首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The large 100-kyr cycles evident in most late-Pleistocene (0–0.6 Ma) paleoclimatic records still lack a satisfactory explanation. Previous studies of the nature of the transition from the early Pleistocene (1.2–1.8 Ma) 41-kyr-dominated climate regime to the 100-kyr world have been based almost exclusively on benthic foraminiferal oxygen isotopic (δ18O) data. It is generally accepted that the late Pleistocene 100-kyr cycles represent a newly evolved sensitivity to eccentricity/precession, superimposed on an earlier, and largely constant, response to obliquity and precession forcing. However, orbitally-resolved Pleistocene sea surface temperature (SST) records from a variety of oceanic regions paint a rather different picture of the global climate transition across the mid-Pleistocene transition (MPT, 0.6–1.2 Ma). Reanalysis of these SST records shows that: (1) an early onset of strong 100-kyr-like cycles in two low-frequency bands (~ 120–145 kyr and ~ 60–80 kyr), derived from the bundling of two/three obliquity cycles into grand cycles (obliquity subharmonics), occurred in tropical SST records during the early Pleistocene, (2) these two early Pleistocene periods converge into the late-Pleistocene 100-kyr period in tropical SST records, (3) the dominance of 100-kyr SST power in the late Pleistocene coincides with a dramatic decline in the 41-kyr SST power, and (4) the correlation of timing of glacial terminations with eccentricity/precession variation could well extend back into the early Pleistocene. We demonstrate that most of these features also occur in δ18O records, but in a much more subtle manner. These features could be explained in two plausible ways: a shift in climate sensitivity from obliquity to eccentricity/precession (a modified version of the conventional view) or an increasingly nonlinear response to orbital obliquity across the MPT. However, our examination of the development of ~100-kyr cycles favors an obliquity bundling mechanism to form late Pleistocene 100-kyr cycles. We therefore suggest that the late Pleistocene 100-kyr climatic cycles are likely a nonlinear response to orbital obliquity, although the timing of late Pleistocene 100-kyr climatic cycles and their early forms appears to be paced by eccentricity/precession.  相似文献   

2.
The variations of the Earth’s geometry (ETP) pre-dominate climate changes such as monsoon on the Earth[1], serving as its external forcing. The loess/ paleosol sequence in Central China provides a good record of terrestrial deposition to study the evolution of the east Asian monsoon[2―4]. However, the deep sea deposition, due to its high resolution dating and abun-dant climate proxies, should be able to provide more climatic information in the geological time, such as the forcing mechanis…  相似文献   

3.
The foraminiferal δ 18O and δ 13C records for the past 5 Ma at ODP Site 1143 reveal the linear responses of the Plio-Pleistocene climatic changes in the southern South China Sea to orbital forcing at the obliquity and precession bands. The phase of the δ 18O variations with the orbital forcing is opposite to that of the δ 13C, which may be caused by the frequent El Niño events from the equatorial Pacific. The amplification of the Northern Hemisphere Ice Sheet at ñ3.3 Ma probably affected the development of the 100-ka climatic cycles. Its further spreading may spur the 100-ka climatic cycle to become the dominant cycle in the late Pleistocene. The “Mid- Pleistocene Transition” event has localized influence on the isotopic variations in the southern South China Sea. The foraminiferal δ 13C records for the past 5 Ma at Site 1143 are highly coherent with the orbital forcing at the long eccentricity band, and lead the δ 18O records at the shorter eccentricity band, highlighting the importance of the carbon cycle in the global climate change.  相似文献   

