首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regional climate models (RCMs) have been increasingly used for climate change studies at the watershed scale. However, their performance is strongly dependent upon their driving conditions, internal parameterizations and domain configurations. Also, the spatial resolution of RCMs often exceeds the scales of small watersheds. This study developed a two-step downscaling method to generate climate change projections for small watersheds through combining a weighted multi-RCM ensemble and a stochastic weather generator. The ensemble was built on a set of five model performance metrics and generated regional patterns of climate change as monthly shift terms. The stochastic weather generator then incorporated these shift terms into observed climate normals and produced synthetic future weather series at the watershed scale. This method was applied to the Assiniboia area in southern Saskatchewan, Canada. The ensemble led to reduced biases in temperature and precipitation projections through properly emphasizing models with good performance. Projection of precipitation occurrence was particularly improved through introducing a weight-based probability threshold. The ensemble-derived climate change scenario was well reproduced as local daily weather series by the stochastic weather generator. The proposed combination of dynamical downscaling and statistical downscaling can improve the reliability and resolution of future climate projection for small prairie watersheds. It is also an efficient solution to produce alternative series of daily weather conditions that are important inputs for examining watershed responses to climate change and associated uncertainties.  相似文献   

2.
Maize is grown by millions of smallholder farmers in South Asia (SA) under diverse environments. The crop is grown in different seasons in a year with varying exposure to weather extremes, including high temperatures at critical growth stages which are expected to increase with climate change. This study assesses the impact of current and future heat stress on maize and the benefit of heat-tolerant varieties in SA. Annual mean maximum temperatures may increase by 1.4–1.8 °C in 2030 and 2.1–2.6 °C in 2050, with large monthly, seasonal, and spatial variations across SA. The extent of heat stressed areas in SA could increase by up to 12 % in 2030 and 21 % in 2050 relative to the baseline. The impact of heat stress and the benefit from heat-tolerant varieties vary with the level of temperature increase and planting season. At a regional scale, climate change would reduce rainfed maize yield by an average of 3.3–6.4 % in 2030 and 5.2–12.2 % in 2050 and irrigated yield by 3–8 % in 2030 and 5–14 % in 2050 if current varieties were grown under the future climate. Under projected climate, heat-tolerant varieties could minimize yield loss (relative to current maize varieties) by up to 36 and 93 % in 2030 and 33 and 86 % in 2050 under rainfed and irrigated conditions, respectively. Heat-tolerant maize varieties, therefore, have the potential to shield maize farmers from severe yield loss due to heat stress and help them adapt to climate change impacts.  相似文献   

3.
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from ?5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from ?5 to ?30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.  相似文献   

4.
Summary The crop model CERES-Wheat in combination with the stochastic weather generator were used to quantify the effect of uncertainties in selected climate change scenarios on the yields of winter wheat, which is the most important European cereal crop. Seven experimental sites with the high quality experimental data were selected in order to evaluate the crop model and to carry out the climate change impact analysis. The analysis was based on the multi-year crop model simulations run with the daily weather series prepared by the stochastic weather generator. Seven global circulation models (GCMs) were used to derive the climate change scenarios. In addition, seven GCM-based scenarios were averaged in order to derive the average scenario (AVG). The scenarios were constructed for three time periods (2025, 2050 and 2100) and two SRES emission scenarios (A2 and B1). The simulated results showed that: (1) Wheat yields tend to increase (40 out of 42 applied scenarios) in most locations in the range of 7.5–25.3% in all three time periods. In case of the CCSR scenario that predicts the most severe increase of air temperature, the yields would be reduced by 9.6% in 2050 and by 25.8% in 2100 if the A2 emission scenario would become reality. Differences between individual scenarios are large and statistically significant. Particularly for the time periods 2050 and 2100 there are doubts about the trend of the yield shifts. (2) The site effect was caused by the site-specific soil and climatic conditions. Importance of the site influence increases with increasing severity of imposed climatic changes and culminates for the emission scenario A2 and the time period 2100. The sustained tendency benefiting two warmest sites has been found as well as more positive response to the changed climatic conditions of the sites with deeper soil profiles. (3) Temperature variability proved to be an important factor and influenced both mean and standard deviation of the yields. Change of temperature variability by more than 25% leads to statistically significant changes in yield distribution. The effect of temperature variability decreases with increased values of mean temperature. (4) The study proved that the application of the AVG scenarios – despite possible objections of physical inconsistency – might be justifiable and convenient in some cases. It might bring results comparable to those derived from averaging outputs based on number of scenarios and provide more robust estimate than the application of only one selected GCM scenario.  相似文献   

