首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The existence of a well-defined climate ‘see-saw’ across the North Atlantic region and surrounding areas has been known for over 200 years. The occurrence of severe winters in western Greenland frequently coincides with mild winters in northern Europe. Conversely, mild winters in western Greenland are frequently associated with cold winters across northern Europe. Whereas this ‘see-saw’ is normally discussed in terms of air temperature and pressure differences, here we explore how the climate ‘see-saw’ is reflected in records of historic storminess from Scotland, NW Ireland and Iceland. It is concluded that the stormiest winters in these regions during the last ca. 150 years have occurred when western Greenland temperatures have been significantly below average. In contrast, winters of reduced storminess have coincided with winters when air temperatures have been significantly above average in western Greenland. This reconstruction of winter storminess implies a relationship between chronologies of coastal erosion and the history of North Atlantic climate ‘see-saw’ dynamics with sustained winter storminess, and hence increased coastal erosion, taking place when the Icelandic low pressure cell is strongly anchored within the circulation of the northern hemisphere. Considered over the last ca. 2000 years, it would appear that winter storminess and climate-driven coastal erosion was at a minimum during the Medieval Warm Period. By contrast, the time interval from ca. AD 1420 until present has been associated with sustained winter storminess across the North Atlantic that has resulted in accelerated coastal erosion and sand drift.  相似文献   

2.
The climatology of intense winter cyclone events in the eastern North Atlantic responsible for high magnitude surge generation (top 1% of events) within the region of the South-Western Approaches to northwest France and southwest England is extracted from daily sea-level and 500-hPa level atmospheric pressure analyses. Cluster analysis yields discrete cyclone track regimes linked to upper airflow patterns being responsible for the generation of intense storms (central pressure at sea-level ≤990 hPa) which promote severe surge events ≥60 cm along the French coast of the South-Western Approaches. Fluctuations in storminess are strongly influenced by the southward intrusion and strengthening of the jet stream in mid-Atlantic. These occurrences are often associated with negative sea surface temperature (SST) anomalies near Newfoundland and a strengthening of the thermal gradient across the Atlantic well to the south of its normal position. Resultant cyclogenesis promotes storms displaying a delay in minimum central pressure attainment until well east of 14°W, encouraging enhancement of surge flow. Stepwise multiple regression analysis indicates that the most influential variables in promoting severe surge events in the South-Western Approaches are trans-Atlantic sea surface temperature gradients. The most important influence is the prevailing west–east sea surface temperature gradient during the month of the storm, followed by that for the prior month of the storm and thirdly, the north–south sea surface temperature gradient prevailing during the month of the event. Other influential variables reflect the character of the cyclone, storm duration, mean deepening rate of storm central pressure, the value of the outermost closed isobar around the storm centre, and the longitudinal position of the outermost closed isobar to the right of the cyclone track. In contrast, the North Atlantic Oscillation (NAO) is not very effective as a discriminator of surge activity. This may reflect the greater intra-month volatility of parameters used to derive the NAO index than of other monthly variables considered in the study. The lack of resolvability at the individual storm level probably also arises because of the monthly detailing of the NAO against storms of 2–3 days duration. This behavioural model of extreme storminess in the South-Western Approaches to northwest France provides the basis by which extremes of coastal susceptibility can be calibrated.  相似文献   

3.
Over the past three to four decades, there has been a growing awareness of the important controls exerted by large-scale meteorological events on coastal systems. For example, definitive links are being established between short-term (timescales of 5–10 years) beach dynamics and storm frequency. This paper assesses temporal variability of coastal storms (both tropical and extratropical) and the wave climatology in the North Atlantic Basin (NAB), including the Gulf of Mexico. With both storm types, the empirical record shows decadal scale variability, but neither demonstrates highly significant trends that can be linked conclusively to natural or anthropogenic factors. Tropical storm frequencies have declined over the past two or three decades, which is perhaps related to recent intense and prolonged El Niños. Some forecasts predict higher frequencies of tropical storms like that experienced from the 1920s to the 1960s to occur in coming decades. Results from general circulation models (GCMs) suggest that overall frequencies of tropical storms could decrease slightly, but that there is potential for the generation of more intense hurricanes. These data have important implications for the short-term evolution of coastal systems.

