首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Numerous studies have shown that precipitation isocapes drive δD and δ18O patterns in surficial waters and in terrestrial food webs. While the GNIP (Global Network for Isotopes in Precipitation) dataset provided a key foundation for linking precipitation-terrestrial isoscapes globally, it has insufficient spatial coverage in many countries like Mexico. To overcome this limitation, we hypothesized that shallow phreatic groundwaters in Mexico could be used as an isotopic integrator of long-term seasonally weighted precipitation inputs to the landscape to aid in calibrating spatial H and O isotope datasets for terrestrial, biological and hydrological research. Groundwater was sampled from 234 sites in Mexico at ~ 50 km latitudinal spacing to obtain high spatial resolution and country-wide coverage for the construction of a groundwater isoscape. Our data revealed that shallow groundwater infiltration in Mexico appears largely unaffected by evaporation and reflects seasonally weighted precipitation inputs. These precipitation inputs are primarily biased to summertime when highest rainfall occurs, but a small degree of post-precipitation evaporation revealed a lower d-excess zone that corresponded to the interior semi-arid ecozone. We developed a predictive general linear model (GLM) for hydrogen and oxygen isotopic spatial patterns in Mexican groundwater and then compared the results to a validation subset of our field data, as well external data reported in the literature. The GLM used elevation, latitude, drainage basin (Atlantic vs. Pacific), and rainfall as the most relevant predictive variables. The GLM explained 81% of the overall isotopic variance observed in groundwater, 68% of the variance within our validation subset, and 77% of the variance in the external data set. Our predictive GLM is sufficiently accurate to allow for future ecological, hydrological and forensic isoscape applications in Mexico, and may be an approach that is applicable to other countries and regions where GNIP stations are lacking.  相似文献   

2.
Hierarchical single surface (HISS) δ0 and δ1 models are briefly discussed. An algorithm for the implementation of δ0 and δ1 models in a finite element code and the associated subroutines, written in FORTRAN 77, are presented. The algorithm is general and can be adopted for other computer codes with minor changes. Detailed steps and subroutines are included for easy implementation of the models in specific codes. Two example problems are also presented to enable the user to verify the implementation.  相似文献   

3.
A continuous Ordovician-Silurian boundary section from the upper Wufeng Formation through the Kuanyinchiao Formation to the lower Lungmachi Formation has been carefully measured and collected at Shuanghe of Changning, southern Sichuan Province. For the first time, the temporal changes of α- and β-diversities of the Hirnantia fauna have been discussed in great detail. The general trend of brachiopod diversity change, increasing upward, is consistent with the regional trend of the Yangtze Platform, which had been controlled by both intrinsic and extrinsic factors. However, the sudden drop of diversity for a short period in the upper Kuanyinchiao Formation might have been controlled by environmental factors rather than normal faunal turnover. Synecological analysis using numerical methods recognizes two brachiopod-dominated associations of the Hirnantia fauna, the Dalmanella-Kinnella Association and the Mirorthis Association, both living in an offshore, deeper water environment corresponding to BA3-upper BA4, particularly lower BA3.  相似文献   

4.
As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from ice‐core water from the Amundsen–Scott South Pole Station. This isotopic reference material, designated as USGS49, was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity and measured by dual‐inlet isotope‐ratio mass spectrometry. The δ2H and δ18O values of USGS49 are ?394.7 ± 0.4 and ?50.55 ± 0.04 mUr (where mUr = 0.001 = ‰), respectively, relative to VSMOW, on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5 mUr. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material is intended as one of two isotopic reference waters for daily normalisation of stable hydrogen and oxygen isotopic analysis of water with an isotope‐ratio mass spectrometer or a laser absorption spectrometer. It is available by the case of 144 glass ampoules or as a set of sixteen glass ampoules containing 5 ml of water in each ampoule.  相似文献   