4.
The mismatch between the 100 and 400 k.y. components of Pleistocene climate and the relative power of those terms from the eccentricity of the Earth's orbit remains a challenge to the Milankovitch hypothesis. Coccolithophores have the potential to respond to parameters of orbital forcing other than insolation, and, as a critical component of the ocean carbon cycle, can act to modify the climate response. The first direct comparison of coccolith fraction Sr/Ca, alkenone abundance and automated coccolithophore counts, shows that CF Sr/Ca is largely driven by changing production of bloom species, with unusually high Sr/Ca ratios. The periods of high CF Sr/Ca and high bloom production mark periods of high global coccolithophore production, which correlate inversely with the low amplitude 100 and higher amplitude 400 k.y. eccentricity orbital frequency. ∼ 400 k.y. cycles of coccolithophore bloom production correspond to periods of enhanced carbonate accumulation in some parts of the ocean, deep ocean dissolution in others, positive shifts in global ocean δ13C, and acmes of Gephyrocapsa caribbeanica and Emiliania huxleyi. The link between production of coccolithophore blooms and eccentricity may be due to orbital control of silica leakage from the Southern Ocean, to the orbitally defined inverse correlation between insolation and growing season length and the asymptotic growth response to these parameters, or to changes in nutrient input from weathering. During the Pleistocene, the eccentricity induced coccolithophore acmes have no apparent influence on atmospheric carbon dioxide (pCO2) due to the shift towards small bloom coccolithophores, or to coupling with increased diatom productivity, or the ballast effect of the calcium carbonate rain, such that Pleistocene climate has no significant variance at the largest amplitude eccentricity forcing of 400 k.y. Coccolithophores and their influence on the carbon cycle may act as a filter between the incident orbital forcing and resultant climate.  相似文献   

5.
过去2.5Ma间宝鸡黄土粒度记录和深海氧同位素曲线的Fourier功率谱分析结果表明:在1.6Ma以上部分,两者的周期性相当一致;但在2.5-1.6Ma时段,两者的周期记录差异很大.深海氧同位素曲线记录的全球大陆冰量变化周期以与地轴倾斜度有关的0.041Ma为主,而黄土粒度曲线记录的内陆风力强度变化周期则以与偏心率有关的0.4Ma和0.1Ma为主.造成这种异同的原因是:在2.5-1.6Ma时段,内陆风力强度变化主要受地球轨道变化驱动,而从1.6Ma前开始,转而主要受全球大陆冰量变化驱动.  相似文献   

6.
A comparison of the oxygen isotope signal in deep-sea benthic foraminifera with the record of glacio-eustatic sea level for the last 160,000 years reveals that the amplitude of the benthic δ18O records predicts more continental ice volume than appears to be reflected in lowered sea level stands. These differences between the benthic δ18O ice volume estimates and radiometrically-dated records of eustatic sea level are consistent with the presence of a large floating Arctic Ocean ice mass during glacial intervals. The presence of an Arctic Ocean ice sheet during glacial intervals may account for the two climatic modes observed in oxygen isotope records which span the entire Pleistocene. The early Pleistocene (1.8 to 0.9 Myr B.P.) interval is characterized by low-amplitude, high-frequency δ18O fluctuations between glacial and interglacial periods, while the late Pleistocene (0.9 Myr B.P. to present) is characterized by large-amplitude, low-frequency δ18O changes. These two climatic modes can be explained by the initiation of earth orbital conditions favoring the co-occurrence of glacial period Arctic Ocean ice sheets and large continental ice sheets approximately 900,000 years before present.  相似文献   

7.
天文气候学10万年问题的研究   总被引:8,自引:1,他引:7       下载免费PDF全文
为了研究第四纪晚更新世(约100万年前到2万年前)古气候的周期变化以及在轨道尺度上气候系统对太阳辐射的响应,本文发展了适合于非线性非平稳数据的分析方法即经验模态分解(EMD),对太阳辐射古气候记录进行了分析,进而重新认识了地球轨道周期变化影响下的太阳辐射的气候意义.研究结果表明,太阳辐射中偏心率的影响是相当大的,而不是以前认为的不到1%的影响,至少它是和太阳辐射的黄赤交角,岁差波段的信号是可以相比拟的.  相似文献   

8.
We report new data on oxygen isotopes in marine sulfate (δ18OSO4), measured in marine barite (BaSO4), over the Cenozoic. The δ18OSO4 varies by 6‰ over the Cenozoic, with major peaks 3, 15, 30 and 55 Ma. The δ18OSO4 does not co-vary with the δ34SSO4, emphasizing that different processes control the oxygen and sulfur isotopic composition of sulfate. This indicates that temporal changes in the δ18OSO4 over the Cenozoic must reflect changes in the isotopic fractionation associated with the sulfide reoxidation pathway. This suggests that variations in the aerial extent of different types of organic-rich sediments may have a significant impact on the biogeochemical sulfur cycle and emphasizes that the sulfur cycle is less sensitive to net organic carbon burial than to changes in the conditions of that organic carbon burial. The δ18OSO4 also does not co-vary with the δ18O measured in benthic foraminifera, emphasizing that oxygen isotopes in water and sulfate remain out of equilibrium over the lifetime of sulfate in the ocean. A simple box model was used to explore dynamics of the marine sulfur cycle with respect to both oxygen and sulfur isotopes over the Cenozoic. We interpret variability in the δ18OSO4 to reflect changes in the aerial distribution of conditions within organic-rich sediments, from periods with more localized, organic-rich sediments, to periods with more diffuse organic carbon burial. While these changes may not impact the net organic carbon burial, they will greatly affect the way that sulfur is processed within organic-rich sediments, impacting the sulfide reoxidation pathway and thus the δ18OSO4. Our qualitative interpretation of the record suggests that sulfate concentrations were probably lower earlier in the Cenozoic.  相似文献   