There is strong suggestion that extratropical systems have declined overall over the past 50–100 years, but that there is an increase in frequency of very powerful storms, especially at higher latitudes. Both ENSO and the North Atlantic Oscillation (NAO) are shown to have associations with frequencies and tracking of these systems. These empirical results are in general agreement with GCM forecasts under global warming scenarios. Analyses of wave climatology in the NAB show that the last two to three decades have been rougher at high latitudes than several decades prior, but this more recent sea state is similar to conditions from about 100 years ago. The recent roughness at sea seems to be related to high NAO index values, which are also expected to increase with global warming. Thus, when coupled to an anticipated continued rise in global sea level, this trend will likely result in increasing loss of sediment from the beach-nearshore system resulting in widespread coastal erosion.  相似文献   


4.
Lithostratigraphical and biostratigraphical investigation of coastal marshes along the Atlantic coast of the Outer Hebrides from Lewis in the north to Barra in the south discloses inland-tapering sand units within marshland areas. The inland extent of each sand unit has been radiometrically dated and the units have been collectively interpreted as a proxy for past coastal storminess. The data appear to indicate that for the study sites investigated, the majority of the sand units were produced during episodes of climate deterioration both prior to and after the well-known period of Medieval warmth (MWP). Many were produced after ca. AD 1400. It is argued that the episodes of sand blow indicated by the deposits may reflect periods of increased cyclogenesis in the Atlantic associated with increased sea ice cover and an increase in the thermal gradient across the North Atlantic region.  相似文献   

5.
Storms and shoreline retreat in the southern Gulf of St. Lawrence   总被引:1,自引:0,他引:1  
Storms play a major role in shoreline recession on transgressive coasts. In the southern Gulf of St. Lawrence (GSL), southeastern Canada, long-term relative sea-level rise off the North Shore of Prince Edward Island has averaged 0.3 m/century over the past 6000 years (>0.2 m/century over 2000 years). This has driven long-term coastal retreat at mean rates >0.5 m/a but the variance and details of coastal profile response remain poorly understood. Despite extensive sandy shores, sediment supply is limited and sand is transferred landward into multidecadal to century-scale storage in coastal dunes, barrier washover deposits, and flood-tidal delta sinks. Charlottetown tide-gauge records show mean relative sea-level rise of 3.2 mm/a (0.32 m/century) since 1911. A further rise of 0.7±0.4 m is projected over the next 100 years. When differenced from tidal predictions, the water-level data provide a 90-year record of storm-surge occurrence. Combined with wind, wave hindcast, and sea-ice data, this provides a catalogue of potentially significant coastal storms. We also document coastal impacts from three recent storms of great severity in January and October 2000 and November 2001. Digital photogrammetry (1935–1990) and shore-zone surveys (1989–2001) show large spatial and temporal variance in coastal recession rates, weakly correlated with the storm record, in part because of wave suppression or coastal protection by sea ice. Large storms cause rapid erosion from which recovery depends in part on local sand supply, but barrier volume may be conserved by washover deposition. Barrier shores with dunes show high longshore and interdecadal variance, with extensive multidecadal healing of former inlet and overwash gaps. This reflects recovery from an episode of widespread overwash prior to 1935, possibly initiated by intense storms or groups of storms in the latter half of the 19th century. With evidence from the storms of 2000–2001, this points to the importance of storm clustering on scales of weeks to years in determining erosion vulnerability, as well as the need for a long-term, large-scale perspective in assessing coastal stability. The expected acceleration in relative sea-level rise, together with projections of increasing storm intensity and greatly diminished winter ice cover in the southern GSL, implies a significant increase in coastal erosion hazards in future.  相似文献   

6.
海南岛东南部潟湖台风事件沉积记录   总被引:4,自引:1,他引:3  
研究海岸潟湖沉积记录可恢复器测记录之前和史前时期热带气旋活动的频率和强度信息。本文试图通过分析潟湖沉积揭示南海北部地区的古台风活动信息,以海南岛东南部两个潟湖的钻孔沉积物为研究对象,选取沉积物粒度、有机质和碳酸盐含量等参数建立台风事件的鉴别指标,同时借助210Pb CRS计年模式确定了沉积物柱状样的沉积速率和年代序列,对海南岛东南部的古风暴活动进行了分析。结果显示,柱状岩心清晰地记录了海南省东南部过去350年期间的35次特大风暴潮事件。基于历史文献和沉积记录的风暴沉积事件恢复了近350年来的风暴活动历史,发现海南省东南部特大风暴事件频数与厄尔尼诺强度有显著关系,同时还可能受到太平洋涛动(PDO)、北大西洋涛动(NAO)和太阳黑子活动等多种气候因素的综合影响。本文研究表明,结合风暴沉积记录和历史文献资料可为恢复海岸带地区长时间尺度高分辨率的古风暴活动规律提供有效信息。  相似文献   