5.
In the present study, the modified Sverjensky–Molling equation, derived from a linear-free energy relationship, is used to predict the Gibbs free energies of formation of crystalline phases of α-MOOH (with a goethite structure) and α-M2O3 (with a hematite structure) from the known thermodynamic properties of the corresponding aqueous trivalent cations (M3+). The modified equation is expressed as ΔG0f,MVX=aMVXΔG0n,M3++bMVX+βMVXγM3+, where the coefficients aMVX, bMVX, and βMVX characterize a particular structural family of MvX (M is a trivalent cation [M3+] and X represents the remainder of the composition of solid); γ3+ is the ionic radius of trivalent cations (M3+); ΔG0f,MVX is the standard Gibbs free energy of formation of MvX; and ΔG0n,M3+ is the non-solvation energy of trivalent cations (M3+). By fitting the equation to the known experimental thermodynamic data, the coefficients for the goethite family (α-MOOH) are aMVX=0.8838, bMVX=?424.4431 (kcal/mol), and βMVX=115 (kcal/mol.?), while the coefficients for the hematite family (α-M2O3) are aMVX=1.7468, bMVX=?814.9573 (kcal/mol), and βMVX=278 (kcal/mol.?). The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases (i.e. phases that are thermodynamically unstable and do not occur at standard conditions) within the isostructural families of goethite (α-MOOH) and hematite (α-M2O3) if the standard Gibbs free energies of formation of the trivalent cations are known.  相似文献   

6.
This study explores the effects of cation composition on mass bias (i.e., the matrix effect), which is a major component of instrumental mass fractionation (IMF) in the microanalyses of δ13C and δ18O by SIMS in carbonates of the magnesite–siderite solid‐solution series (MgCO3–FeCO3). A suite of twelve calibration reference materials (RMs) was developed and documented (calibrated range: Fe# = 0.002–0.997, where Fe# = molar Fe/[Mg + Fe]), along with empirical expressions for regressing calibration data (affording residuals < 0.5‰ relative to certified reference material NIST‐19). The calibration curves of both isotope systems are non‐linear and have, over a 2‐year period, fallen into one of two distinct but largely self‐consistent shape categories (data from ten measurement sessions), despite adherence to well‐established analytical protocols for carbonate δ13C and δ18O analyses at WiscSIMS (CAMECA IMS 1280). Mass bias was consistently most sensitive to changes in composition near the magnesite end‐member (Fe# 0–0.2), deviating by up to 4.5‰ (δ13C) and 14‰ (δ18O) with increasing Fe content. The cause of variability in calibration curve shapes is not well understood at present and demonstrates the importance of having available a sufficient number of well‐characterised RMs so that potential complexities of curvature can be adequately delineated and accounted for on a session‐by‐session basis.  相似文献   

7.
《Sedimentology》2018,65(2):360-399
Sedimentary gaps are a major obstacle in the reconstruction of a carbonate platform's history. In order to improve the understanding of the early diagenesis and the succession of events occurring during the formation of discontinuity surfaces in limestones, secondary ion mass spectrometry was used for the first time to measure the δ 18O and δ 13C signatures of 11 early cement and fabric stages in several discontinuity surfaces from the Jurassic carbonate platform of the Paris Basin, France. Pendant cements show a high variability in δ 18O, which was impossible to detect by the less precise microdrilling method. The morphology of a given cement can be produced in various environments, and dogtooth cements especially can precipitate in marine phreatic and meteoric phreatic to vadose environments. Marine dogtooth cements and micritic microbially induced fabrics precipitated directly as low‐magnesium calcite in marine waters, as attested to by the preservation of their initial δ 18O and δ 13C signals. Five discontinuity types are recognized based on high‐resolution geochemical analyses, and their palaeoenvironmental history can be reconstructed. Two exposure surfaces with non‐ferroan pendant or meniscus cements formed in the oxidizing vadose zone. A hardground displays marine fibrous cements and non‐ferroan dogtooth cements that formed in a subtidal environment in oxidizing water. Two composite surfaces have undergone both marine and subaerial lithification. Composite surface 1 displays non‐luminescent ferroan dogtooth cements that precipitated in reduced conditions in seawater, followed by brown‐luminescent dogtooth cements characteristic of a meteoric phreatic environment. Composite surface 2 exhibits microbially induced fabrics that formed in marine water with abundant organic matter. The latter discontinuity, initially formed in a subtidal environment, was subsequently exposed to meteoric conditions, as evidenced by ferroan geopetal cements. A high‐resolution ion microprobe study is essential to precisely document the successive diagenetic environments that have affected carbonate rocks and discontinuities with a polygenic and intricate history.  相似文献   

