首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
夏季南亚高压与川渝地区降水的关系研究   总被引:10,自引:7,他引:3       下载免费PDF全文
利用我国160个测站中川渝地区的代表站及NCEP/NCAR再分析资料,研究了盛夏川渝地区降水与南亚高压东西振荡关系及其可能产生的影响.结果表明:川渝降水变化存在与南亚高压相适应的时间尺度,即准5年尺度、准10年尺度.在准5年尺度上,20世纪90年代中期以前,南亚高压东西振荡表现的位相与盆地东部降水变化位相相反,与盆地西部降水变化呈正位相,90年代末期以后与川渝地区降水变化位相趋势一致,但与四川西部高原降水的位相关系对应不明显.在年代际尺度,川渝盆地东、西部和川西高原三地降水变化存在与南亚高压东西振荡相一致的位相,说明年代际尺度变化中,当南亚高压长期表现为东伸模态,川渝降水呈总体偏多趋势.同时,川渝地区的降水变化与100hPa上高压两侧及中低层四川上空风场变化有显著的遥相关,在"东涝西旱"年份,南亚高压16800 gpm线位于四川与重庆交界上空,在"西涝东旱"年份,南亚高压16800 gpm线位于湖北西部上空,在两地降水差异显著年,南亚高压东西振荡主要表现在川渝盆地上空摆动,用16800 gpm线定义的东西振荡指数对认识川渝地区降水异常有很好的指示意义.  相似文献   

2.
中国北方近百年干湿变化与太平洋年代际振荡的关系   总被引:37,自引:7,他引:37  
马柱国  邵丽娟 《大气科学》2006,30(3):464-474
利用CRU(Climate Research Unit)1901~2002年全球0.5°×0.5°网格点月降水和月平均气温资料,利用一个能够用于检测地表干湿变化的湿润指数,对中国北方四个典型地区干湿演变特征及与北太平洋年代际振荡的关系进行了初步的分析.结果发现:降水和湿润指数在表征干湿变化的特征时有明显的差别,特别是在干旱和半干旱地区,增暖也是影响干湿变化的一个重要因素.相关分析表明,华北和西北东部的年干湿变化与同期太平洋年代际振荡(简称PDO)指数有密切的关系,PDO指数的正位相对应两个地区的干旱时段,负位相则对应两个地区的湿润时段,而新疆南部与PDO指数同期呈显著的正相关关系,即当PDO为正位相时,该地区为湿的时段,负位相对应干的时段.以100°E为界,北方的东部干湿变化与太平洋年代际振荡指数呈反相关,而西部则相反,与PDO呈正相关关系.  相似文献   

3.
基于观测和再分析资料,本文研究了近几十年来1月北大西洋东部-乌拉尔山阻塞高压频次年际变异主导模态特征及与其相联的大气背景场。结果表明,1980—2019年冬季(12月—次年2月)该地区阻塞高压频次年际变异的主导模态存在明显月际差异:12月表现为北大西洋东部-欧洲西部地区阻塞高压频次的显著同位相变化,1月为北大西洋东部-欧洲西部与乌拉尔山地区阻塞高压频次的具有显著的反位相变化即偶极子模态,2月则为北大西洋东部-乌拉尔山阻塞高压频次的显著同位相变化。进一步研究表明:1月北大西洋东部-乌拉尔山阻塞高压频次偶极子模态与同期局地纬向西风、纬向风垂直切变、经向位涡梯度等大气背景场异常偶极型变化相联系。当乌拉尔山地区关键大气背景场为负异常,而北大西洋东部-欧洲西部为正异常时,两个地区阻塞高压频次分别增加和减少,呈现偶极子模态;反之亦然。阻塞高压频次偶极子模态及相关的背景环流异常可通过调节水平温度平流、垂直运动和水汽输送等来影响1月欧亚北部气温和降水,以及它们的极端事件频次。当阻塞高压频次偶极子模态处于正位相时,乌拉尔山北部(南部)和欧洲南部增温(降温),极端暖、冷事件频次分别增加(减少)和减少(增加),斯堪的纳维亚半岛北部降温且极端暖事件减少,乌拉尔山及东北亚地区降水和极端降水频次减少而欧洲大陆部分地区增加;反之亦然。此外,在冬季仅1月阻塞高压频次年际变异主导模态表现为偶极子模态可能与关键大气背景场气候态及其变异的月际差异密切相关。  相似文献   

