首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monticello is a new howardite similar to Malvern in that it contains abundant (15%) glass fragments. These fragments show a range of compositions from olivine-normative to quartz-normative. Like Kapoeta, it contains pyroxene grains that range up to highly magnesian compositions, Fs16. Because their pyroxenes are more magnesian than those occurring in diogenites, Monticello and Kapoeta are exceptions to the simple two-component mixing model in which howardites are considered to be mechanical mixtures of fragmented eucrites and diogenites. Monticello also contains clasts of what appear to be a cumulate eucrite and a non-cumulate eucrite, as well as a radiating pyroxene chondrule from a chondrite. Monticello is a regolith breccia containing more evolved components than are usually considered in eucrite-diogenite genesis models. As such, it supports those models that involve reworking of a complex parent body crust rather than straightforward partial melting of primitive chondritic parent material.  相似文献   

2.
Regolithic howardites are analogs for the surface materials of asteroid 4 Vesta, recently mapped by the Dawn spacecraft. Rigorously evaluating pairing of howardites recovered in 1995 in the Grosvenor Mountains (GRO 95), Antarctica, enables an examination of a larger, more representative regolith sample. Previous work on two of the howardites studied here concluded that GRO 95602 and GRO 95535 are solar wind‐rich surface regolith samples and that they are not paired with each other, leading to uncertainty regarding pairing relationships between the other GRO 95 howardites. Based on petrology, cosmic‐ray exposure history, and terrestrial age, four GRO 95 howardites are paired. The paired howardites (GRO 95534, 95535, 95574, 95581) were from a meteoroid with radius of 10–15 cm, a preatmospheric size comparable to that of Kapoeta, the largest known regolithic howardite. The paired GRO 95 howardites contain clasts of at least 18 separate HED lithologies, providing evidence they were assembled from diverse source materials. The total eucrite:diogenite mixing ratio (ratio of all eucrite lithologies to all diogenite lithologies) in the paired GRO 95 howardites is ~2:1. Petrographically determined basaltic eucrite:cumulate eucrite ratios in regolithic howardites, studied here and previously, vary more widely than total eucrite:diogenite ratios. Relative to eucritic pyroxene, plagioclase is depleted in these howardites, which provides evidence that plagioclase is preferentially comminuted in the vestan regolith. The extent of plagioclase depletion could be an indicator of regolith maturity.  相似文献   

3.
We have done petrologic and compositional studies on a suite of polymict eucrites and howardites to better understand regolith processes on their parent asteroid, which we accept is (4) Vesta. Taking into account noble gas results from companion studies, we interpret five howardites to represent breccias assembled from the true regolith: Elephant Moraine (EET) 87513, Grosvenor Mountains (GRO) 95535, GRO 95602, Lewis Cliff (LEW) 85313, and Meteorite Hills (MET) 00423. We suggest that EET 87503 is paired with EET 87513, and thus is also regolithic. Pecora Escarpment (PCA) 02066 is dominated by melt‐matrix clasts, which may have been formed from true regolith by impact melting. These meteorites display a range in eucrite:diogenite mixing ratio from 55:45 to 76:24. There is no correlation between degree of regolith character and Ni content. The Ni contents of howardite, eucrite, and diogenites (HEDs) are mostly controlled by the distribution of coarse chondritic clasts and metal grains, which in some cases resulted from individual, low‐velocity accretion events, rather than extensive regolith gardening. Trace element compositions indicate that the mafic component of HED polymict breccias is mostly basalt similar to main‐group eucrites; Stannern‐trend basaltic debris is less common. Pyroxene compositions show that some trace element‐rich howardites contain abundant debris from evolved basalts, and that cumulate gabbro debris is present in some breccias. The scale of heterogeneity varies considerably; regolithic howardite EET 87513 is more homogeneous than fragmental howardite Queen Alexandra Range (QUE) 97001. Individual samples of a given howardite can have different compositions even at roughly 5 g masses, indicating that obtaining representative meteorite compositions requires multiple or large samples.  相似文献   

