首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
The Huygens entry probe descended through the atmosphere of Titan and provided an excellent set of observations of the atmosphere and the surface of Titan. During the 150-min descent the Huygens Atmospheric Structure Instrument (HASI) observed a comprehensive set of variables, including pressure, temperature, density and atmospheric electricity. The atmospheric pressure profile was recorded by the Pressure Profile Instrument (PPI), provided by Finnish Meteorological Institute (FMI). The instrument started measurements at an altitude of 150 km, and produced about 28 bits of data per second. Data were also obtained through the time of 31 min beyond the time of surface impact. The first-order scientific analysis of the PPI results has been performed. The observations together with hydrostatic assumption and in combination with other measurements have provided the first atmospheric pressure profile and the surface pressure (of approximately ) for Titan's atmosphere. To carry out the pressure profile reconstruction we developed a real gas formulation, which is applicable also for other Titan atmospheric investigations. The altitude versus time speed of the descent was calculated and the results were compared with the direct altitude observations by the radar altimeter during the last 40 km of the descent. The fit was excellent demonstrating the high-quality level of the PPI observations as well as the utilized investigation methods.  相似文献   

2.
The permittivity, waves and altimetry (PWA) instrument was designed for the investigation of the electric properties and other related physical characteristics of the atmosphere of Titan, from an altitude around 140 km down to the surface. PWA carried sensors to measure the atmospheric conductivity, and record electromagnetic and acoustic waves up to frequencies of 11.5 and 6.7 kHz, respectively. PWA also measured the relief roughness during the descent and the permittivity of the surface after touchdown. The measurements and the results of the preliminary analysis are presented. An ionized layer is detected at altitudes above 50 km, using two independent techniques, and the presence of free electrons in the upper atmosphere is confirmed. An electric signal at around 36 Hz is observed throughout the descent, but it is not yet confirmed that this emission is unambiguously related to a resonance of the ionospheric cavity. The relative dielectric constant of Titan's surface material is nearly 2 and the electric conductivity 4×10−10 S m−1. The electric properties of the surface seem to evolve after touch-down, possibly due to a local warming of the landing site by the Huygens Probe body.  相似文献   

3.
In the framework of the activities going on in preparation for the mission of the Huygens probe in Titan's atmosphere (January 2005), the Huygens Atmospheric Structure Instrument (HASI) team scheduled and performed several balloon campaigns to test the HASI sensors’ performance in flight conditions in the Earth's atmosphere. In particular, pressure conditions reached during each test are similar to those expected in Titan's lower atmosphere. A 1:1 scaled mock-up of the Huygens probe was launched with a stratospheric balloon in 2001 (Br. Assoc. Adv. Sci. 33 (2001) 1109) and in 2002 (Br. Assoc. Adv. Sci. 34 (2002) 911; Adv. Space. Sci. (2003)) from the G. Broglio base of the Italian Space Agency, located in Trapani Milo (Sicily). In both cases the mock-up was dropped from an altitude higher than 27 and , respectively, and recovered on the ground after a parachuted descent. In this paper, we describe the results obtained in reconstructing (i) the probe descent trajectory and (ii) the profiles of the physical quantities characterizing the Earth's atmosphere, on the basis of a complete analysis of the data obtained during the HASI 2002 balloon flight experiment. Using temperature and pressure measurements, we are able to reach an accuracy of the order of 0.5% on the altitude reconstruction during the descent. We validate both the models used for trajectory reconstruction and to check the sensors’ performance. We describe the problems faced in determining the Huygens probe descent trajectory in Titan's atmosphere focusing our discussion on the critical aspects of the descent reconstruction (such as the uncertainties due to measurement errors, limited knowledge of the atmospheric composition, etc.) and the validity of the adopted assumptions.  相似文献   

