首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Long-term measurements of the radio flux density of the young supernova remnant Cassiopeia A relative to the radio galaxy Cygnus A have been carried out at 290 and 927 MHz. We have obtained for the mean rates of the secular decrease of the radio emission of Cassiopeia A d 290 MHz = ?0.67 ± 0.04% year?1 for 1978–2005 and d 927 MHz = ?0.71 ± 0.035% year?1 for 1977–2004. The evolution of the radio spectrum of Cassiopeia A is traced based on long-term observations at 38, 151.5, 290, 927, and 2924 MHz.  相似文献   

2.
Radio flux measurements of the Crab nebula have been performed over many years relative to Orion A at 927 MHz and relative to Cygnus A and Virgo A at 151.5 MHz. The inferred average secular rates of decrease in the radio flux of the Crab nebula are d 927 MHz = ?0.18 ± 0.10% yr?1 over 1977–2000 and d 151.5 MHz = ?0.3 ± 0.1% yr?1 over 1980–2003. The weighted mean flux-decrease rate averaged over several years of relative measurements at 86, 151.5, 927, and 8000 MHz is d mw = ?0.17 ± 0.02% yr?1. The secular flux decrease is frequency independent, with an upper limit of |dα/dt| < 3 × 10?4 yr?1 for the absolute value of the rate of change of the spectral index, and remains constant in time when averaged over long time intervals. The results of our measurements at 151.5 and 927 MHz combined with published absolute measurements at 81.5 and 8250 MHz are used to determine the radio spectrum of the Crab nebula for epoch 2010.0.  相似文献   

3.
Many-year measurements of the radio flux of the young supernova remnant Cassiopeia A relative to the radio galaxy Cygnus A were continued at 290 and 151.5 MHz. The new data are used together with previously published observations carried out at decameter, meter, centimeter, and millimeter wavelengths to derive the frequency dependence of the secular variation of the radio flux density of Cas A: $d_\nu [\% year^{ - 1} ] = - (0.63 \pm 0.02) + (0.04 \pm 0.01)\ln \nu [GHz] + (1.51 \pm 0.16) \times 10^{ - 5} (\nu [GHz])^{ - 2.1} $ . The observed slowing of the secular variations with decreasing frequency at decameter wavelengths can be explained by a decrease in the optical depth of a remnant HII zone around Cas A with time due to recombination of hydrogen atoms. The new derived frequency dependence for the rate of the secular decrease, absolute and relative measurements of the radio flux density of Cas A carried out over the last 25 years, and the absolute spectrum of Cyg A are used to construct the spectrum of Cas A in the range 5–250 000 MHz predicted for epoch 2015.5.  相似文献   

4.
The radio spectrum of Tycho’s Supernova Remnant is constructed at frequencies 12.6–143 000 MHz for epoch 2010.3, taking into account the secular decrease in the radio flux density of the remnant at the rate d = ?(0.46 ± 0.03)%/year:
$$S_\nu ^{3C10} (t = 2010.3) = (43.1 \pm 1.8 Jy)(\nu [GHz])^{ - (0.592 \pm 0.019) + (0.041 \pm 0.012)\log (\nu [GHz])} .$$
The spectrum has positive curvature. The presence of a low-frequency turnover in the spectrum of the radio source 3C10 with its maximum at 7.7 MHz is predicted, due to absorption in the interstellar medium in the direction toward the source.
  相似文献   