4.
Abstract– Space weathering products, such as agglutinates and nanophase iron‐bearing rims are easily preserved through lithification in lunar regolith breccias, thus such products, if produced, should be preserved in asteroidal regolith breccias as well. A study of representative regolith breccia meteorites, Fayetteville (H4) and Kapoeta (howardite), was undertaken to search for physical evidence of space weathering on asteroids. Amorphous or npFe0‐bearing rims cannot be positively identified in Fayetteville, although possible glass rims were found. Extensive friction melt was discovered in the meteorite that is difficult to differentiate from weathered materials. Several melt products, including spherules and agglutinates, as well as one irradiated rim and one possible npFe0‐bearing rim were identified in Kapoeta. The existence of these products suggests that lunar‐like space weathering processes are, or have been, active on asteroids.  相似文献   

5.
Abstract— The C contents and isotopic compositions of four eucrites, four diogenites and two howardites have been determined. Stepped heating in an O atmosphere was employed to convert selectively different carbonaceous materials to CO2 gas at various temperatures. This technique successfully distinguishes between terrestrial contaminants and indigenous C. With the exception of the Kapoeta howardite, the howardite, eucrite, and diogenite (HED) meteorites contain ~10–30 ppm indigenous C with δ13C between ?29% and ?19%. Kapoeta (a regolith breccia) has an elevated C content and δ13C, due to the presence of 13C-enriched carbonate minerals (δ13C ~ +20%) in CM2- or CR2-like clasts. The range in δ13C displayed by HED samples is similar to that of other solar system basalts, such as lunar rocks and Martian meteorites but distinctly different from that of the terrestrial mantle. The diogenites have a slightly lower total C yield and higher δ13C than the eucrites, which is a result of degassing of trapped CO/CC2/CO2–3 from the silicate lattice during metamorphism or annealing. However, three out of the four diogenites studied appear to contain a discrete component, possibly of graphitic C coating silicate grains, that is seemingly unaffected by the extended annealing period experienced by the diogenites. It is possible that this component might host the indigenous primitive Xe recently identified in diogenites.  相似文献   

6.
Abstract— Two meteorites belonging to the howardite‐eucrite‐diogenite (HED) group fell recently in Rajasthan, India. One of these, Piplia Kalan, was classified as a eucrite and the other, Lohawat, as a howardite. In this study, we present the results of Mössbauer spectroscopic investigations of these two meteorites. We also compare the results with the Mössbauer experiments reported for the Kapoeta howardite and look for systematics in the Mössbauer spectra of HED meteorites.  相似文献   

7.
A newly found polymict eucrite, EETA79006, is described. Lithic clasts are similar to those found in howardites and fall into four groups: fine-grained (aphanitic), coarse-grained, basaltic, and cataclastic. All have eucritic compositions and differ mainly in cooling and deformation histories. Some basaltic clasts cooled faster than others and may be impact melts. Analysis of pyroxene and feldspar in the matrix and in 20 lithic clasts indicates that the matrix was not derived from the observed lithic clast population. This meteorite and similar polymict eucrites may have formed by addition of younger more fractionated lithic clasts to the regolith of the parent body.  相似文献   

8.
Abstract— We report induced thermoluminescence (TL) data for separates from three howardite, eucrite and diogenite (HED) meteorites and the Vaca Muerta mesosiderite. The results of thermal modeling of the surface of their parent body are also described. The TL sensitivities for matrix samples from the LEW 85300, 302 and 303 paired eucrites and the Bholghati howardite are lower than the TL sensitivities for the clasts, which is consistent with regolith working of the matrix in fairly mature regoliths. Within an isochemical series of HED meteorites, TL sensitivity reflects metamorphic intensity, but clast-to-clast variations in the TL sensitivities of the Vaca Muerta mesosiderite and clasts in the EET 87509, 513 and 531 paired howardite primarily reflect differences in mineralogy and petrology. Thermoluminescence peak temperatures indicate that all the components from the LEW 85300, 302 and 303 paired eucrites experienced a reheating event involving temperatures >800 °C, which is thought to have been due to impact heating, and therefore that the event was concurrent with or postdated brecciation. The Vaca Muerta clasts are essentially unmetamorphosed, but the induced TL data indicate that the remaining howardite, eucrite, dioenite and mesosiderite (HEDM) meteorites experienced metamorphism to a variety of intensities but involving temperatures <800 °C. Laboratory heating experiments show that temperatures >800 °C cause a change in TL peak temperature. Feldspars from a variety of terrestrial and extraterrestrial sources show this behavior, and x-ray diffraction and kinetic studies suggest that it is indirectly related to Al, Si disordering. Cooling rates are not consistent with autometamorphism following the initial igneous event or with heating by subsequent eruptions of lava onto the surface of the HED parent body. Instead, our thermal models suggest that the metamorphism occurred within a regolith ejecta blanket of up to a few kilometers thick, with different levels of metamorphism corresponding to different thicknesses of blanket, between essentially 0 and ~2 km, rather than different burial depths in a regolith of uniform thickness. We argue that metamorphism occurred 3.9 Ga ago and was associated with the resetting of the Ar-Ar system for the HED meteorites.  相似文献   

