exposed along the northwest margin of the basin, a salt‐cored range, the Cordillera de la Sal, records the Mid‐Miocene to recent sedimentological and structural development of this basin. Sediments of the Mid‐Miocene Vilama Formation record the complex interaction between regional/local climate change, halokinesis and compressional deformation. This study reveals how these factors have controlled the facies development and distribution within the Salar de Atacama. Detailed sedimentary logging, cross‐sections and present day geomorphology through the northern Cordillera de la Sal have been used to establish a lithostratigraphy, chronostratigraphy and the regional distribution of the Vilama Formation. The Vilama Formation documents an increase in aridity with a hiatus in sedimentation from Mid‐Miocene to 9 Ma with initial uplift of the Cordillera de la Sal. From 9 Ma to 8.5 Ma deposition of a meandering fluvial system is recorded followed by a rapid decrease in sedimentation till 6 Ma. From 6 to 2 Ma, the deposition of extensive palustrine carbonates and distal alluvial–mudflat–lacustrine demonstrates the existence of an extensive lake within the Salar de Atacama. Post 2 Ma, the lake decreased in size and braided alluvial gravels associated with alluvial fans were widespread through the region suggesting a final shift to hyperarid conditions. By comparing the Vilama Formation with similar age facies throughout northern Chile and southern Peru, several shifts in climate are recognized. Climate signatures within northern Chile appear to be largely diachronous with the last regional event in the Mid‐Miocene. Since that time, humid events have been restricted to either Precordillerian basins or the Central Atacama. Within the Central Atacama, the final switch to hyperarid conditions was not till the earliest Pleistocene, much later than previously estimated within the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号