7.
At interannual to multidecadal time scales, much of the oceanographic and climatic variability in the North Atlantic Ocean can be associated with the North Atlantic Oscillation (NAO). While evidence suggests that there is a relationship between the NAO and zooplankton dynamics in the North Atlantic Ocean, the phytoplankton response to NAO-induced changes in the environment is less clear. Time series of monthly mean phytoplankton colour values, as compiled by the Continuous Plankton Recorder (CPR) survey, are analysed to infer relationships between the NAO and phytoplankton dynamics throughout the North Atlantic Ocean. While a few areas display highly significant (p < 0.05) trends in the CPR colour time series during the period 1948–2000, nominally significant (p < 0.20) positive trends are widespread across the basin, particularly on the continental shelves and in a transition zone stretching across the Central North Atlantic. When long-term trends are removed from both the NAO index and CPR colour time series, the correlation between them ceases to be significant. Several hypotheses are proposed to explain the observed variability in the CPR colour and its relationship with climate in the North Atlantic.  相似文献   

8.
Numerical modeling of extreme sea levels associated with tropical cyclones in the Indian seas has been confined to the northern part of the Bay of Bengal (north of Tamil Nadu). However, limited attempts have been made for modeling of surges along the Tamil Nadu and Sri Lankan coasts. Although, very rarely, cyclones form south of 10°N, there are some instances of severe cyclonic storms hitting these areas and causing widespread destruction to life and property. Keeping this in view, a suitable location-specific, high-resolution, numerical model has been developed for the prediction of storm surges in these regions with a grid resolution of 3 km. Using the model, numerical experiments are performed to simulate the storm surge associated with the 1964 Rameswaram cyclone, the 1978 Batticaloa cyclone, the 1992 Tuticorin cyclone, the 1993 Karaikal cyclone, and the 1994 Madras cyclone. During the years 1964, 1978, and 1992, the cyclones struck both Sri Lanka and Tamil Nadu coasts, while in 1993 and 1994, the cyclones struck only the Tamil Nadu coast. It is found that the computed sea surface elevations are in close agreement with the available observations/estimates.  相似文献   

9.
Numerical modeling of extreme sea levels associated with tropical cyclones in the Indian seas has been confined to the northern part of the Bay of Bengal (north of Tamil Nadu). However, limited attempts have been made for modeling of surges along the Tamil Nadu and Sri Lankan coasts. Although, very rarely, cyclones form south of 10°N, there are some instances of severe cyclonic storms hitting these areas and causing widespread destruction to life and property. Keeping this in view, a suitable location-specific, high-resolution, numerical model has been developed for the prediction of storm surges in these regions with a grid resolution of 3 km. Using the model, numerical experiments are performed to simulate the storm surge associated with the 1964 Rameswaram cyclone, the 1978 Batticaloa cyclone, the 1992 Tuticorin cyclone, the 1993 Karaikal cyclone, and the 1994 Madras cyclone. During the years 1964, 1978, and 1992, the cyclones struck both Sri Lanka and Tamil Nadu coasts, while in 1993 and 1994, the cyclones struck only the Tamil Nadu coast. It is found that the computed sea surface elevations are in close agreement with the available observations/estimates.  相似文献   

10.
In the northwestern North Pacific, annual net air-sea CO2 flux is greatest in the Kuroshio Extension(KE) zone,owing to its low annual mean partial pressure of CO2(pCO2), and it decreases southward across the basin. To quantify the influences of factors controlling the latitudinal gradient in CO2 uptake, sea surface pCO2 and related parameters were investigated in late spring of 2018 in a study spanning the KE, Kuroshio Recirculation(KR), and...  相似文献   

11.
The tsunami hypothesis proposes that prehistoric tsunamis may have been larger than historic ones along coasts normally (historically) not associated with major tsunamis. The evidence for the hypothesis rests with the types of unusual sedimentary deposits and erosional forms along coasts where the largest historic and prehistoric storm waves do not appear capable of forming the features. This is especially the case at locations where boundary conditions, i.e. offshore water depth, coastal geomorphology and meteorological limitations, are not conducive to the propagation of sufficiently large storm waves at the shore. The tsunami hypothesis has been barely debated in the literature. This is despite the view of some, who suggest that storms have been overlooked, or underestimated, as a cause. Few comparisons have been made of the supposed tsunami generated features and the impacts on coasts of extreme intensity storms. Four of the most powerful tropical cyclones anywhere in the world in recent times struck the Western Australian coast between 1999 and 2002. The results of post-event surveys of these storms showed that none of them produced the enigmatic forms attributed elsewhere to tsunamis.  相似文献   

12.
Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms.

Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999–2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000–2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999–2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer.