4.
During the first phase of Huygens arrival into Titan's atmosphere the probe is subjected to gravitational and aerodynamic forces in aerodynamic hypersonic regime. Atmospheric drag exerts a strong deceleration on the capsule measured by Huygens atmospheric structure instrument (HASI) servo accelerometer. A 6 DOF (Degree of Freedom) model of the Huygens probe entry dynamics has been developed and used for data analysis. The accelerometer data are analysed and the model allows the retrieval of dynamics information of Huygens probe from 1545 km altitude down to end of the entry phase. Probe's initial conditions (velocity and position) were refined to match the measured deceleration profile resulting in a different altitude at interface epoch with respect to those of the Cassini Navigation Team. Velocity and position of probe at interface epoch are compatible with those used by Descent Trajectory Working Group (DTWG).Measurements acquired before atmosphere detection are used to estimate probe's angular rate, bound attitude and characterise the angle of attack profile which results to be lower than 4° during the whole entry. Probe's spin calculated (6.98 RPM) is slightly different with respect to DTWG of 7.28 RPM but considering a 2% error in the Inertia matrix these results are inside the 1-σ error band.  相似文献   

5.
The recent measurements of the vertical distribution and optical properties of haze aerosols as well as of the absorption coefficients for methane at long paths and cold temperatures by the Huygens entry probe of Titan permit the computation of the solar heating rate on Titan with greater certainty than heretofore. We use the haze model derived from the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., See, C., 2008a. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci., this issue, doi:10.1016/j.pss.2007.11.019] to evaluate the variation in solar heating rate with altitude and solar zenith angle in Titan's atmosphere. We find the disk-averaged solar energy deposition profile to be in remarkably good agreement with earlier estimates using very different aerosol distributions and optical properties. We also evaluated the radiative cooling rate using measurements of the thermal emission spectrum by the Cassini Composite Infrared Spectrometer (CIRS) around the latitude of the Huygens site. The thermal flux was calculated as a function of altitude using temperature, gas, and haze profiles derived from Huygens and Cassini/CIRS data. We find that the cooling rate profile is in good agreement with the solar heating profile averaged over the planet if the haze structure is assumed the same at all latitudes. We also computed the solar energy deposition profile at the 10°S latitude of the probe-landing site averaged over one Titan day. We find that some 80% of the sunlight that strikes the top of the atmosphere at this latitude is absorbed in all, with 60% of the incident solar energy absorbed below 150 km, 40% below 80 km, and 11% at the surface at the time of the Huygens landing near the beginning of summer in the southern hemisphere. We compare the radiative cooling rate with the solar heating rate near the Huygens landing site averaging over all longitudes. At this location, we find that the solar heating rate exceeds the radiative cooling rate by a maximum of 0.5 K/Titan day near 120 km altitude and decreases strongly above and below this altitude. Since there is no evidence that the temperature structure at this latitude is changing, the general circulation must redistribute this heat to higher latitudes.  相似文献   

6.
Cassini/Huygens is a joint National Aeronautics and Space Administration (NASA)/European Space Agency (ESA)/Agenzia Spaziale Italiana (ASI) mission on its way to explore the Saturnian system. The ESA Huygens Probe is scheduled to be released from the Orbiter on 25 December 2004 and enter the atmosphere of Titan on 14 January 2005. Probe delivery to Titan, arbitrarily defined to occur at a reference altitude of 1270 km above the surface of Titan, is the responsibility of the NASA Jet Propulsion Laboratory (JPL). ESA is then responsible for safely delivering the probe from the reference altitude to the surface. The task of reconstructing the probe trajectory and attitude from the entry point to the surface has been assigned to the Huygens Descent Trajectory Working Group (DTWG), a subgroup of the Huygens Science Working Team. The DTWG will use data provided by the Huygens Probe engineering subsystems and selected data sets acquired by the scientific payload. To correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for possible “ground-truthing” Orbiter remote sensing measurements, it is essential that the trajectory reconstruction be performed as early as possible in the post-flight data analysis phase. The reconstruction of the Huygens entry and descent trajectory will be based primarily on the probe entry state vector provided by the Cassini Navigation Team, and measurements of acceleration, pressure, and temperature made by the Huygens Atmospheric Structure Instrument (HASI). Other data sets contributing to the entry and descent trajectory reconstruction include the mean molecular weight of the atmosphere measured by the probe Gas Chromatograph/Mass Spectrometer (GCMS) in the upper atmosphere and the Surface Science Package (SSP) speed of sound measurement in the lower atmosphere, accelerations measured by the Central and Radial Accelerometer Sensor Units (CASU/RASU), and the probe altitude by the two probe radar altimeters during the latter stages of the descent. In the last several hundred meters, the altitude determination will be constrained by measurements from the SSP acoustic sounder. Other instruments contributing data to the entry and descent trajectory and attitude determination include measurements of the zonal wind drift by the Doppler Wind Experiment (DWE), and probe zonal and meridional drift and probe attitude by the Descent Imager and Spectral Radiometer (DISR). In this paper, the need for and the methods by which the Huygens Probe entry and descent trajectory will be reconstructed are reviewed.  相似文献   