5.
Under the threat of global warming it is important to determine the impact that future changes in climate may have on the environment and to what extent any adverse effects can be mitigated. In this study we assessed the impact that climate change scenarios may have on soil carbon stocks in Canada and examined the potential for agricultural management practices to improve or maintain soil quality. Historical weather data from 1951 to 2001 indicated that semi-arid soils in western Canada have become warmer and dryer and air temperatures have increased during the spring and winter months. Results from the Canadian Center for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model (CGCM1,2) under two climate change forcing scenarios also indicated that future temperatures would increase more in the spring and winter. Precipitation increased significantly under the IPCC IS92a scenario and agreed with historical trends in eastern Canada whereas the IPCC SRES B2 scenario indicated very little change in precipitation and better matched historical trends in western Canada. The Century model was used to examine the influence of climate change on agricultural soil carbon (C) stocks in Canada. Relative to simulations using historical weather data, model results under the SRES B2 climate scenario indicated that agricultural soils would lose 160 Tg of carbon by 2099 and under the IS92a scenario would lose 53 Tg C. Carbon was still lost from soils in humid climatic regions even though C inputs from crops increased by 10–13%. Carbon factors associated with changes in management practices were also estimated under both climate change scenarios. There was little difference in factors associated with conversion from conventional to no-till agriculture, while carbon factors associated with the conversion of annual crops to perennial grass were lower than for historical data in semi-arid soils because water stress hampered crop production but were higher in humid soils.  相似文献   

6.
A methodology is presented for providing projections of absolute future values of extreme weather events that takes into account key uncertainties in predicting future climate. This is achieved by characterising both observed and modelled extremes with a single form of non-stationary extreme value (EV) distribution that depends on global mean temperature and which includes terms that account for model bias. Such a distribution allows the prediction of future “observed” extremes for any period in the twenty-first century. Uncertainty in modelling future climate, arising from a wide range of atmospheric, oceanic, sulphur cycle and carbon cycle processes, is accounted for by using probabilistic distributions of future global temperature and EV parameters. These distributions are generated by Bayesian sampling of emulators with samples weighted by their likelihood with respect to a set of observational constraints. The emulators are trained on a large perturbed parameter ensemble of global simulations of the recent past, and the equilibrium response to doubled CO2. Emulated global EV parameters are converted to the relevant regional scale through downscaling relationships derived from a smaller perturbed parameter regional climate model ensemble. The simultaneous fitting of the EV model to regional model data and observations allows the characterisation of how observed extremes may change in the future irrespective of biases that may be present in the regional models simulation of the recent past climate. The clearest impact of a parameter perturbation in this ensemble was found to be the depth to which plants can access water. Members with shallow soils tend to be biased hot and dry in summer for the observational period. These biases also appear to have an impact on the potential future response for summer temperatures with some members with shallow soils having increases for extremes that reduce with extreme severity. We apply this methodology for London, using the A1B future emissions scenario to obtain projections of the 50 year return values for the 20 year period centred on 2050. We obtain 10th to 90th percentile ranges of 35.9–42.1 °C for summer daily maximum temperature, 35.5–52.4 mm for summer daily rainfall and 79.2, 97.0 mm for autumn 5 day total rainfall, compared to observed estimates for 1961–1990 of 35.7 °C, 42.1 and 78.4 mm respectively.  相似文献   