5.
Estimates of relative line intensities available in the literature and integrated Hβ fluxes of the planetary nebula NGC 6572 during the time covered by optical observations (1938–2013) are compared to search for possible variations. Line intensities measured from observations obtained at the Crimean Station of the Sternberg Astronomical Institute in 2013 are presented, as well as previously unpublished photographic spectroscopic data obtained 1972–2005. Our analysis of all the available data shows that the line intensities do not vary within the observational uncertainties, with the possible exception of the [OIII] 4959 and 5007 Å lines, which show a tendency for their intensity increase with time. This can be interpreted as a manifestation of a temperature increase of the central star, or radial stratification of the [OIII] emission in the nebula, with the latter explanation being less probable. However, stratification is clearly visible in the [OII] and [NII] line intensities. The integrated Hβ flux is most probably constant at F(Hβ) = (1.50 ± 0.03) × 10?10 erg cm?2 s?1. A refined estimate of the interstellar extinction toward NGC 6572 has been obtained from radio and optical data, c(Hβ) = 0.42 ± 0.03. The MAST spectroscopy data were used to derive the central star’s UBV magnitudes in 2004. Integrated photoelectric UBV observations of the nebula and central star for 1971–2005 are presented.  相似文献   

6.
In order to test the assumption that accretion rates of intertidal salt marshes are approximately equal to rates of sea-level rise along the Rhode Island coast,210Pb analyses were carried out and accretion rates calculated using constant flux and constant activity models applied to sediment cores collected from lowSpartina alterniflora marshes at four sites from the head to the mouth of Narragansett Bay. A core was also collected from a highSpartina patens marsh at one site. Additional low marsh cores from a tidal river entering the bay and a coastal lagoon on Block Island Sound were also analyzed. Accretion rates for all cores were also calculated from copper concentration data assuming that anthropogenic copper increases began at all sites between 1865 and 1885. Bulk density and weight-loss-on-ignition of the sediments were measured in order to assess the relative importance of inorganic and organic accumulation. During the past 60 yr, accretion rates at the eight low marsh sites averaged 0.43±0.13 cm yr?1 (0.25 to 0.60 cm yr?1) based on the constant flux model, 0.40±0.15 cm yr?1 (0.15 to 0.58 cm yr?1) based on the constant activity model, and 0.44±0.11 cm yr?1 (0.30 to 0.59 cm yr?1) based on copper concentration data, with no apparent trend down-bay. High marsh rates were 0.24±0.02 (constant flux), 0.25±0.01 (constant activity), and 0.47±0.04 (copper concentration data). The cores showing closest agreement between the three methods are those for which the excess210Pb inventories are consistent with atmospheric inputs. These rates compare to a tide gauge record from the mouth of the bay that shows an average sea-level rise of 0.26±0.02 cm yr?1 from 1931 to 1986. Low marshes in this area appear to accrete at rates 1.5–1.7 times greater than local relative sea-level rise, while the high marsh accretion rate is equal to the rise in sea level. The variability among the low marsh sites suggests that marshes may not be poised at mean water level to within better than ±several cm on time scales of decades. Inorganic and organic dry solids each contributed about 9% by volume to low marsh accretion, while organic dry solids contributed 11% and inorganic 4% to high marsh accretion. Water/pore space accounted for the majority of accretion in both low and high marshes. If water associated with the organic component is considered, organic matter accounts for an average of 91% of low marsh and 96% of high marsh accretion. A dramatic increase in the organic content at a depth of 60 to 90 cm in the cores from Narragansett Bay appears to mark the start of marsh development on prograding sand flats.  相似文献   

7.
The possibility of selecting extended radio sources that are potential candidates for giant radio galaxies among objects in the Pushchino catalog at 102 MHz is considered. The method used is based on the analysis of objects in a α 1α 2 diagram, where α 1 and α 2 are two-frequency spectral indices (S ν ν ?α ), formally calculated using 102–365 and 365–1400 MHz data, based on the identifications of Pushchino radio sources with objects of the Texas (365 MHz) and Green Bank (1400 MHz) catalogs. The calculated spectra are abnormally steep at 102–365 MHz and flat or even inverted at 365–1400 MHz, due to the fact that the 365-MHz flux densities of extended radio sources measured with the Texas radio interferometer are appreciably underestimated. Ten objects among the fifteen Pushchino radio sources selected using this criterion proved to be already known large radio galaxies. The possibility of improving the efficiency of the method by using larger samples and applying some additional criteria selecting candidate giant radio galaxies is considered.  相似文献   