9.
Records of space weathering are important for understanding the formation and evolution of surface regolith on airless celestial bodies. Current understanding of space weathering processes on asteroids including asteroid‐4 Vesta, the source of the howardite–eucrite–diogenite (HED) meteorites, lags behind what is known for the Moon. In this study, we studied agglutinates, a vesicular glass‐coating lithic clast, and a fine‐grained sulfide replacement texture in the polymict breccia Northwest Africa (NWA) 1109 with electron microscopy. In agglutinates, nanophase grains of FeNi and FeS were observed, whereas npFe0 was absent. We suggested that the agglutinates in NWA 1109 formed from fine‐grained surface materials of Vesta during meteorite/micrometeorite bombardment. The fine‐grained sulfide replacement texture (troilite + hedenbergite + silica) should be a result of reaction between S‐rich vapors and pyroxferroite. The unique Fe/Mn values of relict pyroxferroite indicate a different source from normal HED pyroxenes, arguing that the reaction took place on or near the surface of Vesta. The fine‐grained sulfide replacement texture could be a product of nontypical space weathering on airless celestial bodies. We should pay attention to this texture in future returned samples by asteroid exploration missions.  相似文献   

10.
Abstract— CM chondrites are regolith breccias consisting of lithic clasts embedded in a fine‐grained clastic matrix. The majority of these lithic clasts belongs to a texturally well‐defined rock type (primary rock) that can be described as an agglomerate of chondrules and other coarse‐grained components, most of which are surrounded by fine‐grained rims (dust mantles). Metzler et al. (1992) explain these textures as the result of accretionary processes in the solar nebula, while an alternative model explains them to be the result of regolith processes on the parent body (Sears et al. 1993). The main intention of the present study is to discern between both models by investigating the occurrence, frequency, spatial distribution, and textural setting of preirradiated (track‐rich) olivines in CM chondrites. Track‐rich olivines were studied in situ in six polished thin sections from 4 different CM chondrites (Cold Bokkeveld, Mighei, Murchison, Nogoya) by optical and scanning electron microscopy (SEM). It was found that their occurrence is restricted to the clastic matrix of these meteorites. The primary rock seems to have formed in an environment shielded from cosmic radiation, since fragments of this rock are free of track‐rich grains and solar noble gases. This finding supports the solar nebula model for the formation of dust mantles around chondrules and other coarse‐grained components, and points against a regolith origin. In Cold Bokkeveld, a small breccia‐in‐breccia clast was found, which has been irradiated as an entity within the uppermost millimeters to meters of its parent body for at least about 3 Ma. This clast seems to represent a compacted subsurface layer that was later excavated by impact and admixed to the host breccia. Furthermore, the results of this study may affect the interpretation of compaction ages obtained by fission track methods, since these ages may be mixtures of different contact ages between finegrained, U‐rich dust and U‐poor olivines. In some cases, they may date the formation of dust mantles in the solar nebula, while in other cases the lithification of the host breccias may be dated.  相似文献   

11.
Abstract— Sayh al Uhaymir (SaU) 300 comprises a microcrystalline igneous matrix (grain size <10 μm), dominated by plagioclase, pyroxene, and olivine. Pyroxene geothermometry indicates that the matrix crystallized at ?1100 °C. The matrix encloses mineral and lithic clasts that record the effects of variable levels of shock. Mineral clasts include plagioclase, low‐ and high‐Ca pyroxene, pigeonite, and olivine. Minor amounts of ilmenite, FeNi metal, chromite, and a silica phase are also present. A variety of lithic clast types are observed, including glassy impact melts, impact‐melt breccias, and metamorphosed impact melts. One clast of granulitic breccia was also noted. A lunar origin for SaU 300 is supported by the composition of the plagioclase (average An95), the high Cr content in olivine, the lack of hydrous phases, and the Fe/Mn ratio of mafic minerals. Both matrix and clasts have been locally overprinted by shock veins and melt pockets. SaU 300 has previously been described as an anorthositic regolith breccia with basaltic components and a granulitic matrix, but we here interpret it to be a polymict crystalline impact‐melt breccia with an olivine‐rich anorthositic norite bulk composition. The varying shock states of the mineral and lithic clasts suggest that they were shocked to between 5–28 GPa (shock stages S1–S2) by impact events in target rocks prior to their inclusion in the matrix. Formation of the igneous matrix requires a minimum shock pressure of 60 GPa (shock stage >S4). The association of maskelynite with melt pockets and shock veins indicates a subsequent, local 28–45 GPa (shock stage S2–S3) excursion, which was probably responsible for lofting the sample from the lunar surface. Subsequent fracturing is attributed to atmospheric entry and probable breakup of the parent meteor.  相似文献   