4.
大气环流的年代际变化I.观测资料的分析   总被引:20,自引:1,他引:19  
利用多种资料分析研究了大气环流(包括几个主要大气涛动、一些主要大气环流系统)的时间变化特征.结果清楚地表明大气环流,无论是热带大气还是中高纬度的大气环流,存在着显著的年代际变化特征,主要为10~20年准周期振荡和30多年准周期振荡.北大西洋涛动(NAO)和北太平洋涛动(NPO)的10~20年准周期振荡有近乎同位相特征,而它们的30多年准周期振荡却有近乎反位相变化.西太平洋副高强度与北美大槽强度的变化在10~20年时间尺度既有同位相情况也有反位相情况;但在30多年时间尺度却是基本同位相的.西太平洋副高强度与东亚大槽强度变化在30多年时间尺度也是基本同位相的,且副高变化超前约5~7年.  相似文献   

5.
近50 a东北地区降水异常的气候特征分析   总被引:36,自引:4,他引:36  
用诊断分析的方法对近50a东北地区降水异常的气候特征进行了分析。结果表明,东北地区降水异常的季节变化明显,异常在6—8月最大,尤其是7—8月,异常峰值所在月有较明显的年际变化;近50a东北地区夏季降水异常呈现出明显的年际和年代际变化特征,存在3.1a的显著年际周期和12.5a的显著年代际周期,同时还存在26—28a、4—6a的多尺度振荡周期;东北地区夏季多、少雨年全国降水异常的分布表现出了东北与华北东部同位相,与淮河及长江中下游地区反位相的特征。夏季降水异常的空间分布及与全国降水异常的分布既有一致的时候(50、70、90年代),也存在地域差异(60、80年代)。  相似文献   

6.
青藏高原积雪的分布特征及其对地面反照率的影响   总被引:7,自引:3,他引:7  
通过对1983年7月至1990年6月青藏高原主体58个格点积雪资料进行EOF分析发现,青藏高原主体积雪分布以西部兴都库什山脉。天山山脉以及南部喜马拉雅山脉为主;高原中部唐古拉山脉、北部昆仑山脉和东部巴颜喀拉山脉的积雪相对较少,青藏高原西部、南部的积雪变化与中部、北部和东部的积雪变化趋势存在反位相关系。另外,本文还对积雪对高原地面反照率的影响作了简单分析。  相似文献   

7.
高原及四周平原的不同加热,引起各种尺度的环流系统。本文讨论了季风尺度环流系统(本文讨论的尺度最大的系统)及其年际变化,对比了北美西部高原与青藏高原的作用。北半球高原对天气尺度系统有很大影响。通过数值模型试验给出一个在青藏高原东部气旋生成的例子。北美西部高原白天的加热效应促使大尺度“高原环流系统”发展,这个系统对高原及其东部上空雷暴活动的日变化有决定性的影响。这表明有地形特性的局地加热和冷却能与昼夜变化的高原环流系统发生相互作用。  相似文献   