8.
Ice core from Greenland was melted, filtered, homogenised, loaded into glass ampoules, sealed, autoclaved to eliminate biological activity, and calibrated by dual‐inlet isotope‐ratio mass spectrometry. This isotopic reference material (RM), USGS46, is intended as one of two secondary isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The measured δ2H and δ18O values of this reference water were ?235.8 ± 0.7‰ and ?29.80 ± 0.03‰, respectively, relative to VSMOW on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5‰. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95‐percent probability of encompassing the true value. This reference water is available in cases containing 144 glass ampoules that are filled with either 4 ml or 5 ml of water per ampoule.  相似文献   

9.
10.
The high‐precision δ60/58Ni values of twenty‐six geological reference materials, including igneous rocks, sedimentary rocks, stream sediments, soils and plants are reported. The δ60/58Ni values of all samples were determined by double‐spike MC‐ICP‐MS (Nu Plasma III). Isotope standard solution (NIST SRM 986) and geological reference materials (BHVO‐2, BCR‐2, JP‐1, PCC‐1, etc.) were used to evaluate the measurement bias and intermediate precision over a period of six months. Our results show that the intermediate precision of Ni isotope determination was 0.05‰ (2s, n = 69) for spiked NIST SRM 986 and typically 0.06‰ for actual samples, and the δ60/58Ni NIST SRM 986 values were in excellent agreement with previous studies. Eighteen high‐precision Ni isotope ratios of geological reference materials are first reported here, and their δ60/58Ni values varied from ?0.27‰ to 0.52‰, with a mean of 0.13 ± 0.34‰ (2s, n = 18). Additionally, SGR‐1b (0.56 ± 0.04‰, 2s), GSS‐1 (?0.27 ± 0.06‰, 2s), GSS‐7 (?0.11 ± 0.01‰, 2s), GSD‐10 (0.46 ± 0.06‰, 2s) and GSB‐12 (0.52 ± 0.06‰, 2s) could potentially serve as candidate reference materials for Ni isotope fractionation and comparison of Ni isotopic compositions among different laboratories.  相似文献   

11.
δ13C data from Tethyan sections provide evidence of profound changes in the carbon cycle during the Lower Triassic. Sections from the Panthalassa realm were investigated to establish whether these variations are also present there. In the Jurassic accretionary wedges in Japan, exotic blocks having a Panthalassan affinity, have been incorporated. The majority of the blocks are pelagic cherts but rare shallow-water carbonates are also present. We present a δ13C study on the Lower Triassic of a shallow-water carbonate succession deposited on a mid-oceanic seamount and accreted to the Chichibu Belt, Japan. Two sections have been measured at Kamura, central Kyushu Island. The carbon isotope curve shows depleted values across the Permian–Triassic boundary (PTB), subsequently followed by an increase to heavier values into the Dienerian, culminating in a maximum of almost +4‰ V-PDB, before a steep drop at a stratigraphic gap. Low values are recorded in the Smithian, but rise to enriched δ13C values > +3.5‰ near the Smithian–Spathian boundary. The observed trend of the stable carbon isotope curve from Japanese sediments mirrors the curves derived from sections in the Tethys (e.g. Italy, Iran, Turkey, Oman and the South China Nanpanjing Basin). Our results support the interpretation of this curve as representing a global trend across the PTB and in the Lower Triassic, although some distinct features are absent around the Dienerian/Smithian boundary. Profound variations of the carbon isotope curve in the Lower Triassic are presented for the first time from a marine section outside of the Tethys. They indicate severe, global changes in the Lower Triassic carbon cycle, and the causative processes must have significantly contributed to the delayed biotic recovery after the PTB. Large amounts of carbon were shifted between carbon reservoirs, most probably between shallow- and deep-ocean waters, and/or ocean and sediment. Anoxia followed by overturn of the ocean water masses may have been the mechanism which quickly altered ecological conditions in the ocean leading to variable availability of nutrients and oxygen, and changes in isotope composition of the available carbon in the surface waters that was incorporated in the precipitated carbonate.  相似文献   