A northeast storm on March 5–6, 2001, resulted in currents in excess of 1 m s−1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches reached and exceeded their pre-storm elevation and began to show berm buildup characteristic of the summer months.  相似文献   


13.
海浪对北太平洋海-气二氧化碳通量的影响   总被引:1,自引:0,他引:1  
利用4种海-气界面气体传输速率公式对比研究了北太平洋气体传输速率及其CO2通量的季节变化特征。与单纯依赖风速的算法相比, 考虑波浪影响的气体传输速率和CO2通量在空间分布和季节变化上具有明显差异。在低纬度地区(0°~30°N), 波浪参数使气体传输速率下降, 海洋对大气CO2的吸收减少, 而在30°N以北范围内则出现新的气体传输速率高值区, 海洋对大气的吸收增加。进一步研究了黑潮延伸体区域的气候态月平均气体传输速率和CO2通量。结果表明, 该区域气体传输速率和CO2通量最大值分别出现于冬季和春季, 引入波浪参数后, 虽然该区域气体传输速率和CO2通量平均值没有明显差异, 但季节变化强度显著增强。  相似文献   

14.
This paper describes the results of investigations of the consequences of the storms on the Pacific coast of Shikotan Island that occurred on October 7–10, 2006 and January 6–8, 2007. These storms and their impact on the coastal zone can be considered as extreme events for the last 40–50 years. The heights and flooding area of the storm surges within bay coasts of different types were measured. The coastal relief’s changes are described. During the storms, a cover of deposits was formed having a size of up to 30 m outside the beach zone and up to 52 m in the near-mouth zones. The grain-size composition of the storm deposits is analyzed and their difference from other coastal facies, including tsunami sands, are established.  相似文献   

15.
The present study reveals the fact that the relationship between the spring(April–May) North Atlantic Oscillation(NAO) and the following summer(June–September) tropical cyclone(TC) genesis frequency over the western North Pacific(WNP) during the period of 1950–2018 was not stationary. It is shown that the relationship between the two has experienced a pronounced interdecadal shift, being weak and insignificant before yet strong and statistically significant after the early 1980 s. Next we compare the spring NAO associated dynamic and thermodynamic conditions, sea surface temperature(SST) anomalies, and atmospheric circulation processes between the two subperiods of 1954–1976 and 1996–2018, so as to illucidate the possible mechanism for this interdecadal variation in the NAO-TC connection. During the latter epoch, when the spring NAO was positive,enhanced low-level vorticity, reduced vertical zonal wind shear, intensified vertical velocity and increased middle-level relative humidity were present over the WNP in the summer, which is conducive to the genesis of WNP TCs. When the spring NAO is negative, the dynamic and thermodynamic factors are disadvantageous for the summertime TC formation and development over the WNP. The results of further analysis indicate that the persistence of North Atlantic tri-pole SST anomalies from spring to the subsequent summer induced by the spring NAO plays a fundamental role in the linkage between the spring NAO and summer atmospheric circulation.During the period of 1996–2018, a remarkable eastward propagating wave-train occurred across the northern Eurasian continent, forced by the anomalous SST tri-pole in the North Atlantic. The East Asian jet flow became greatly intensified, and the deep convection in the tropics was further enhanced via the changes of the local Hadley circulation, corresponding to a positive spring NAO. During the former epoch, the spring NAO-induced tri-pole SST anomalies in the North Atlantic were non-existent, and the related atmospheric circulation anomalies were extremely weak, thereby leading to the linkage between spring NAO and WNP TC genesis frequency in the following summer being insignificant.  相似文献   

16.
海滩风暴效应若干问题思考与我国研究前景   总被引:1,自引:0,他引:1  
热带风暴是一种频发的灾害性事件,其诱发的大浪及其伴生的风暴潮会在短时间内搬运大量沉积物,对海岸地貌、海底地形和海洋沉积的影响极为严重.总结了未来风暴变化趋势和风暴动力方面的研究进展,概述了近几十年来海滩风暴效应领域几个重要方向的进展,内容包括岸滩风暴灾害调查和研究、海滩风暴效应差异性研究、风暴作用下的泥沙运动和岸滩风暴响应沉积学特征等方面.从国内外的研究现状来看,我国在风暴作用下泥沙运动实测与定量分析、多因素耦合控制下海滩风暴效应差异和海滩风暴地貌过程等方面存在着明显的不足.作为我国海岸科学研究中必需又薄弱的环节,今后该领域的研究应该在强化野外现场实验和监测的基础上,深入探讨极端条件下的海滩过程,发展海滩风暴响应预测模型,并积极开展海滩风暴潮防护技术开发与应用.  相似文献   