9.
柴达木盆地东部三湖地区四系米兰柯维奇旋回分析   总被引:6,自引:4,他引:2       下载免费PDF全文
自然伽马曲线包含丰富的地质信息,能够很好地反映由气候变化引起的地层旋回.本文采用频谱分析对柴达木盆地三湖地区第四系自然伽马测井曲线进行了系统分析.作为频谱分析方法之一的快速傅里叶变换能够将自然伽马曲线从时间(深度)域转换为频率域,然后分析每一个峰值频率的波长及其相互之间的比率关系,寻找那些波长比率与米兰柯维奇周期比率相同或相似的频率,从而捕获高频旋回信息.研究结果表明第四系地层中很好地保存了高频的米兰柯维奇旋回,这样的沉积旋回主要由地球轨道的周期性变化而导致的古气候变化引起的.偏心率周期引起的地层旋回厚度变化范围在92.00~115.00 m之间,黄赤交角引起的地层旋回厚度变化范围在24.55~63.43 m之间,岁差引起的地层旋回厚度变化范围在16.8~26.35 m之间.黄赤交角和岁差是影响该区米兰柯维奇旋回的主要因素,其中岁差的影响最大,而偏心率的影响最小.  相似文献   

10.
High-resolution δ13C records are presented for the Miocene benthic foraminifersCibicidoides wuellerstorfi andC. kullenbergi (24-5 Ma) and the planktonic foraminiferGlobigerinoides sacculifer (18-5 Ma) from ODP Site 1148A (18° 50.17’N, 116° 33.93’E, water depth 3308.3 m), northern South China Sea. The general pattern of parallel benthic and planktonic δ13C shows a decrease trend of δ13C values from the early-middle Miocene to the middle-late Miocene. Two distinct δ13C positive excursions at 23.1-22.2 and 17.3-13.6 Ma, and two negative excursions at 10.2-9.4 and 6.9-6.2 Ma have been recognized. All these events are cosmopolitan, providing the good data for the stratigraphic correlation of the South China Sea with the global oceans as well as for studying the changes of the global carbon reservoir and its corresponding climate.  相似文献   

11.
Our understanding of the hydrodynamic response of peatland to climate change is restricted to the Holocene, which confines our knowledge of the fundamental controls on this important carbon reservoir to recent sedimentary successions. To understand the interaction of peatland hydrodynamics, climate and the carbon cycle on longer time scales, a 95.4 m record from lower Miocene lignite from the Gippsland Basin, Australia is considered. δ13C and colour records for the lignite were created by analysing samples every 0.1 m. Solid-state 13C NMR results indicate that lignite colour is related to the relative abundance of aliphatic carbon. The lack of a direct correlation between colour and δ13C demonstrates that the δ13C signal has not been significantly influenced by the diagenetic processes that produce the colour. An offset correlation occurs between δ13C and colour with the degree of offset decreasing from 4.5 m at the base to about 0 m at the top. This offset is considered to represent a zone of surface influence that extends up to 20 m below the peat surface. Using numerical modelling we demonstrate that this zone of surface influence and its gradual decline in thickness could arise as a consequence of enhanced fluid flow in regions of high tensile stress within the unconfined peat body. The removal of lignin and its derivatives from the zone of surface influence will be favoured by cooler drier periods, with lower sea level and high hydraulic gradients across the peatland. Therefore in the early Miocene this peatland acted as a carbon source during global cooling.  相似文献   