12.
A comparison of a 6450 14C yr δ18O and δ13C record of authigenic calcite from Lake Awassa, Ethiopia, with other proxy climate records in the area suggests that the lake records long-term regional climate changes. Co-varying and increasing δ18O and δ13C values from 4800 BP suggest an aridification of climate after the early Holocene insolation maximum. After 4000 BP, humid conditions return until after 2800 BP when δ18O increases again, reflecting more arid conditions recorded elsewhere in Ethiopia. In addition to these long-term changes, there are abrupt decreases in both δ18Ocalcite and δ13Ccalcite immediately after tephra layers. The likeliest explanation for these abrupt decreases in isotopes is the effect of tephra on the lake's catchment vegetation. δ18O, δ13C and lake-level measurements from Lake Awassa since the 1970s suggest that the lake is currently isotopically sensitive to short-term (annual–decadal) climate change. However, during this period, the catchment has undergone progressive deforestation that may have caused an increase in runoff. Caution is therefore required when reconstructing palaeoclimates as a contemporary lake may not always be a good analogue for lake hydrology in the past.  相似文献   

13.
Oxygen and hydrogen isotopic compositions of meteoric water are known to correlate with surface air temperature, except in tropical areas. This relationship has been described using a number of terms corresponding to specific observations, such as latitude, altitude and seasonal effects. However, these temperature effects do not seem to apply to precipitation in monsoonal areas of Asia. Questions have been raised as to whether the isotopic composition of meteoric water can be used to reconstruct paleomonsoon intensity. Tree rings of two modern spruce trees (Picea meyeri) and a 10,000-yr-old timber (Picea jezoensis) were analyzed for hydrogen isotopic composition. On average, the older tree is depleted in deuterium by 45‰ compared to the modern trees. We attribute this isotopic depletion to the strength of summer monsoons, which were more intense in the early Holocene than at present. Although this study is not definitive, it suggests that paleomonsoon intensity can be reconstructed by direct or proxy methods that yield the oxygen or hydrogen isotopic composition of meteoric water.  相似文献   

14.
15.
A series of confirmed and suspected dammed palaeo‐lake sedimentary successions is scattered within the middle Yarlung Tsangpo valley in Tibet. However, the chronology, the genesis of the dam and its location, the water level of the dammed lake, the process of dam failure and the spatiotemporal relationships between the sedimentary successions remain controversial. Here, we focus on one sedimentary succession of the suspected dammed palaeo‐lake at Xigazê. We measured the grain‐size distribution, magnetic susceptibility, organic and inorganic carbon content, and δ13Corg and δ15Ntotal ratios of the sediments. In addition, we measured the δ18Oshell and δ13Cshell values of modern and fossil Radix sp. shells, and the δ18Owater and δ13CDIC values of the ambient water with different hydrological regimes. The results indicate that the δ18Oshell values of modern Radix sp. and the δ18Owater of the ambient water body significantly depend on its hydrological status. In addition, a strong positive relationship was observed between δ18Oshell values of modern Radix sp. shells and the δ18Owater of the ambient water on the Tibetan Plateau. According to this correlation, the δ18Owater values of the palaeo‐water body are reconstructed using the δ18Oshell values of Radix sp. fossil shells in the Xigazê section. Further, based on the δ18Oshell values of fossil Radix sp., the reconstructed δ18Owater of the palaeo‐water body and the specific habitats of Radix sp., we infer that the sedimentary succession in the Xigazê broad valley was mainly formed within the backwater terminal zone of a dammed palaeo‐lake and that the elevation of the water level of the lake was approximately 3811 m a.s.l. AMS 14C dating indicates that the deposits of the dammed palaeo‐lake were formed at about 33–22 cal. ka BP. Finally, the presence of Radix sp. fossil shells within the Xigazê section suggests that Radix sp. survived the late Last Glacial Period on the Tibetan Plateau.  相似文献   