7.
Adapting stochastic weather generation algorithms for climate change studies   总被引:10,自引:1,他引:9  
While large-scale climate models (GCMs) are in principle the most appropriate tools for predicting climate changes, at present little confidence can be placed in the details of their projections. Use of tools such as crop simulation models for investigation of potential impacts of climatic change requires daily data pertaining to small spatial scales, not the monthly-averaged and large-scale information typically available from the GCMs. A method is presented to adapt stochastic weather generation models, describing daily weather variations in the present-day climate at particular locations, to generate synthetic daily time series consistent with assumed future climates. These assumed climates are specified in terms of the commonly available monthly means and variances of temperature and precipitation, including time-dependent (so-called transient) climate changes. Unlike the usual practice of applying assumed changes in mean values to historically observed data, simulation of meteorological time series also exhibiting changes in variability is possible. Considerable freedom in climate change scenario construction is allowed. The results are suitable for investigating agricultural and other impacts of a variety of hypothetical climate changes specified in terms of monthly-averaged statistics.  相似文献   

8.
The topography of hilly landscapes modifies crop environment changing the fluxes of water and energy, increasing risk in these vulnerable agriculture systems, which could become more accentuated under climate change (drought, increased variability of rainfall). In order to quantify how wheat production in hilly terrain will be affected by future climate, a newly developed and calibrated micro-meteorological model for hilly terrain was linked to a crop growth simulation model to analyse impact scenarios for different European regions. Distributions of yield and growing length of rainfed winter wheat and durum wheat were generated as probabilistic indices from baseline and low (B2) and high (A2) emission climate scenarios provided from the Hadley Centre Regional Climate Model (HadRM3). We used site-specific terrain parameters for two sample catchments in Europe, ranging from humid temperate (southeast UK) to semi-arid Mediterranean (southern Italy). Results for baseline scenario show that UK winter wheat is mainly affected by annual differences in precipitation and yield distributions do not change with terrain, whilst in the southern Mediterranean climate yield variability is significantly related to a slope × elevation index. For future climate, our simulations confirm earlier predictions of yield increase in the UK, even under the high emission scenario. In the southern Mediterranean, yield reduction is significantly related to slope × elevation index increasing crop failure in drier elevated spots but not in wet years under baseline weather. In scenarios for the future, the likelihood of crop failure rises sharply to more than 60%, and even in wet years, yields are likely to decrease in elevated spots.  相似文献   

9.
In this study, we analyse the uncertainty of the effect of enhanced greenhouse gas conditions on windiness projected by an ensemble of regional model simulations driven by the same global control and climate change simulations. These global conditions, representative for 1961–1990 and 2071–2100, were prepared by the Hadley Centre based on the IPCC SRES/A2 scenario. The basic data sets consist of simulated daily maximum and daily mean wind speed fields (over land) from the PRUDENCE data archive at the Danish Meteorological Institute. The main focus is on the results from the standard 50 km-resolution runs of eight regional models. The best parameter for determining possible future changes in extreme wind speeds and possible change in the number of storm events is maximum daily wind speed. It turned out during this study that the method for calculating maximum daily wind speed differs among the regional models. A comparison of simulated winds with observations for the control period shows that models without gust parameterisation are not able to realistically capture high wind speeds. The two models with gust parametrization estimate an increase of up to 20% of the number of storm peak (defined as gusts?≥?8 Bft in this paper) events over Central Europe in the future. In order to use a larger ensemble of models than just the two with gust parameterisation, we also look at the 99th percentile of daily mean wind speed. We divide Europe into eight sub-regions (e.g., British Isles, Iberian Peninsula, NE Europe) and investigate the inter-monthly variation of wind over these regions as well as differences between today’s climate and a possible future climate. Results show differences and similarities between the sub-regions in magnitude, spread, and seasonal tendencies. The model ensemble indicates a possible increase in future mean daily wind speed during winter months, and a decrease during autumn in areas influenced by North Atlantic extra-tropical cyclones.  相似文献   