8.
淮河流域的降水异常容易导致旱涝灾害。本研究从降水位相变化的角度,对淮河流域春夏季降水规律作了分析。在近50 a中,春夏季降水持续偏多的典型事件发生频次较多,强度较大。1960年代初期—1970年代末期和2000年代的两个时期内发生降水位相变化的站次都呈现减少趋势,而在近几年则显著增加。通过S-EOF分解,第1模态代表春、夏季降水持续同位相变化,其时间系数在近年来持续上升;第2模态为春夏季降水反位相变化特征,此模态的时间系数有明显的年代际变化特征。进一步研究发现:前冬和春季,当赤道太平洋持续发生El Ni1o事件,南印度洋偶极子负位相;春季东亚副热带急流偏弱,春夏季中国东部850 hPa均存在南风异常,有利于淮河流域春夏季降水持续正位相变化;持续负位相年则反之。当春季东亚副热带急流偏强(弱),夏季位置偏南(北);中国东部沿海春季海温偏低(高);春夏季间中国东南部850 hPa经向风由北(南)风异常转变为南(北)风异常,可能会导致春季降水负(正)位相—夏季正(负)位相的变化。  相似文献   

9.
利用1979—2019年ERA5再分析资料和站点降水资料,研究了5月中国土壤湿度异常对7月华南和青藏高原东部偶极子型降水年际变化的影响及其可能的物理过程。结果表明,当5月青藏高原土壤湿度偏湿,华中地区土壤湿度偏干时,对应7月华南(高原东部)降水偏多(偏少),两地降水呈偶极子型分布。通过进一步的诊断分析发现,青藏高原(华中地区)土壤湿度正(负)异常可从5月持续至7月,使得7月中国北方地区地表湍流热通量正异常,进而使得对流层中低层大气增暖,中国北方与贝加尔湖之间经向温度梯度和大气斜压性增强,天气尺度的瞬变波活动增强。通过瞬变的涡度强迫有利于中国北方及蒙古地区准正压异常高压和Rossby波波源的形成,相关的Rossby波向东南方向传播至我国南方,使得华南地区出现准正压结构的异常低压,有利于西北太平洋副热带高压东移,南亚高压西移。对应中国北方及蒙古-华南地区对流层中低层为反气旋-气旋式环流异常,进而导致华南地区(高原东部)降水增多(减少)。此外,中国北方-蒙古地区的异常高压与局地偏干的土壤湿度之间的正反馈过程,有利于上述物理过程的维持和增强,进而有利于7月偶极子降水的异常,反之亦然。  相似文献   

10.
王黎娟  葛静 《大气科学》2016,40(4):853-863
利用1983~2012年NCEP/NCAR逐日再分析资料对夏季青藏高原大气热源和南亚高压东西振荡的低频特征以及两者的关系进行了讨论,发现夏季青藏高原东部大气热源与南亚高压纬向运动的主要低频周期都是10~20 d。在高原东部大气热源10~20 d振荡峰值位相,青藏高原上空被低频气旋控制,高原西部被低频反气旋控制,导致南亚高压主要高压中心向西移动呈伊朗高压模态;在大气热源10~20 d振荡谷值位相,低频环流形势完全相反,青藏高原上空被低频反气旋控制,高原西部被低频气旋控制,致使南亚高压主要高压中心向东移动呈青藏高压模态。高原热力场异常导致其上空暖中心变化从而引起的高层风场变化可以解释南亚高压的东西振荡。  相似文献   

11.
印度洋海温的偶极振荡与高原汛期降水和温度的关系   总被引:5,自引:0,他引:5  
利用1961—2000年近40年印度洋海温距平场资料及对应的青藏高原35个观测站的降水与温度资料,通过相关普查得出,印度洋地区东西海温的偶极振荡与青藏高原汛期降水、温度有较好的相关关系,特别是前期1月、12月~2月的印度洋地区东西海温的偶极指数与青藏高原汛期(6~8月)降水和前一年6月的印度洋地区东西海温的偶极指数与青藏高原汛期(6~8月)温度有很好的相关。分析1961—2002年NCEP/NCAR 500hPa北半球高度场资料发现,印度洋地区东西海温的偶极指数与欧亚500hPa的高度场异常有密切的关系,并通过印度西南季风的强弱,影响到青藏高原汛期降水和温度的变化。  相似文献   