12.
The Late Jurassic Kimmeridge Clay Formation (KCF) is an economically important, organic-rich source rock of Kimmeridgian–Early Tithonian age. The main rock types of the KCF in Dorset, UK, include grey to black laminated shale, marl, coccolithic limestone, and dolostone, which occur with an obvious cyclicity at astronomical timescales. In this study, we examine two high-resolution borehole records (Swanworth Quarry 1 and Metherhills 1) obtained as part of a Rapid Global Geological Events (RGGE) sediment drilling project. Datasets examined were total organic carbon (TOC), and borehole wall microconductivity by Formation Microscanner (FMS). Our intent is to assess the rhythmicity of the KCF with respect to the astronomical timescale, and to discuss the results with respect to other key Late Jurassic geological processes. Power spectra of the untuned data reveal a hierarchy of cycles throughout the KCF with ~ 167 m, ~ 40 m, 9.1 m, 3.8 m and 1.6 m wavelengths. Tuning the ~ 40 m cycles to the 405-kyr eccentricity cycle shows the presence of all the astronomical parameters: eccentricity, obliquity, and precession index. In particular, ~ 100-kyr and 405-kyr eccentricity cycles are strongly expressed in both records. The 405-kyr eccentricity cycle corresponds to relative sea-level changes inferred from sequence stratigraphy. Intervals with elevated TOC are associated with strong obliquity forcing. The 405-kyr-tuned duration of the lower KCF (Kimmeridgian Stage) is 3.47 Myr, and the upper KCF (early part of the Tithonian Stage, elegans to fittoni ammonite zones) is 3.32 Myr. Two other chronologies test the consistency of this age model by tuning ~ 8–10 m cycles to 100-kyr (short eccentricity), and ~ 3–5 m cycles to 36-kyr (Jurassic obliquity). The ‘obliquity-tuned’ chronology resolves an accumulation history for the KCF with a variation that strongly resembles that of Earth's orbital eccentricity predicted for 147.2 Ma to 153.8 Ma. There is evidence for significant non-deposition (up to 1 million years) in the lowermost KCF (bayleimutabilis zones), which would indicate a Kimmeridgian/Oxfordian boundary age of 154.8 Ma. This absolute calibration allows assignment of precise numerical ages to zonal boundaries, sequence surfaces, and polarity chrons of the lower M-sequence.  相似文献   

13.
Solar geoengineering has been proposed as a potential mechanism to counteract global warming. Here we use the University of Victoria Earth System Model (UVic) to simulate the effect of idealized sunshade geoengineering on the global carbon cycle. We conduct two simulations. The first is the A2 simulation, where the model is driven by prescribed emission scenario based on the SRES A2 CO2 emission pathway. The second is the solar geoengineering simulation in which the model is driven by the A2 CO2 emission scenario combined with sunshade solar geoengineering. In the model, solar geoengineering is represented by a spatially uniform reduction in solar insolation that is implemented at year 2020 to offset CO2-induced global mean surface temperature change. Our results show that solar geoengineering increases global carbon uptake relative to A2, in particular CO2 uptake by the terrestrial biosphere. The increase in land carbon uptake is mainly associated with increased net primary production (NPP) in the tropics in the geoengineering simulation, which prevents excess warming in tropics. By year 2100, solar geoengineering decreases A2-simulated atmospheric CO2 by 110 ppm (12%) and causes a 60% (251 Pg C) increase in land carbon accumulation compared to A2. Solar geoengineering also prevents the reduction in ocean oxygen concentration caused by increased ocean temperatures and decreased ocean ventilation, but reduces global ocean NPP. Our results suggest that to fully access the climate effect of solar geoengineering, the response of the global carbon cycle should be taken into account.  相似文献   

14.
The Oligocene-Miocene transition period was characterized by a decrease in global CO2 levels, expansion of polar ice sheet, fall in global sea-level, etc. However, the reasons for, and mechanisms of, this global, extreme-cold climate change event (Mi-1) still remain controversial. Our samples from the core of the Ocean Drilling Program (ODP) Leg 154, Site 926, located in the equatorial Atlantic, mainly consist of light-gray, nannofossil chalk with foraminifers interbedded with green-ish-gray, clayey, nannofossil chalk sediments. Color variation from light-gray layers (up to 80% carbonate content) to dark layers (~60% carbonate content) was observed to occur cyclically at the meter scale. Therefore, we chose color reflectance lightness (L*) data as the paleoclimate proxy on which to perform cyclostratigraphic analysis because it could reflect carbonate content changes. Based on the recognition of the 405 kyr long eccentricity and ~40 kyr obliquity cycles of the L* series, we tuned the series to establish an absolute astronomical time scale using the published age of the Oligocene-Miocene boundary (OMB) as the anchor for an absolute age control point. The power spectra of the tuned L* series showed that the long eccentricity signals became significantly weak, while the obliquity signals became strong, from the Late Oligocene to the Early Miocene. The 405 kyr long eccentricity minimum coincided with the 1.2 Myr obliquity node at the OMB, and similar convergences might be closely related to other extreme-cold events in Earth’s history. In addition, the sedimentation accumulation rate, oxygen isotopes of benthonic foraminifers, and rodents’ per-taxon turnover rate from Central Spain showed the same ~2 Myr cyclicity, which indicates the significant influence of Earth-orbital forcing on the Earth system and ecological evolution on the million-year time scale.  相似文献   