10.
Statistical methodology is devised to model time series of daily weather at individual locations in the southeastern U.S. conditional on patterns in large-scale atmosphere–ocean circulation. In this way, weather information on an appropriate temporal and spatial scale for input to crop–climate models can be generated, consistent with the relationship between circulation and temporally and/or spatially aggregated climate data (an exercise sometimes termed `downscaling'). The Bermuda High, a subtropical Atlantic circulation feature, is found to have the strongest contemporaneous correlation with seasonal mean temperature and total precipitation in the Southeast (in particular, stronger than for the El Niño–Southern Oscillation phenomenon). Stochastic models for time series of daily minimum and maximum temperature and precipitation amount are fitted conditional on an index indicating the average position of the Bermuda High. For precipitation, a multi-site approach involving a statistical technique known as `borrowing strength' is applied, constraining the relationship between daily precipitation and the Bermuda High index to be spatially the same. In winter (the time of greatest correlation), higher daily maximum and minimum temperature means and higher daily probability of occurrence of precipitation are found when there is an easterly shift in the average position of the Bermuda High. Methods for determining aggregative properties of these stochastic models for daily weather (e.g., variance and spatial correlation of seasonal total precipitation) are also described, so that their performance in representing low frequency variations can be readily evaluated.  相似文献   

11.
De Li Liu  Heping Zuo 《Climatic change》2012,115(3-4):629-666
This paper outlines a new statistical downscaling method based on a stochastic weather generator. The monthly climate projections from global climate models (GCMs) are first downscaled to specific sites using an inverse distance-weighted interpolation method. A bias correction procedure is then applied to the monthly GCM values of each site. Daily climate projections for the site are generated by using a stochastic weather generator, WGEN. For downscaling WGEN parameters, historical climate data from 1889 to 2008 are sorted, in an ascending order, into 6 climate groups. The WGEN parameters are downscaled based on the linear and non-linear relationships derived from the 6 groups of historical climates and future GCM projections. The overall averaged confidence intervals for these significant linear relationships between parameters and climate variables are 0.08 and 0.11 (the range of these parameters are up to a value of 1.0) at the observed mean and maximum values of climate variables, revealing a high confidence in extrapolating parameters for downscaling future climate. An evaluation procedure is set up to ensure that the downscaled daily sequences are consistent with monthly GCM output in terms of monthly means or totals. The performance of this model is evaluated through the comparison between the distributions of measured and downscaled climate data. Kruskall-Wallis rank (K-W) and Siegel-Tukey rank sum dispersion (S-T) tests are used. The results show that the method can reproduce the climate statistics at annual, monthly and daily time scales for both training and validation periods. The method is applied to 1062 sites across New South Wales (NSW) for 9 GCMs and three IPCC SRES emission scenarios, B1, A1B and A2, for the period of 1900–2099. Projected climate changes by 7 GCMs are also analyzed for the A2 emission scenario based on the downscaling results.  相似文献   

12.
A four step methodology has been developed for study of the regional impacts of climate change and the possible responses thereto. First the region's climate sensitive sectors and total economy are described (Task A, current baseline). Next a scenario of climate change is imposed on the current baseline (Task B, current baseline with climate change). A new baseline describing the climate sensitive sectors and total regional economy is projected for some time in the future (Task C, future baseline, year 2030) in the absence of climate change. Finally, the climate change scenario is reimposed on the future baseline (Task D, future baseline with climate change). Impacts of the climate change scenario on the current and future regional economies are determined by means of simulation models and other appropriate techniques. These techniques are also used to assess the impacts of an elevated CO2 concentration (450 ppm) and of various forms of adjustments and adaptations. The region chosen for the first test of the methodology is composed of the four U.S. states of Missouri, Iowa, Nebraska and Kansas. The climate change scenario is the actual weather of the 1930s decade in the MINK region. ‘Current’ climate is the actual weather of the period 1951–1980.  相似文献   