12.
Abstract— The lunar meteorite Dhofar 081, found as a single fragment of 174 g in the Dhofar region of Oman, is a shocked feldspathic fragmental highland breccia dominated by anorthosite‐rich lithic and mineral clasts embedded into a fine‐grained mostly shock melted clastic matrix. Major mineral phases in the bulk rock are Ca‐rich plagioclase (An96.5–99.5), pyroxene (FS21.9–46.2Wo3.0–41.4), and olivine (Fa29.3–47.8); accessory phases include Fe‐Ni metal, ilmenite, and Ti‐Cr‐rich spinel. Dhofar 081 contains subordinate crystalline fragments of large anorthosites, intersertal impact‐melt rocks, microporphyritic impact‐melt breccias, dark fine‐grained impact‐melt breccias, large cataclastic feldspars, and irregularly shaped brown glass clasts. Mafic components are rare and no genuine regolith components were found in the sections studied. Minerals in Dhofar 081 show homogeneously distributed shock features: intergranular recrystallization, strong fracturing and mosaicism in feldspar as well as a high density of mostly irregular fractures in pyroxene and olivine. Localized impact melting caused by one or several impacts led to a strong lithification. Based on these effects an equilibration shock pressure of about 15–20 GPa is estimated for the strongest shock event in Dhofar 081. Devitrification of the “glassy” material in the rock indicates thermal annealing after shock melting suggesting that the 15–20 GPa shock event predated the ejection event. According to the concentrations of implanted solar noble gases Dhofar 081 represents a polymict clastic breccia deposit with possibly a minor regolith component. A similar noble gas record of Dhofar 081 and MacAlpine Hills 88104/05 suggests the possibility of a source crater pairing of both meteorites. As indicated by noble gas measurements pairing of Dhofar 081 with the other lunar meteorites found in Oman, Dhofar 025 and Dhofar 026, is unlikely.  相似文献   

13.
Abstract— Lunar meteorite QUE 93069 found in Antarctica is a mature, anorthitic regolith breccia with highland affinities that was ejected from the Moon <0.3 Ma ago. The frequency distribution of mineral and lithic clasts gives information about the nature of the regolith and subregolith basement near the ejection site as well as about the abundances of rock types shocked to different degrees prior to the breccia formation. Thin section QUE 93069,37 consists of 67.5 vol% fine-grained (<~130 μm) constituents and 32.5 vol% mineral and lithic clasts and an impact melt vein. The most abundant types of these clasts are intragranularly recrystallized anorthosites and plagioclases (together 26.3 vol%) and feldspathic fine-grained to microporphyritic crystalline melt breccias (21.9 vol%). Mafic crystalline melt breccias are extremely rare (1.3 vol%). Granulitic lithologies are 10.4 vol%, recrystallized feldspathic melt breccias are 15.0 vol%, and glasses are 3.5 vol%. The impact melt vein cutting across the entire thin section was probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Lunar meteorite QUE 93069 has a higher abundance of clear glass, occurring within melt spherules, glassy fragments, and an impact melt vein than lunar meteorites ALHA81005, Y-791197, Y-82192/3, Y-86032, or MAC 88104/5. The high abundance of melt spherules indicates that this lunar meteorite contains the highest content of typical regolith components. Mafic crystalline melt breccias are much rarer in QUE 93069 than in all other lunar highland regolith breccias. The extremely low abundance of mafic components may constrain possible areas of the Moon, from which the breccia was derived. The source area of QUE 93069 must be a highland terrain lacking significant mafic impact melts or mare components.  相似文献   