12.
Climatology and trends of wet spells in China   总被引:3,自引:0,他引:3  
Summary Climatological features and variations of wet spells, especially their trends over China, are investigated using a dataset of 594 meteorological stations across China from 1951 to 2003. The results show that the lower the latitude is, the longer the annual duration of wet spells is. The mean annual precipitation from wet spells is higher in southeastern coastal areas and much lower in western and northern China. The longest wet spells are found in Southwest China and the eastern Tibetan Plateau. The maximum daily precipitation of wet spells decreases from the southeast to the northwest, with the highest in southeastern coastal areas and the lowest in western China. The trends of wet spells exhibit striking regional differences. In most areas of western China, the annual number of days in wet spells has slightly increased, but significantly decreased over North China, Central China and Southwest China. The annual precipitation amount from wet spells displays significant downward trends in North China, eastern Northeast China and the eastern part of Southwest China, but upward trends in the eastern Tibetan Plateau and some southeastern coastal areas. Two clearly-contrasting regions in climatic changes of wet spells are the mid-lower reaches of the Yellow River and the eastern Tibetan Plateau, characterized by a decrease of about 24 days and an increase of about 6 days in annual wet spell days from 1953 to 2003, respectively.  相似文献   

13.
The interannual and intermonthly climatic features of the water vapor content(hereafterWVC)and its mean transfer in the atmosphere over Northwest China(hereafter NWC)arecalculated and analyzed by using the NCEP/NCAR global reanalysis grid data(2.5°×2.5°Lat/Lon)for 40 years(1958—1997).The results show that the WVC in the total air column over NWC infour seasons of the year is mainly concentrated on eastern and western NWC respectively.On theaverage,the WVC over eastern NWC decreases obviously during recent forty years except forwinter.while it decreases over western NWC in the whole year.But the WVC over NWC has beenincreasing since late 1980s in summer.The water vapor comes from the southwestern warm andwet air current along the Yarlung Zangbo River Valley and the Bay of Bengal.and from mid-western Tibetan Plateau and also from the Qinling Mountains at southern Shaanxi Province.Theyearly water vapor divergence appears over the middle of NWC to northern Xinjiang andsoutheastern Shaanxi Province.The yearly water vapor convergence appears over the Tarim Basinand the Tibetan Plateau as well as western Sichuan and southern Gansu.  相似文献   

14.
为了进一步统一分析夏季100hPa南亚高压脊线和中心位置与西北地区降水的关系,利用1970~1985年7~8月逐日历史天气图及降雨量等资料,统计了南亚高压脊线和中心活动的基本特征;划分了逐日东、西部型及带状型南亚高压及持续的东、西部型南亚高压过程,还区分了西北区东、西部的多雨、少雨日。结果表明:南亚高压脊线和中心位置(特别是持续的东、西部型南亚高压过程)与西北区东、西部多雨和少雨过程有密切联系  相似文献   

15.
近50年中国干湿气候界线波动及其成因初探   总被引:24,自引:2,他引:24  
文中在 10a际尺度上详细分析了中国干湿气候界线波动与气候的干湿变化 ,得出 :过去 5 0a中国干湿气候界线波动显著 ,区域差异大 ,呈现出整体移动和东西、南北相异波动的特征。 2 0世纪 6 0~ 70年代中国干湿气候存在一次突变 ,由较湿润变为干旱 ,但各地干旱程度不同。干湿气候界线波动与气候的干湿变化具有显著的年代际特征。在此基础上分析了气候界线波动的可能原因 ,中国干湿气候界线的波动与气候的干湿变化是西太平洋副热带高压强度位置导致的东南季风、孟加拉湾暖流所导致的西南季风以及高原季风、中纬度西风环流等综合作用的结果。中国各地区干湿位相变化不一致 ,区域差异大 ,是不同环流以及环流的不同强弱组合所致。东南季风、西南季风、高原季风、中纬度西风环流、西太平洋副热带高压的年代际变化是过去 5 0a中国干湿气候界线波动与气候干湿变化年代际变化的根本原因。 2 0世纪 6 0~ 70年代的干湿突变 ,是整个北半球大气环流异常的结果  相似文献   