13.
Time of Emergence (ToE) is the time at which the signal of climate change emerges from the background noise of natural climate variability, and can provide useful information for climate change impacts and adaptations. This study examines future ToEs for daily maximum and minimum temperatures over the Northeast Asia using five Regional Climate Models (RCMs) simulations driven by single Global Climate Model (GCM) under two Representative Concentration Pathways (RCP) emission scenarios. Noise is defined based on the interannual variability during the present-day period (1981-2010) and warming signals in the future years (2021-2100) are compared against the noise in order to identify ToEs. Results show that ToEs of annual mean temperatures occur between 2030s and 2040s in RCMs, which essentially follow those of the driving GCM. This represents the dominant influence of GCM boundary forcing on RCM results in this region. ToEs of seasonal temperatures exhibit larger ranges from 2030s to 2090s. The seasonality of ToE is found to be determined majorly by noise amplitudes. The earliest ToE appears in autumn when the noise is smallest while the latest ToE occurs in winter when the noise is largest. The RCP4.5 scenario exhibits later emergence years than the RCP8.5 scenario by 5-35 years. The significant delay in ToEs by taking the lower emission scenario provides an important implication for climate change mitigation. Daily minimum temperatures tend to have earlier emergence than daily maximum temperature but with low confidence. It is also found that noise thresholds can strongly affect ToE years, i.e. larger noise threshold induces later emergence, indicating the importance of noise estimation in the ToE assessment.  相似文献   

14.
In a warming climate, atmospheric wave activity and associated weather patterns may change, although conflicting results have been reported on this topic. Additionally, atmospheric wave changes in a future climate have mainly focused on waves of a specified spatial scale, rather than a particular spatiotemporal scale. Here, changes in the variability of Rossby waves of multiple spatiotemporal scales are analyzed using the wavenumber-frequency power spectrum, a tool commonly applied to analyze atmospheric equatorial waves. Daily 500 hPa geopotential height data over 40°–60°N from historical (1950–2005) and future (2006–2099) simulations from 20 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the RCP8.5 scenario were analyzed. When compared to the historical period, the late 21st century climate projections showed a decline in spectral power for both eastward and westward propagating waves with wavenumbers greater than 8 that spanned over all frequencies in all seasons, but an increase in mean power for eastward propagating waves with wavenumbers 1–7 over all frequencies was shown in winter and spring. This increase in power was accompanied by increased variance, i.e., an increased meridional extent of 500 hPa ridges and troughs, and was the result of increases in the mean number of high amplitude events and duration of activity within this wave band. These results indicate that large-scale (~ 104 km) eastward propagating weather systems may intensify with higher amplitudes for ridges and troughs, while short-scale (102–103 km) weather systems may decrease in their intensity due to reduced variability in the late 21st century under the high emissions scenario. Potential mechanisms for these changes are discussed, including enhanced Arctic warming and midlatitude-tropical interactions.  相似文献   

15.
Regional or local scale hydrological impact studies require high resolution climate change scenarios which should incorporate some assessment of uncertainties in future climate projections. This paper describes a method used to produce a multi-model ensemble of multivariate weather simulations including spatial–temporal rainfall scenarios and single-site temperature and potential evapotranspiration scenarios for hydrological impact assessment in the Dommel catchment (1,350 km2) in The Netherlands and Belgium. A multi-site stochastic rainfall model combined with a rainfall conditioned weather generator have been used for the first time with the change factor approach to downscale projections of change derived from eight Regional Climate Model (RCM) experiments for the SRES A2 emission scenario for the period 2071–2100. For winter, all downscaled scenarios show an increase in mean daily precipitation (catchment average change of +9% to +40%) and typically an increase in the proportion of wet days, while for summer a decrease in mean daily precipitation (−16% to −57%) and proportion of wet days is projected. The range of projected mean temperature is 7.7°C to 9.1°C for winter and 19.9°C to 23.3°C for summer, relative to means for the control period (1961–1990) of 3.8°C and 16.8°C, respectively. Mean annual potential evapotranspiration is projected to increase by between +17% and +36%. The magnitude and seasonal distribution of changes in the downscaled climate change projections are strongly influenced by the General Circulation Model (GCM) providing boundary conditions for the RCM experiments. Therefore, a multi-model ensemble of climate change scenarios based on different RCMs and GCMs provides more robust estimates of precipitation, temperature and evapotranspiration for hydrological impact assessments, at both regional and local scale.  相似文献   