7.
The descent imager/spectral radiometer (DISR) instrument aboard the Huygens probe into the atmosphere of Titan measured the brightness of sunlight using a complement of spectrometers, photometers, and cameras that covered the spectral range from 350 to 1600 nm, looked both upward and downward, and made measurements at altitudes from 150 km to the surface. Measurements from the upward-looking visible and infrared spectrometers are described in Tomasko et al. [2008a. Measurements of methane absorption by the descent imager/spectral radiometer (DISR) during its descent through Titan's atmosphere. Planet. Space Sci., this volume]. Here, we very briefly review the measurements by the violet photometers, the downward-looking visible and infrared spectrometers, and the upward-looking solar aureole (SA) camera. Taken together, the DISR measurements constrain the vertical distribution and wavelength dependence of opacity, single-scattering albedo, and phase function of the aerosols in Titan's atmosphere.Comparison of the inferred aerosol properties with computations of scattering from fractal aggregate particles indicates the size and shape of the aerosols. We find that the aggregates require monomers of radius 0.05 μm or smaller and that the number of monomers in the loose aggregates is roughly 3000 above 60 km. The single-scattering albedo of the aerosols above 140 km altitude is similar to that predicted for some tholins measured in laboratory experiments, although we find that the single-scattering albedo of the aerosols increases with depth into the atmosphere between 140 and 80 km altitude, possibly due to condensation of other gases on the haze particles. The number density of aerosols is about 5/cm3 at 80 km altitude, and decreases with a scale height of 65 km to higher altitudes. The aerosol opacity above 80 km varies as the wavelength to the −2.34 power between 350 and 1600 nm.Between 80 and 30 km the cumulative aerosol opacity increases linearly with increasing depth in the atmosphere. The total aerosol opacity in this altitude range varies as the wavelength to the −1.41 power. The single-scattering phase function of the aerosols in this region is also consistent with the fractal particles found above 60 km.In the lower 30 km of the atmosphere, the wavelength dependence of the aerosol opacity varies as the wavelength to the −0.97 power, much less than at higher altitudes. This suggests that the aerosols here grow to still larger sizes, possibly by incorporation of methane into the aerosols. Here the cumulative opacity also increases linearly with depth, but at some wavelengths the rate is slightly different than above 30 km altitude.For purely fractal particles in the lowest few km, the intensity looking upward opposite to the azimuth of the sun decreases with increasing zenith angle faster than the observations in red light if the single-scattering albedo is assumed constant with altitude at these low altitudes. This discrepancy can be decreased if the single-scattering albedo decreases with altitude in this region. A possible explanation is that the brightest aerosols near 30 km altitude contain significant amounts of methane, and that the decreasing albedo at lower altitudes may reflect the evaporation of some of the methane as the aerosols fall into dryer layers of the atmosphere. An alternative explanation is that there may be spherical particles in the bottom few kilometers of the atmosphere.  相似文献   

8.
We developed a series of balloon experiments parachuting a 1:1 scale mock-up of the Huygens probe from an altitude just over to simulate at planetary scale the final part of the descent of the probe through Titan's lower atmosphere. The terrestrial atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, in terms of atmosphere composition, pressure and mean density ranges, though the temperature range will be far higher.The probe mock-up consists of spares of the HASI sensor packages, housekeeping sensors and other dedicated sensors, and also incorporates the Huygens Surface Science Package (SSP) Tilt sensor and a modified version of the Beagle 2 UV sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase.An integrated data acquisition and instrument control system, simulating the HASI data-processing unit (DPU), has been developed, based on PC architecture and soft-real-time application. Sensor channels were sampled at the nominal HASI data rates, with a maximum rate of . Software has been developed for data acquisition, onboard storage and telemetry transmission satisfying all requests for real-time monitoring, diagnostic and redundancy.The mock-up of the Huygens probe mission was successfully launched for the second time (first launch in summer 2001, see Gaborit et al., 2001) with a stratospheric balloon from the Italian Space Agency Base “Luigi Broglio” in Sicily on May 30, 2002, and recovered with all sensors still operational. The probe was lifted to an altitude of and released to perform a parachuted descent lasting , to simulate the Huygens mission at Titan. Preliminary aerodynamic study of the probe has focused upon the achievement of a descent velocity profile reproducing the expected profile of Huygens probe descent into Titan.We present here the results of this experiment discussing their relevance in the analysis of the data which will be obtained during the Huygens mission at Titan.  相似文献   