8.
In situ carbon flux measurements and calculated burial rates are utilized to construct an organic carbon budget for the upper meter of sediment at a single station in Cape Lookout Bight, a small marine basin located on the Outer Banks of North Carolina, U.S.A. (34°37′N, 76°33′W). Of 149 ± 20 mole · m?2 · yr?1 of total organic carbon deposited, 35.6 ± 5.2 mole · m?2 · yr?1 is recycled to overlying waters, 84 ± 18% as ∑CO2 and 16 ± 8% as CH4. Approximately 68 ± 20% of the upward carbon flux is supported by sulfate reduction while 32 ± 16% takes place as the result of underlying methanogenesis. Measured ∑CO2 and CH4 sediment-water fluxes range seasonally from 1900–6300 and 50–2500 μmole · m?2 · hr?1 respectively.The mean residence time of metabolizable organic carbon in the upper 80 cm of sediment is approximately four months with greater than 98% of the calculated total remineralization taking place within three years. In spite of large upward fluxes of methane, larger molecules derived from metabolizable sedimentary organic carbon appear to be the dominant reductants for dissolved sulfate.  相似文献   

9.
Our measurements of the arrival-time delays of radio pulses from the Crab pulsar, PSR B0531+21, at low frequencies 111, 63, and 44 MHz revealed additional delays compared to the usual quadratic frequency relation, Δt(v) ∝ v ?2. These additional delays are 65 ms between 63 MHz and 111 MHz—i.e., a factor of two longer than the pulsar’s period, i.e., a factor of five longer than the pulsar period—and cannot be explained by the “twisting” of the magnetic-field lines by the rotation of the pulsar. We suggest the model in which a previously unknown high-density plasma layer with a high electron concentration is present along the line of sight in the Crab nebula, causing an additional frequency-dependent delay of the observed radio pulses at low frequencies due to the contribution of the n e 2 v ?4 term in the dispersion-delay formula. The parameters of this inferred layer have been derived: emission measure EM ? 4 × 106 pc/cm6, electron density n e ? 106 cm?3, depth along the line of sight d ? 4 × 10?6 pc, and electron temperature T e ≥ 2 × 106 K.  相似文献   

10.
Benthic fluxes of soluble reactive phosphorus (SRP) and dissolved inorganic carbon (DIC) were measured in situ using autonomous landers in the Gulf of Finland in the Baltic Sea, on four expeditions between 2002 and 2005. These measurements together with model estimates of bottom water oxygen conditions were used to compute the magnitude of the yearly integrated benthic SRP flux (also called internal phosphorus load). The yearly integrated benthic SRP flux was found to be almost 10 times larger than the external (river and land sources) phosphorus load. The average SRP flux was 1.25?±?0.56?mmol?m?2?d?1 on anoxic bottoms, and ?0.01?±?0.08?mmol?m?2?d?1 on oxic bottoms. The bottom water oxygen conditions determined whether the SRP flux was in a high or low regime, and degradation of organic matter (as estimated from benthic DIC fluxes) correlated positively with SRP fluxes on anoxic bottoms. From this correlation, we estimated a potential increase in phosphorus flux of 0.69?±?0.26?mmol?m?2?d?1 from presently oxic bottoms, if they would turn anoxic. An almost full annual data set of in situ bottom water oxygen measurements showed high variability of oxygen concentration. Because of this, an estimate of the time which the sediments were exposed to oxygenated overlying bottom water was computed using a coupled thermohydrodynamic ocean?Csea and ecosystem model. Total phosphorus burial rates were calculated from vertical profiles of total phosphorus in sediment and sediment accumulation rates. Recycling and burial efficiencies for phosphorus of 97 and 3%, respectively, were estimated for anoxic accumulation bottoms from a benthic mass balance, which was based on the measured effluxes and burial rates.  相似文献   