16.
17.
18.
The sedimentary record of carbonate carbon isotopes (δ13Ccarb) provides one of the best methods for correlating marine strata and understanding the long‐term evolution of the global carbon cycle. This work focuses on the Late Ordovician Guttenberg isotopic carbon excursion, a ca 2·5‰ positive δ13Ccarb excursion that is found in strata globally. Substantial variability in the apparent magnitude and stratigraphic morphology of the Guttenberg excursion at different localities has hampered high‐resolution correlations and led to divergent reconstructions of ocean chemistry and the biogeochemical carbon cycle. This work investigates the magnitude, spatial scale and sources of isotopic variability of the Guttenberg excursion in two sections from Missouri, USA. Centimetre‐scale isotope transects revealed variations in δ13Ccarb and δ18Ocarb greater than 2‰ across individual beds. Linear δ13Ccarb to δ18Ocarb mixing lines, together with petrographic and elemental abundance data, demonstrate that much of the isotopic scatter in single beds is due to mixing of isotopically distinct components. These patterns facilitated objective sample screening to determine the ‘least‐altered’ data. A δ18Ocarb filter based on empirical δ18Ocarb values of well‐preserved carbonate mudstones allowed further sample discrimination. The resulting ‘least‐altered’ δ13Ccarb profile improves the understanding of regional as well as continental‐scale stratigraphic relations in this interval. Correlations with other Laurentian sections strongly suggest that: (i) small‐scale variability in Guttenberg excursion δ13Ccarb values may result in part from local diagenetic overprinting; (ii) peak‐Guttenberg excursion δ13Ccarb values of the Midcontinent are not distinct from their Taconic equivalents; and (iii) no primary continental‐scale spatial gradient in δ13Ccarb (for example, arising from chemically distinct ‘aquafacies’) is required during Guttenberg excursion‐time. This study demonstrates the importance of detailed petrographic and geochemical screening of samples to be used for δ13Ccarb chemostratigraphy and for enhancing understanding of epeiric ocean chemistry.  相似文献   

19.
δ13C was determined in lignin extracted from present-day cladodes of Phyllocladus alpinus (a small coniferous tree) from seven well-lit sites across New Zealand. The δ13C values ranged from −30.9‰ to −23.6‰ and were compared with monthly means of temperature, precipitation, relative humidity and vapour pressure deficit from the nearest recording stations. Of these parameters, the leaf-to-air vapour pressure deficit of the first month of cladode growth and expansion proved to be the most significantly correlated with lignin δ13C, over a range of 0.3 to 0.8 kPa, confirming the importance of atmospheric moisture content on stomatal conductance. The carbon isotopic signature of lignin from fossilised cladodes preserved under the Kawakawa Tephra (22.6 k 14C yr BP) on the North Island is identical to that of the whole tissue, suggesting that for this species at least, fossil material can be used to approximate the lignin δ13C. The δ13C of species- and organ-specific fossil terrestrial plant material therefore provides an excellent method to quantify past changes in leaf-to-air vapour pressure deficit. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Sedimentary rocks deposited during the Ediacaran period (~630–542 Ma) contain carbonates whose carbon isotopic ratios show a marked negative excursion consisting of a precipitous drop from +5‰ to ?12‰, followed by a sub‐linear recovery to positive δ13C values. Isotopic ages (U/Pb) and thermal subsidence modelling are combined to constrain the excursion in time and indicate an onset at ~600 Ma, and duration of recovery of approximately 50 Myr. The excursion is widely recognized in Oman and has potential correlatives in Ediacaran strata elsewhere, and may thus represent a characteristic feature of the Ediacaran period. The amplitude of this carbon isotope excursion far exceeds those of other Neoproterozoic anomalies. The isotopic trend of negative excursion and long‐term recovery spanned at least one short‐lived glacial episode (at 580 Ma), but appears unrelated to glaciation, which indicates that negative anomalies in the Neoproterozoic marine carbon isotope record are not directly or uniquely linked to ice ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号