9.
New low-temperature methane absorption coefficients pertinent to the Titan environment are presented as derived from the Huygens DISR spectral measurements combined with the in-situ measurements of the methane gas abundance profile measured by the Huygens Gas Chromatograph/Mass Spectrometer (GCMS). The visible and near-infrared spectrometers of the descent imager/spectral radiometer (DISR) instrument on the Huygens probe looked upward and downward covering wavelengths from 480 to 1620 nm at altitudes from 150 km to the surface during the descent to Titan's surface. The measurements at continuum wavelengths were used to determine the vertical distribution, single-scattering albedos, and phase functions of the aerosols. The gas chromatograph/mass spectrometer (GCMS) instrument on the probe measured the methane mixing ratio throughout the descent. The DISR measurements are the first direct measurements of the absorbing properties of methane gas made in the atmosphere of Titan at the pathlengths, pressures, and temperatures that occur there. Here we use the DISR spectral measurements to determine the relative methane absorptions at different wavelengths along the path from the probe to the sun throughout the descent. These transmissions as functions of methane path length are fit by exponential sums and used in a haze radiative transfer model to compare the results to the spectra measured by DISR. We also compare the recent laboratory measurements of methane absorption at low temperatures [Irwin et al., 2006. Improved near-infrared methane band models and k-distribution parameters from 2000 to 9500 cm−1 and implications for interpretation of outer planet spectra. Icarus 181, 309-319] with the DISR measurements. We find that the strong bands formed at low pressures on Titan act as if they have roughly half the absorption predicted by the laboratory measurements, while the weak absorption regions absorb considerably more than suggested by some extrapolations of warm measurements to the cold Titan temperatures. We give factors as a function of wavelength that can be used with the published methane coefficients between 830 and 1620 nm to give agreement with the DISR measurements. We also give exponential sum coefficients for methane absorptions that fit the DISR observations. We find the DISR observations of the weaker methane bands shortward of 830 nm agree with the methane coefficients given by Karkoschka [1994. Spectrophotometry of the jovian planets and Titan at 300- to 1000-nm wavelength: the methane spectrum. Icarus 111, 174-192]. Finally, we discuss the implications of our results for computations of methane absorption in the atmospheres of the outer planets.  相似文献   

10.
The servo accelerometer constituted a vital part of the Huygens Atmospheric Structure Instrument (HASI): flown aboard the Huygens probe, it operated successfully during the probe's entry, descent, and landing on Titan, on 14th January 2005. This paper reviews the Servo accelerometer, starting from its development/assembly in the mid-1990s, to monitoring its technical performance through its seven-year long in-flight (or cruise) journey, and finally its performance in measuring acceleration (or deceleration) upon encountering Titan's atmosphere.The aim of this article is to review the design, ground tests, in-flight tests and operational performance of the Huygens servo accelerometer. Techniques used for data analysis and lessons learned that may be useful for accelerometry payloads on future planetary missions are also addressed.The main finding of this review is that the conventional approach of having multiple channels to cover a very broad measurement range: from 10−6g to the order of 10g (where g=Earth's surface gravity, 9.8 m/s2), with on-board software deciding which of the channels to telemeter depending on the magnitude of the measured acceleration, works well. However, improvements in understanding the potential effects of the sensor drifts and ageing on the measurements can be achieved in future missions by monitoring the ‘scale factor’—a measure of such sensors’ sensitivity, along with the already implemented monitoring of the sensor's offset during the in-flight phase.  相似文献   