16.
Stochastic weather generators are statistical models that produce random numbers that resemble the observed weather data on which they have been fitted; they are widely used in meteorological and hydrologi- cal simulations. For modeling daily precipitation in weather generators, first-order Markov chain-dependent exponential, gamma, mixed-exponential, and lognormal distributions can be used. To examine the perfor- mance of these four distributions for precipitation simulation, they were fitted to observed data collected at 10 stations in the watershed of Yishu River. The parameters of these models were estimated using a maximum-likelihood technique performed using genetic algorithms. Parameters for each calendar month and the Fourier series describing parameters for the whole year were estimated separately. Bayesian infor- mation criterion, simulated monthly mean, maximum daily value, and variance were tested and compared to evaluate the fitness and performance of these models. The results indicate that the lognormal and mixed-exponential distributions give smaller BICs, but their stochastic simulations have overestimation and underestimation respectively, while the gamma and exponential distributions give larger BICs, but their stochastic simulations produced monthly mean precipitation very well. When these distributions were fitted using Fourier series, they all underestimated the above statistics for the months of June, July and August.  相似文献   

17.
In this paper we assess the impact of climate change, at a micro-scale for a selection of four sites in New Zealand and Australia. These sites are representative of the key destination ski regions. In contrast to previous work, our work will for the first time, allow for a direct comparison between these two countries and enable both an estimate of the absolute impacts at a given site, as well as the relative impacts between the two countries. This direct comparison is possible because we have used exactly the same snow model, the same 3 global climate models (GCMs) and the same techniques to calibrate the model for all locations. We consider the changes in natural snow at these locations for the 2030–2049 and 2080–2099 time periods, for one mid-range emissions scenario (A1B). This future scenario is compared to simulations of current, 1980–1999, snow at these locations. We did not consider the snowmaking or economic components of the ski industry vulnerability, only the modelled changes in the natural snow component. At our New Zealand sites, our model indicates that by the 2040s there will be on average between 90 % and 102 % of the current maximum snow depth (on 31 August) and by the 2090s this will be on average reduced to between 46 % and 74 %. In Australia, our models estimates that by the 2040s there will be on average between 57 % and 78 % of the current maximum snow depth and by the 2090s this will be on average further reduced to between 21 % and 29 %. In terms of days with snowdepths equal to or exceeding a ski industry useable levels of 0.30 m, at our lowest elevation, and most sensitive sites, we observe a change from 125 days (current) to 99–126 (2040s) and 52–110 (2090s) in New Zealand. In Australia, a reduction from 94 to 155 days (current) to 81–114 (2040s) and 0–75 (2090s) is observed. In each case the changes are highly depended on the GCM used to drive the climate change scenario. While the absolute changes will have direct impacts at each location, so too will the relative changes with respect to future potential Australia–New Zealand tourism flows, and beyond. Our study provides an approach by which other regions or countries with climate sensitive tourism enterprises could assess the relative impacts and therefore the potential wider ranging ramifications with respect to destination attractiveness.  相似文献   