11.
The results of simultaneous multifrequency observations of giant radio pulses from the Crab pulsar, PSR B0531+21, at 23, 111, and 600 MHz are presented and analyzed. Giant pulses were detected at a frequency as low as 23 MHz for the first time. Of the 45 giant pulses detected at 23 MHz, 12 were identified with counterparts observed simultaneously at 600 MHz. Of the 128 giant pulses detected at 111 MHz, 21 were identified with counterparts observed simultaneously at 600 MHz. The spectral indices for the power-law frequency dependence of the giant-pulse energies are from ?3.1 to ?1.6. The mean spectral index is ?2.7 ± 0.1 and is the same for both frequency combinations (600–111 MHz and 600–23 MHz). The large scatter in the spectral indices of the individual pulses and the large number of unidentified giant pulses suggest that the spectra of the individual giant pulses do not actually follow a simple power law. The observed shapes of the giant pulses at all three frequencies are determined by scattering on interstellar plasma inhomogeneities. The scatter-broadening of the pulses and its frequency dependence were determined as τ sc = 20(ν/100)?3.5±0.1 ms, where frequency ν is in MHz.  相似文献   

12.
Current deformation in Pribaikalia, Western and Central Mongolia, and Tuva has been studied from measured horizontal GPS velocities and respective computed strain and rotation rates using 1994–2007 data of the Baikal–Mongolian GPS triangulation network.The GPS velocity field shows two main trends: an NE trend within Jonggaria, the Mongolian Altay, and the Great Lakes Valley and an SE trend in the Hangayn and eastern Gobi Altay mountains, and in the Transbaikalian block of the Amur plate. The velocity magnitudes and vectors are consistent with an SE motion of the Amur plate at a rate of ~2 mm/year.The derived strain pattern includes domains of crustal contraction and extension recognized from the magnitudes of relative strains. Shortening predominates in the Gobi and Mongolian Altay and in the Khamar-Daban Range, where it is at ?2 = (19.2 ± 6.0)×10?9 yr?1 being directed northeastward. Extension domains exist in the Baikal rift and in the Busiyngol–West Hangayn area, where the crust is stretching along NW axes at ?1 = (22.2 ± 3.1) × 10–9 yr–1. The eastern Hangayn dome and the Gobi peneplain on its eastern border show low and unstable strain rates. In central and northern Mongolia (Orhon–Selenge basin), shortening and extension are at similar rates: ?2 = (15.4 ± 5.4)×10?9 yr?1 and ?1 = (18.1 ± 3.1)×10?9 yr?1. The strain pattern changes notably in the area of the Mogod earthquake of 1967.Most of rotation throughout Central Asia is clockwise at a low rate of about Ω = 6×10?9 deg·yr?1. High rates of clockwise rotation are observed in the Hangayn domain (18.1 ± 5.2)×10?9 deg·yr?1, in the Gobi Altay (10.4 ± 7.5)×10?9 deg·yr?1, and in the Orhon–Selenge domain (11.9 ± 5.2)×10?9 deg·yr?1. Counterclockwise rotation is restricted to several domains. One is in western Tuva and northwestern Great Lakes Valley of Mongolia (Ω = 3.7×10?9 deg·yr?1). Two more counterclockwise rotation regions occur on both flanks of the Baikal rift: along the craton edge and in basins of Transbaikalia on the rift eastern border, where rotation rates are as high as (13.0 ± 3.9)×10?9 deg·yr?1, while rotation within the Baikal basin does not exceed the measurement error. Another such domain extends from the eastern Hövsgöl area to the Hangayn northern foothills, with the counterclockwise rotation at a highest rate of (16.3 ± 2.8)×10?9 deg·yr?1.  相似文献   