11.
The Descent Imager/Spectral Radiometer (DISR) of the Huygens probe was in an excellent position to view aspects of rain as it descended through Titan's atmosphere. Rain may play an important part of the methane cycle on Titan, similar to the water cycle on Earth, but rain has only been indirectly inferred in previous studies. DISR detected two dark atmospheric layers at 11 and 21 km altitude, which can be explained by a local increase in aerosol size by about 5-10%. These size variations are far smaller than those in rain clouds, where droplets grow some 1000-fold. No image revealed a rainbow, which implies that the optical depth of raindrops was less than ∼0.0002/km. This upper limit excludes rain and constrains drizzle to extremely small rates of less than 0.0001 mm/h. However, a constant drizzle of that rate over several years would clear the troposphere of aerosols faster than it can be replenished by stratospheric aerosols. Hence, either the average yearly drizzle rate near the equator was even less (<0.1 mm/yr), or the observed aerosols came from somewhere else. The implied dry environment is consistent with ground-based imaging showing a lack of low-latitude clouds during the years before the Huygens descent. Features imaged on Titan's surface after landing, which might be interpreted as raindrop splashes, were not real, except for one case. This feature was a dewdrop falling from the outermost baffle of the DISR instrument. It can be explained by warm, methane-moist air rising along the bottom of the probe and condensing onto the cold baffle.  相似文献   

12.
Our model [Dimitrov, V., Bar-Nun, A., 1999. A model of energy dependent agglomeration of hydrocarbon aerosol particles and implication to Titan's aerosol. J. Aerosol. Sci. 30(1), 35-49] describes the experimentally found polymerization of C2H2 and HCN to form aerosol embryos, their growth and adherence to form various aerosols objects [Bar-Nun, A., Kleinfeld, I., Ganor, E., 1988. Shape and optical properties of aerosols formed by photolysis of C2H2, C2H4 and HCN. J. Geophys. Res. 93, 8383-8387]. These loose fractal objects describe well the findings of DISR on the Huygens probe [Tomasko, M.G., Bézard, B., Doose, L., Engel, S., Karkoschka, E., 2008. Measurements of methane absorption by the descent imager/spectral radiometer (DISR) during its descent through Titan's atmosphere. Planet. Space Sci., this issue, doi:10.1016/j.pss.2007]. These include (1) various regular objects of R=(0.035-0.064)×10−6 m, as compared with DISR's 0.05×10−6 m; (2) diverse low and high fractal structures composed of random combinations of various regular and irregular objects; (3) the number density of fractal particles is 6.9×106 m−3 at Z=100 km, as compared with DISR's finding of 5.0×106 m−3 at Z=80 km; (4) the number of structural units per higher fractals in the atmosphere at Z∼100 km is (2400-2700), as compared with DISR's 3000, and their size being of R=(5.4-6.4)×10−6 m will satisfy this value and (5) condensation of CH4 on the highly fractal structures could begin at the altitude where thin methane clouds were observed, filling somewhat the new open fractal structures.  相似文献   

13.
14.
Laboratory spectra of methane-nitrogen mixtures have been recorded in the near-infrared range (1.0-1.65 μm) in conditions similar to Titan's near surface, to facilitate the interpretation of the DISR/DLIS (DISR—Descent Imager/Spectral Radiometer) spectra taken during the last phase of the descent of the Huygens Probe, when the surface was illuminated by a surface-science lamp. We used a 0.03 cm−1 spectral resolution, adequate to resolve the lines at high pressure (pN2∼1.5 bar). By comparing the laboratory spectra with synthetic calculations in the well-studied ν2+2ν3 band (7515-7620 cm−1), we determine a methane absorption column density of 178±20 cm atm and a temperature of 118±10 K in our experiment. From this, we derive the methane absorption coefficients over 1.0-1.65 μm with a 0.03 cm−1 sampling, allowing for the extrapolation of the results to any other methane column density under the relevant pressure and temperature conditions. We then revisit the calibration and analysis of the Titan “lamp-on” DLIS spectra. We infer a 5.1±0.8% methane-mixing ratio in the first 25 m of Titan's atmosphere. The CH4 mixing ratio measured 90 s after landing from a distance of 45 cm is found to be 0.92±0.25 times this value, thus showing no post-landing outgassing of methane in excess of ∼20%. Finally, we determine the surface reflectivity as seen between 25 m and 45 cm and find that the 1500 nm absorption band is deeper in the post-landing spectrum as compared to pre-landing.  相似文献   