17.
Poles of rotation for the North Atlantic have been derived from the results of a new aeromagnetic survey northeast of Newfoundland. Reconstruction of the North Atlantic at anomaly 34 time shows a band of large amplitude magnetic anomalies which parallels anomaly 34 on both sides of the Atlantic from Flemish Cap and Goban Spur to the Azores-Gibraltar Fracture Zone. A group of similar anomalies has also been identified in the Bay of Biscay. North of Goban Spur and Flemish Cap, these anomalies follow the ocean-continent boundary. Poles of rotation derived for this anomaly show that it forms an isochron (100–110 m.y.) during the long Cretaceous normal polarity interval. The cause of this anomaly is not definite, but it may represent an increase in the magnetization of the crust during a limited time within the Cretaceous Magnetic Quiet Zone by a process such as replacement of thermoremanent magnetization by chemical remanent magnetization as proposed by Raymond and LaBrecque.The North Atlantic has also been reconstructed at the time of the initial opening in the region between Flemish Cap and the Charlie-Gibbs Fracture Zone, using inferred ocean-continent boundaries on the west and east sides: it has been shown that the entire region could not have saparated at one time, but that spreading between the British Isles and Newfoundland had to progress from south to north. Consequently, when active sea-floor spreading was taking place between Goban Spur and Flemish Cap (about 110 m.y.) the region to the north was still being stretched. The calculated amount of stretching as derived from the reconstructions (about 25%) agrees well with the extension of the lithosphere obtained from modelling the subsidence history of this region, and with the results of deep seismic studies. Active spreading in the north started about 100 m.y. ago.  相似文献   

18.
Large sections of the western Irish coast are characterised by a highly compartmentalised series of headland-embayment cells in which sand and gravel beaches are backed by large vegetated dune systems. Exposure to modally high-energy swell renders most of these beaches dissipative in character. A mesotidal range (c. 3.5–4.5 m) exists along much of the coast. Analysis of instrumental wind records from three locations permitted the identification of a variety of storm types and the construction of storm catalogues. Few individual storms were recorded at all three stations indicating a lack of regional consistency in storm record. Of the total storms recorded, only a small percentage are potentially damaging (onshore directed) and even fewer span a high tide and thus potentially induce a measurable morphological response at the coast.

Through a combination of historical records, meteorological records, field observations and wave modelling we attempt to assess the impact of storms. Quantifiable records of coastal morphology (maps, air photos and beach profiles) are few in number and do not generally record responses that may be definitely attributed to specific storms. Numerical wave simulations and observations at a variety of sites on the west Irish coast, however, provide insights into instantaneous and medium term (decadal) storm responses in such systems.

We argue that beaches and dunes that are attuned to modally high-energy regimes require extreme storms to cause significant morphological impact. The varying orientation of beaches, a spatially nonuniform storm catalogue and the need for a storm to occur at high water to produce measurable change, impart site-specific storm susceptibility to these embayments. Furthermore, we argue that long-period wave energy attenuation across dissipative shorefaces and beaches reduces coastal response to distant storms whereas short-period, locally generated wind waves are more likely to cause major dune and beach erosion as they arrive at the shoreline unrefracted.

This apparently variable response of beach and dune systems to storm forcing at a decadal scale over a coastline length of 200 km urges caution in generalising regarding regional-scale coastal responses to climatic change.  相似文献   


19.
20.
The existence and spatial distribution of possible teleconnections between the South Pacific and North Atlantic oceans and the Ligurian Sea (North-western Mediterranean) are investigated in the present paper. Teleconnections are searched by cross-correlating monthly spatio-temporal time series of 1.1 km resolution sea surface temperature (SST), and a 22.2 km resolution sea level anomaly (SLA), measured from satellite from March 1993 to August 1999, with two indices characterising the South Pacific and the North Atlantic variability: the Southern Oscillation (SO) and the North Atlantic Oscillation (NAO) indices, respectively. Concerning the variability induced by the North Atlantic Ocean, it is shown that it mostly influences the SLA field in the Ligurian Sea. Specifically, relevant anti-correlations between SLA and North Atlantic variability have been found in all the Ligurian sub-basin. As expected by geographical proximity, the effects of North Atlantic on the SLA field in the Ligurian Sea are instantaneous at monthly time scales. Instead, correlations between SST and NAO Index are found at time lag τ = 1 month in the southern part of the basin highlighting the memory of the ocean related to their heat capacity. Significant anti-correlations between SO Index and the SST field in the Ligurian Sea, were obtained at time lag τ = 4 months in the coastal areas of the sub-basin. Results also indicate that the impact of teleconnections in the area studied is not geographically uniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号