13.
Electron paramagnetic resonance (EPR) study of single crystals of forsterite co-doped with chromium and scandium has revealed, apart from the known paramagnetic centers Cr3+(M1) and Cr3+(M1)– $ V_{{{\text{Mg}}^{2 + } }} $ (M2) (Ryabov in Phys Chem Miner 38:177–184, 2011), a new center Cr3+(M1)– $ V_{{{\text{Mg}}^{2 + } }} $ (M2)–Sc3+ formed by a Cr3+ ion substituting for Mg2+ at the M1 structural position with a nearest-neighbor Mg2+ vacancy at the M2 position and a Sc3+ ion presumably at the nearest-neighbor M1 position. For this center, the conventional zero-field splitting parameters D and E and the principal g values have been determined as follows: D?=?33,172(29) MHz, E?=?8,482(13) MHz, g?=?[1.9808(2), 1.9778(2), 1.9739(2)]. The center has been compared with the known ion pair Cr3+(M1)–Al3+ (Bershov et al. in Phys Chem Miner 9:95–101, 1983), for which the refined EPR data have been obtained. Based on these data, the known sharp M1″ line at 13,967?cm?1 (with the splitting of 1.8?cm?1), observed in low-temperature luminescence spectra of chromium-doped forsterite crystals (Glynn et al. in J Lumin 48, 49:541–544, 1991), has been ascribed to the Cr3+(M1)–Al3+ center. It has been found that the concentration of the new center increases from 0 up to 4.4?×?1015?mg?1, whereas that of the Cr3+(M1) and Cr3+(M1)– $ V_{{{\text{Mg}}^{2 + } }} $ (M2) centers quickly decreases from 7.4?×?1015?mg?1 down to 3?×?1015?mg?1 and from 2.7?×?1015?mg?1 down to 0.5?×?1015?mg?1, i.e., by a factor of 2.5 and 5.4, respectively, with an increase of the Sc content from 0 up to 0.22 wt?% (at the same Cr content 0.25 wt?%) in the melt. When the Sc content exceeds that of Cr, the concentration of the new center decreases most likely due to the formation of the Sc3+(M1)– $ V_{{{\text{Mg}}^{2 + } }} $ (M2)–Sc3+ complex instead of the Cr3+(M1)– $ V_{{{\text{Mg}}^{2 + } }} $ (M2)–Sc3+ center. The formation of such ordered neutral complex is in agreement with the experimental results, concerning the incorporation of Sc into olivine, recently obtained by Grant and Wood (Geochim Cosmochim Acta 74:2412–2428, 2010).  相似文献   

14.
In 1990 and 1991, a zooplankton sampling program revealed the presence of the hydromedusan Clytia hemisphaerica (Hydromedusa: Leptomedusa) from early May through late September throughout Southampton Water. The most notable aspects of the population dynamics of C. hemisphaerica in Southampton Water were the considerable interannual variation in peak abundance—10.65 m?3 in 1990 and 2.44 m?3 in 1991—and temporal patterns of mean bell diameter. The suggestion of almost continuous reproduction in 1990, as indicated by high abundance and large size range on each sampling date, is in contrast to 1991, where at the Cracknore site, five cohorts were produced at 21 d to 80 d intervals. The maximum bell diameter attained in each generation was typically 10–11 mm. At the Cracknore site in 1991, in situ bell diameter growth was linear within each cohort. A trend of increased growth rate with each subsequent cohort, from 26 μg DW d?1 to 106 μg DW d?1 was coincident with increasing water temperature. Annual production ranged from 0.98 mg C m?3 yr?1 to 1.08 mg C m?3 yr?1 in 1990 and 0.35 mg C m?3 yr ?1 to 0.48 mg C m?3 yr?1 in 1991. Daily P: B ratios varied in each cohort from 0.05 to 0.35.  相似文献   