15.
16.
Thermal conductivity measurements, presented in this paper (Fig. 3), were made during the descent of the Huygens probe through the atmosphere of Titan below the altitude of 30 km. The measurements are broadly consistent with reference values derived from the composition, pressure and temperature profiles of the atmosphere; except in narrow altitude regions around 19 km and 11 km, where the measured thermal conductivity is lower than the reference by 1% and 2%, respectively. Only single data point exists at each of the two altitudes mentioned above; if true however, the result supports the case for existence for molecules heavier than nitrogen in these regions (such as: ethane, other primordial noble gases, carbon dioxide, and other hydrocarbon derivatives). The increasing thermal conductivity observed below 7 km altitude could be due to some liquid deposition during the descent; either due to condensation and/or due to passing through layers of fog/cloud containing liquid nitrogen-methane. Thermal conductivity measurements do not allow conclusions to be drawn about how such liquid may have entered the sensor, but an estimate of the cumulative liquid content encountered in the last 7 km is 0.6% by volume of the Titan's atmosphere sampled during descent.  相似文献   

17.
Observations of optical depth and scattering by instrumentation onboard the Huygens probe have been used by Tomasko et al. [Tomasko et al., 2005. Rain, winds and haze during Huygens probe's descent to Titan's surface. Nature 438 (8), 765-778] to deduce that the size and abundance of Titan aerosols could be nearly independent of altitude. Here we show that by assuming a constant mass flux with altitude and using the measured optical depth as a constraint, we obtain more realistic size and abundance distributions. In particular, the calculated abundance decreases from 3.5×107 m−3 at 100 km to 8×106 m−3 near the surface while the particle radius varies from 0.25 μm at 150 km to 1.1 μm at the surface. These distributions are consistent with the reported measurements for these quantities. Our results are then employed to compute electron and ion densities and conductivities for various solar UV photoelectron emission thresholds. Our model shows that to get agreement with the published (preliminary) conductivity measurements, photoemission cannot be an important source of electrons and ions. To get agreement with the electron and ion conductivity observations, both an additional population of aerosol embryos above 50 km and a trace amount of an electrophillic molecular species below 50 km are needed.  相似文献   

18.
Ralph D. Lorenz 《Icarus》2006,182(2):559-566
The Huygens probe lost heat to its cold environment during its descent through Titan's atmosphere and after landing. Here I report measurements of the probe's thermal behavior and comparison with ground tests (1) to provide a context for other scientific investigations, such as the release of volatiles from the landing site, and (2) to place constraints on Titan environmental parameters directly, such as the thermal conductivity of the surface material and the strength of winds at the surface. Near-surface winds are constrained to be less than 0.2 m s−1, and probably much less.  相似文献   

19.
The descent imager/spectral radiometer aboard the Huygens probe successfully acquired images and spectra of the surface of Titan. To counter the effects of haze and atmospheric methane absorption it carried a surface science lamp to illuminate the surface just before landing. We reconstruct the reflectance spectrum of the landing site in the 500-1500 nm range from downward looking visual and infrared spectrometers data that show evidence of lamp light. Our reconstruction is a followup to the analysis by Tomasko et al. [2005. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature 438, 765-778], who scaled their result to the ratio of the up- and down flux measured just before landing. Instead, we use the lamp flux from the calibration experiment, and find a significantly higher overall reflectance. We attribute this to a phase angle dependance, possibly representing the opposition surge commonly encountered on solar system bodies. The reconstruction in the visible wavelength range is greatly improved. Here, the reflectance spectrum features a red slope, consistent with the presence of organic material. We confirm the blue slope in the near-IR, featureless apart from a single shallow absorption feature at 1500 nm. We agree with Tomasko et al. that the evidence for water ice is inconclusive. By modeling of absorption bands we find a methane mixing ratio of 4.5±0.5% just above the surface. There is no evidence for the presence of liquid methane, but the data do not rule out a wet soil at a depth of several centimeters.  相似文献   

20.
Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with ~2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (GCR) and the ablation of incident meteoritic dust from Enceladus’ E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100 km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H2+ and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N2+, N+ and CH4+ can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O+ can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O+ ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's “warm ponds” on Titan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号