18.
Future changes in East Asian summer monsoon precipitation climatology, frequency, and intensity are analyzed using historical climate simulations and future climate simulations under the RCP4.5 scenario using the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project 5 (CMIP5) multi-model dataset. The model reproducibility is evaluated, and well performance in the present-day climate simulation can be obtained by most of the studied models. However, underestimation is obvious over the East Asian region for precipitation climatology and precipitation intensity, and overestimation is observed for precipitation frequency. The overestimation of precipitation frequency is mainly due to the large positive bias of the light precipitation (precipitation <10 mm/day) days, and the underestimation of precipitation intensity is mainly caused by the negative bias of the intense precipitation (precipitation >10 mm/day) intensity. For the future climate simulations, simple multi-model ensemble (MME) averages using all of the models show increases in precipitation and its intensity over almost all of East Asia, while the precipitation frequency is projected to decrease over eastern China and around Japan and increase in other regions. When the weighted MME is considered, no large difference can be observed compared with the simple MME. For the MME using the six best models that have good performance in simulating the present-day climate, the future climate changes over East Asia are very similar to those predicted using all of the models. Further analysis shows that the frequency and intensity of intense precipitation events are also projected to significantly increase over East Asia. Increases in precipitation frequency and intensity are the main contributors to increases in precipitation, and the contribution of frequency increases (contributed by 40.8 % in the near future and by 58.9 % by the end of the twenty-first century) is much larger than that of intensity increases (contributed by 29.9 % in the near future and by 30.1 % by the end of the twenty-first century). This finding also implies an increased risk of intense precipitation events over the East Asian region under global warming scenario. These results regarding future climate simulations show much greater reliability than those using CMIP3 simulations.  相似文献   

19.
不完整气象资料下基于作物模型的产量预报方法   总被引:6,自引:5,他引:1       下载免费PDF全文
针对基于作物模型开展产量实时预报后期气象资料的获取问题,提出通过相似类比,从历史气象资料库中获取替代资料的方案,基于CERES-Rice模型系统评估了平均值处理方案和历史相似类比方案的可预报性和误差分布特征。结果表明:水稻产量对成熟前2个月内的气象条件较为敏感,基于气象资料和作物模型开展产量预测,在5%误差范围内可获得60%以上的预测概率;以多年气候平均值替代起报日后期气象资料,在成熟前2个月起报预测概率约为60%,成熟前1个月约为70%,但预报误差系统性偏高;采用气候相似类比方法,从历史气象资料中获取起报日后期替代资料,可有效降低预报误差的系统偏差,若引入后期气候趋势信息,成熟前2个月起报预测概率可达80%以上,较采用历史平均值有显著提高。研究结果为基于作物模型和气象观测及气候预测信息开展产量预报提供了技术方案。  相似文献   

20.
In this study, human-induced climate change over the Eastern Mediterranean–Black Sea region has been analyzed for the twenty-first century by performing regional climate model simulations forced with large-scale fields from three different global circulation models (GCMs). Climate projections have been produced with Special Report on Emissions Scenarios A2, A1FI and B1 scenarios, which provide greater diversity in climate information for future period. The gradual increases for temperature are widely apparent during the twenty-first century for each scenario simulation, but ECHAM5-driven simulation generally has a weaker signal for all seasons compared to CCSM3 simulations except for the Fertile Crescent. The contrast in future temperature change between the winter and summer seasons is very strong for CCSM3-A2-driven and HadCM3-A2-driven simulations over Carpathians and Balkans, 4–5 °C. In addition, winter runoff over mountainous region of Turkey, which feeds many river systems including the Euphrates and Tigris, increases in second half of the century since the snowmelt process accelerates where the elevation is higher than 1,500 m. Moreover, analysis of daily temperature outputs reveals that the gradual decrease in daily minimum temperature variability for January during the twenty-first century is apparent over Carpathians and Balkans. Analysis of daily precipitation extremes shows that positive trend is clear during the last two decades of the twenty-first century over Carpathians for both CCSM3-driven and ECHAM5-driven simulations. Multiple-GCM driven regional climate simulations contribute to the quantification of the range of climate change over a region by performing detailed comparisons between the simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号