14.
The howardite‐eucrite‐diogenite (HED) clan of meteorites, which most likely originate from the asteroid Vesta, provide an opportunity to combine in‐depth sample analysis with the comprehensive remote‐sensing data set from NASA's recent Dawn mission. Miller Range (MIL) 11100, an Antarctic howardite, contains diverse rock and mineral fragments from common HED lithologies (diogenites, cumulate eucrites, and basaltic eucrites). It also contains a rare pyroxferroite‐bearing lithology—not recognized in HED until recently—and rare Mg‐rich (Fo86‐91) olivine crystals that possibly represent material excavated from the Vestan mantle. Clast components underwent different histories of thermal and impact metamorphism before being incorporated into this sample, reflecting the diversity in geological histories experienced by different parts of Vesta. The bulk chemical composition and petrography of MIL 11100 suggest that it is akin to the fragmental howardite meteorites. The strong lithological heterogeneity across this sample suggests that at least some parts of the Vestan regolith show heterogeneity on the mm‐scale. We combine the outcomes of this study with data from NASA's Dawn mission and hypothesize on possible source regions for this meteorite on the surface of Vesta.  相似文献   

15.
Northwest Africa (NWA) 5232, an 18.5 kg polymict eucrite, comprises eucritic and exogenic CM carbonaceous chondrite clasts within a clastic matrix. Basaltic clasts are the most abundant eucritic clast type and show a range of textures and grain size, from subophitic to granoblastic. Other eucritic clast types present include cumulate (high‐En pyroxene), pyroxene‐lath, olivine rich with symplectite intergrowths as a break‐down product of a quickly cooled Fe‐rich metastable pyroxferroite, and breccia (fragments of a previously consolidated breccia) clasts. A variable cooling rate and degree of thermal metamorphism, followed by a complex brecciation history, can be inferred for the clasts based on clast rounding, crystallization (and recrystallization) textures, pyroxene major and minor element compositions, and pyroxene exsolution. The range in δ18O of clasts and matrix of NWA 5232 reflects its origin as a breccia of mixed clasts dominated by eucritic lithologies. The oxygen isotopic compositions of the carbonaceous chondrite clasts identify them as belonging to CM group and indicate that these clasts experienced a low degree of aqueous alteration while part of their parent body. The complex evolutionary history of NWA 5232 implies that large‐scale impact excavation and mixing was an active process on the surface of the HED parent body, likely 4 Vesta.  相似文献   

16.
Abstract— Lunar meteorite Dar al Gani 262 (DG 262)—found in the Libyan part of the Sahara—is a mature, anorthositic regolith breccia with highland affinities. The origin from the Moon is undoubtedly indicated by its bulk chemical composition; radionuclide concentrations; noble gas, N, and O isotopic compositions; and petrographic features. Dar al Gani 262 is a typical anorthositic highland breccia similar in mineralogy and chemical composition to Queen Alexandra Range (QUE) 93069. About 52 vol% of the studied thin sections of Dar al Gani 262 consist of fine-grained(100 μm) constituents, and 48 vol% is mineral and lithic clasts and impact-melt veins. The most abundant clast types are feldspathic fine-grained to microporphyritic crystalline melt breccias (50.2 vol%; includes recrystallized melt breccias), whereas mafic crystalline melt breccias are extremely rare (1.4 vol%). Granulitic lithologies are 12.8 vol%, intragranularly recrystallized anorthosites and cataclastic anorthosites are 8.8 and 8.2 vol%, respectively, and (devitrified) glasses are 2.7 vol%. Impact-melt veins (5.5 vol% of the whole thin sections) cutting across the entire thin section were probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Mafic crystalline melt breccias are very rare in Dar al Gani 262 and are similar in abundance to those in QUE 93069. The extremely low abundance of mafic components and the bulk composition may constrain possible areas of the Moon from which the breccia was derived. The source area of Dar al Gani 262 must be a highland terrain lacking significant mafic impact melts or mare components. On the basis of radionuclide activities, an irradiation position of DG 262 on the Moon at a depth of 55–85 g/cm3and a maximum transit time to Earth <0.15 Ma is suggested. Dar al Gani 262 contains high concentrations of solar-wind-implanted noble gases. The isotopic abundance ratio 40Ar/36Ar < 3 is characteristic of lunar soils. The terrestrial weathering of DG 262 is reflected by the occurrence of fractures filled with calcite and by high concentrations of Ca, Ba, Cs, Br, and As. There is also a large amount of terrestrial C and some N in the sample, which was released at low temperatures during stepped heating. High concentrations of Ni, Co, and Ir indicate a significant meteoritic component in the lunar surface regolith from which DG 262 was derived.  相似文献   