15.
The Cadmium‐Lined Outer‐Core Irradiation Tube (CLOCIT) is a new irradiation facility for 40Ar/39Ar geochronology at the Oregon State University TRIGA® reactor. We report fluence (i.e., time‐integrated flux) parameters from the first four CLOCIT irradiations and compare them with the existing Cadmium‐Lined Inner‐Core Irradiation Tube (CLICIT). CLOCIT provides an average neutron flux equivalent of 1.45–1.53 × 10?4 J h?1; about 55% of CLICIT. Radial fluence gradients were on the order of 0.2–4.2% cm?1. A planar fit of J‐values results in residuals in the range of uncertainty in the J‐value, but systematic deviations resolve a non‐planar component of the neutron flux field, which has also been observed in CLICIT. Axial neutron fluence gradients were 0.6–1% cm?1, compared with 0.7–1.6% cm?1 for the CLICIT. Production rate ratios of interfering reactions were (40Ar/39Ar)K = (4 ± 6) × 10?4 and (38Ar/39Ar)K = (1.208 ± 0.002) × 10?2, (36Ar/37Ar)Ca =  (2.649 ± 0.014) × 10?4, (38Ar/37Ar)Ca =  (3.33 ± 0.12) × 10?5 and (39Ar/37Ar)Ca =  (9.1 ± 0.28) × 10?4, similar to the CLICIT values.  相似文献   

16.
Mean daily consumption rates on Mytilus spp. were compared among juveniles of the non-indigenous Carcinus maenas, juveniles of the indigenous Cancer irroratus, and adults of the indigenous Dyspanopeus sayi between June and August 2005 to assess the relative impact of juvenile C. maenas in field (Benacadie Channel (45°54′ N, 60°53′ E), Bras d’Or Lakes, Nova Scotia, Canada) and laboratory experiments. This study examined: (1) whether consumption rates in a field setting vary among species; (2) the effect of laboratory and field settings on species-specific consumption rates, and whether rates vary between settings for each species; and (3) the effects of temperature and salinity on the consumption rates of these species. In field experiments, there was no significant difference in consumption among C. maenas, C. irroratus, and D. sayi (0.100?±?0.067, 0.450?±?0.189, and 0.800?±?0.423 mussels crab?1 d?1, respectively). However, both C. maenas and C. irroratus consumed two to four times more prey in the laboratory than in the field. D. sayi prey consumption was also greater (although not significant) in the laboratory than in the field. In the laboratory, consumption rate was greater for C. irroratus in salinities of 26 than 17 (2.75 and 1.69–1.81 mussels crab?1 d?1, respectively), and in 17°C than 13°C (1.10–1.21 and 0.56–0.64 mussels crab?1 d?1, respectively) for C. maenas. In all experiments, consumption rates of juvenile C. maenas were lower than or similar to those of the juvenile and adult indigenous species, suggesting that the potential predatory impact of juvenile C. maenas on Mytilus spp. may not be as significant as that of the adults of this non-indigenous species.  相似文献   

17.
Sediment core segments from Sylvan Lake, Lake Champlain and Lake Canadarago were dated radiometrically with 210Pb and 137Cs. Their respective sedimentation rates were determined to be 0.11, 0.14 and 0.52 g cm?2 yr?1. For the two lakes of lower sedimentation the variations of selected elemental abundances as function of depth were analyzed. Two groupings were found: Al, K, Ti, Rb and Zr were correlated among themselves but reflected different variations in the input of terrigenous erosion material to the lakes. The Cu, Zn and Pb correlated among themselves showed similar depth dependence with increasing concentrations toward the top which can be attributed to cultural pollution. Recent ‘excess’ fluxes to the sediments above the natural contribution by clastic material were derived for the location of the cores, which for Cu, Zn and Pb amounted to 3.8, 24 and 16 μg cm?2 yr?1 respectively for Sylvan Lake and 4.9, 20 and 16 μg cm?2 yr?1 for Lake Champlain. The corresponding 210Pb flux was 3.3 and 2.3 dpm cm?2 yr?1, respectively for the two lakes.Approximate residence times in the water column were obtained for trace metals at the Lake Champlain location. Short residence times estimated for Pb (< 0.15 yr) and Cu (< 0.4 yr) indicate fast removal, whereas those for Zn (1.0 ± 0.3 yr) and Cr (2.0 ± 0.5 yr) appeared to be dominated by the water residence time.  相似文献   