16.
Daily temperature data from 599 stations across China for the years 1961 to 2007 were used to analyze the changes in the natural regional boundaries.The results show that the accumulated temperature ≥ 10℃ and its duration changed dramatically from the end of 1990s to the early 21st century.The amplitude of natu-ral regional boundaries was greater in the 21st century than it was in the 20th century.In the eastern region of China,the climatic zones were migrating generally northward,with the northern edge of the subtropical zone and the eastern section of the warm temperate zone showing an obvious northward shift of up to 1 3° of lati-tude.The climatic zones moved south in the Qing-hai-Tibet Plateau,western Inner Mongolia,and some ar-eas of western Xinjiang,and slightly to the north in other parts of the western region.  相似文献   

17.
我国西南地区秋季降水年际变化的空间差异及其成因   总被引:3,自引:0,他引:3  
刘扬  刘屹岷 《大气科学》2016,40(6):1215-1226
使用1980~2010年全国站点降水资料、ERA-Interim再分析环流资料、哈德莱海表温度资料,运用聚类分析和旋转经验正交函数分解,对西南地区的秋季降水按照其年际变化规律进行分区,进而分析影响各区域降水变化的物理过程和机理。结果表明:西南地区被分为东、西两个区域。西南东、西区域秋季降水的年际变化、显著周期、旱涝异常年份、相关的环流系统都有明显差异。西南东部秋季降水主要与热带海温异常有关,受低纬度环流影响。当赤道东太平洋为暖海温异常,热带印度洋为西正东负的偶极子型海温异常时,分别激发出西北太平洋反气旋和孟加拉反气旋,共同向西南东部输送水汽,造成西南东部降水偏多。西南西部降水在秋季三个月份与不同的环流形势对应:9月降水由中南半岛反气旋输送的暖湿气流决定;10月降水受高原以东反气旋环流和孟加拉湾低槽共同影响;11月降水主要受中高纬环流异常的影响,与斯堪的纳维亚遥相关存在显著负相关。  相似文献   

18.
基于"黄河源区玛曲-若尔盖土壤温湿监测网络"自2008年观测以来至2017年的观测资料,通过分析多层土壤湿度异常百分比指数SMAPI(Soil Moisture Anomaly Percentage Index),捕捉10年来该地区的干湿演变过程,并利用再分析数据资料NECP FNL(National Centers ...  相似文献   

19.
1INTRODUCTIONFormorethanadecade,theair-seainteractionshavebecomeawell-knowncoresubjectofclimateresearch.Largeamountoffactsandtheoreticresearchhaveshownthattheoceanisplayinganessentialroleinclimatechangesonvirtuallyalltimescales[1,2].Tropicaloceansaremajorsuppliersofenergyforglobalatmosphericmotion.Theareaofoceantakesupmorethan70%oftheEarth抯surfaceandvariationsofthetropicaloceancontributemuchtotheinterannualvariationofthegeneralcirculationandclimate[3].Ithasbeenacknowledgedthattheanomaly…  相似文献   

20.
中国黄土高原地区4~10月雨量时空变化特征分析   总被引:11,自引:6,他引:11  
王毅荣  王锡稳 《高原气象》2006,25(4):737-743
利用黄土高原区域40年的实测降水资料,研究了该区作物生长期(4~10月)降水量的时空变化特征,并对干年和湿年的降水进行了分析和比较。结果表明:黄土高原作物生长期降水在1985年左右发生突变,由历史上的多雨转为少雨;降水异常变化存在3~5年、8年左右和11~16年左右的振荡周期,3~5年的振荡周期更明显;干湿年降水存在明显差异,湿年比干年多40%以上;存在降水异常响应的敏感区,干旱在高原的东北部响应变幅大于其它地方,湿涝响应在高原的北部最为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号