17.
Northwest Africa (NWA) 869 is the largest sample of chondritic regolith breccia, making it an ideal source for research on accretionary processes and primordial chemical mixing. One such process can be seen in detail through the first identification of a eucrite impactor clast in an L chondrite breccia. The ~7 mm diameter clast has oxygen isotope compositions (Δ17O = ?0.240, ?0.258‰) and pigeonite and augite compositions typical for eucrites, but with high areal abundance of silica (9.5%) and ilmenite (1.5%). The rim around the clast is a mixture of breccia and igneous phases, the latter due to either impactor‐triggered melting or later metamorphism. The rim has an oxygen isotope composition falling on a mixing line between known eucrite and L chondrite compositions (Δ17O = 0.326‰) and, coincidentally, on the Mars fractionation line. Pyroxene grains from the melt component in the rim have compositions that fall on a mixing line between the average eucrite pyroxene composition and equilibrated L chondrite composition. The margins of chondritic olivine crystal clasts in the rim are enriched in Fe as a result of diffusion from the Fe‐rich melt and suggest cooling on the scale of hours. The textures and chemical mixing observed provide evidence for an unconsolidated L chondrite target material, differing from the current state of NWA 869 material. The heterogeneity of oxygen isotope and chemical signatures at this small length scale serve as a cautionary note when extrapolating from small volumes of materials to deduce planetesimal source characteristics.  相似文献   

18.
Abstract– Analysis of the mineralogy, isotopic, and bulk compositions of the eucrite meteorites is imperative for understanding their origin on the asteroid 4 Vesta, the proposed parent body of the HED meteorites. We present here the petrology, mineral compositions, and bulk chemistry of several lithic components of the new brecciated basaltic eucrite Northwest Africa (NWA) 3368 to determine if all the lithologies reflect formation from one rock type or many rock types. The meteorite has three main lithologies: coarse‐ and fine‐grained clasts surrounded by a fine‐grained recrystallized silicate matrix. Silicate compositions are homogeneous, and the average rare earth element pattern for NWA 3368 is approximately 10× CI chondrites with a slight negative Eu anomaly. Major and trace element data place NWA 3368 with the Main Group‐Nuevo Laredo trend. High‐Ti chromites with ilmenite exsolution lamellae provide evidence of NWA 3368’s history of intense metamorphism. We suggest that this meteorite underwent several episodes of brecciation and metamorphism, similar to that proposed by Metzler et al. (1995) . We conclude that NWA 3368 is a monomict basaltic eucrite breccia related to known eucrites in texture and in mineral, bulk, and oxygen isotopic composition.  相似文献   

19.
Abstract— Puerto Lápice is a new eucrite fall (Castilla‐La Mancha, Spain, 10 May 2007). In this paper, we report its detailed petrography, magnetic characterization, mineral and bulk chemistry, oxygen and noble gas isotope systematics, and radionuclide data. Study of four thin sections from two different specimens reveal that the meteorite is brecciated in nature, and it contains basaltic and granulitic clasts, as well as recrystallized impact melt and breccia fragments. Shock veins are ubiquitous and show evidence of at least three different shock events. Bulk chemical analyses suggest that Puerto Lápice belongs to the main group of basaltic eucrites, although it has a significantly higher Cr content. Oxygen isotopes also confirm that the meteorite is a normal member of the HED suite. Noble gas abundances show typical patterns, with dominant cosmogenic and radiogenic contributions, and indicate an average exposure age of 19 ± 2 Ma, and a Pu‐fission Xe age well within typical eucrite values. Cosmogenic radionuclides suggest a preatmospheric size of about 20–30 cm in diameter.  相似文献   

20.
A total of seven lithic clasts from the polymict eucrites ALHA76005 and ALHA77302 have been studied petrographically and analyzed with the electron microprobe. All clasts are composed predominantly of pyroxene and plagioclase, ± ilmenite, troilite, Fe-Ni metal, mesostasis, and silica. Pyroxene compositions in unequilibrated clasts and clast bulk compositions, calculated by modal recombination, indicate that the clasts originally crystallized under similar conditions and that they may be genetically related to each other by fractionation of pigeonite and plagioclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号