18.
High-pressure single crystal X-ray diffraction experiments of phase anhydrous B and superhydrous B have been carried out to 7.3 and 7.7?GPa, respectively, at room temperature. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields values of V 0?=?838.86?±?0.04?Å3, KT,0?=?151.5?±?0.9?GPa and K′?=?5.5?±?0.3 for Anhy-B and V 0?=?624.71?± 0.03?Å3, KT,0?=?142.6?±?0.8?GPa and K′?=?5.8?±?0.2 for Shy-B. A similar analysis of the axial compressibilities in Anhy-B reveals that the c-axis is most compressible (Kc?=?137?±?3?GPa), the b-axis is least compressible (Kb?=?175?±?4?GPa), and the a-axis is intermediate (Ka?=?148?±?1?GPa). In Shy-B, the a-axis is most compressible (Ka?=?135?±?1?GPa), followed by the b- and c-axes which have similar compressibilities (Kb?=?146?±?3?GPa; Kc?=?148?±?3?GPa). The fact that the b-axis of Shy-B is approximately 16% more compressible than Anhy-B is primarily due to differences in the O-T layer in which the H atoms are located and the linkages with the adjacent O layers. The rigid edge-sharing chains of MgO6 and SiO6 octahedra in the O layer control compressibility along the a- and c-axes in both structures. The net result is a reduction in the overall anisotropic compression from ~22% in Anhy-B to ~9% in Shy-B.  相似文献   

19.
Roughly 200 tonnes of arsenic are produced annually with the base metal ores at Sudbury about 125 tonnes of which are released to the ambient environment via the atmosphere. The dispersion of this highly toxic element in lakes around the smelters is described. The total As concentrations in unfiltered lake waters vary from 0.2 to 0.6 ug 1?1. The suspended particulates in the water column (with As contents of 2–6 ug g?1) play a major role in the flux of arsenic to the lake sediments. The present-day rates of As accumulation in the sediments are found to be 1.5–6.4 mg m?2 yr?1; these rates exceed those of precolonial times by factors of 5–47. The changes in the rates of As flux to the sediments are shown to parallel the history of Cu and Ni production in the district.  相似文献   

20.
Sediment trap deployments in estuaries provide a method for estimating the amount of organic material transported to the sediments from the euphotic zone. The amino acid composition of suspended particles, benthic sediment, and sediment-trap material collected at 2.4 m, 5.8 m, and 7.9 m depths in the Potomac Estuary was determined in stratified summer waters, and in well-mixed oxygenated waters (DO) in late fall. The total vertical flow, or flux, of material into the top traps ranged from 3 g m?2 d?1 in August to 4.9 g m?2 d?1 in October. The carbon and nitrogen fluxes increased in the deepest traps relative to the surface traps during both sampling periods, along with that of the total material flux (up to 47.3 g m?2 d?1 in the deepest trap), although the actual weight percent of organic carbon and organic nitrogen decreased with depth. Amino acid concentrations ranged from 129 mg g?1 in surface water particulate material to 22 mg g?1 in particulate material in 9-m-deep waters and in the benthic sediment. Amino acid concentrations from 2.4-mg-depth sediment traps averaged 104±29 mg g?1 in stratified waters and 164±81 mg g?1 in well-mixed waters. The deep trap samples averaed, 77.3±4.8 mg g?1 amino acids in summer waters and 37±16 mg g?1 in oxygenated fall waters. Amino acids comprised 13% to 39% of the organic carbon and 12% to 89% of the orgnaic nitrogen in these samples. Analysis of the flux results suggest that resuspension combined with lateral advection from adjacent slopes can account for up to 27% of the material in the deep traps when the estuary was well-mixed and unstratified. When the estuary was stratified in late summer, the amino acid carbon produced by primary productivity in the euphotic zone decreased by 85% (86% for total organic carbon) at the pycnocline at 6 m depth, leaving up to 15% of the vertical organic flux available for benthic sediment deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号