15.
The hierarchically organized laminae, bundles, bundlesets and superbundlesets which correspond to a sub-Milankovitch, obliquity or precession, eccentricity and long eccentricity cyclothems, respectively, have been distinguished from the Upper Devonian Fras-nian-Famennian (F-F) transitional carbonate successions deposited in the carbonate-basin and slope facies of Guangxi, South China. The durations of cyclothems are 8000-10000a, 16667a or 33333a, 100000a and 400000a, respectively. The ratio of eccentricity to precession, eccentricity to obliquity, and long eccentricity to eccentricity is 1 : 6, 1 : 3 and 1 : 4 in the Devonian, respectively. Orbital cyclostratigraphical studies show that the durations of the conodont falsio-valis Zone, transitans Zone, punctate Zone, Lower hassi Zone, Upper hassi Zone, jamieae Zone, Lower rhenana Zone, Upper rhenana Zone, linguiformis Zone, Lower triangularis Zone, Middle triangularis Zone and Upper triangularis Zone are 0.4, 0.4, 0.4, 0.3, 0.4, 0.2, 0.8, 0.6, 0.8, 0.3, 0  相似文献   

16.
云南鹤庆钻孔揭示的古生产力轨道尺度演化   总被引:1,自引:1,他引:0  
肖海丰  沈吉  肖霞云 《湖泊科学》2006,18(6):615-620
本文在分析鹤庆古湖泊不同演化阶段烧失量指标变化特点的基础上,采用频谱分析、滤波分析方法,探讨了该湖泊古生产力轨道尺度的演化特征.综合分析结果显示:在整个演化过程中,由于北半球夏季太阳辐射与南半球潜热输出相位关系的不同,导致斜率周期一直强于岁差周期;在987-1552 ka阶段,15 ka、10.7 ka和10 ka为较强周期,其中10 ka、10.7 ka周期是与100 ka周期强化有关的半岁差周期;在湖泊古生产力演化中存在与气候变化相一致的中更新世转型.  相似文献   

17.
The middle Miocene Valdearenas–Muduex section in the internally-drained, continental Madrid Basin (central Spain) is dated bio-magnetostratigraphically between 15.2 Ma and 11.5 Ma. The section contains two formation-scale, sedimentary sequences, that both consist of a siliciclastic lower part and a calcareous upper part. Siliciclastic sedimentation took place in distal floodplain and fluvial environments, while limestones resulted from carbonate precipitation in calcic soil profiles and in ephemeral lacustrine water bodies. Spectral analysis of the L* colour time series points to the influence of the ~ 405-kyr and 0.97-Myr eccentricity cycles, while the bases of the two calcareous intervals correlate to successive minima of the 2.4-Myr eccentricity cycle. The 405-kyr cycle lags maximum eccentricity, whereas the 0.97 and 2.4-Myr cycles lag minimum eccentricity, each by approximately a quarter of a cycle. No obliquity forcing is detected. The observed orbital configuration of 2.4-Myr minima at the base of limestone-dominated intervals is similar to a previously documented Late Miocene shift in the Teruel Basin of northeast Spain. Our results indicate that long-period eccentricity climate forcing may well be a significant player on long, tectonic time scales in continental basin fill.  相似文献   

18.
High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 450 ka during late Quaternary from Core MD05-2901 off Middle Vietnam in the western South China Sea are re-ported to reconstruct a history of East Asian monsoon evolution. Variations in Illite, chlorite, and kaolinite contents indicate a strong glacial-interglacial cyclicity, while changes in smectite content present a higher frequency cyclicity. The provenance analysis indicates a mixture of individual clay minerals from various sources surrounding the South China Sea. Smectite derived mainly from the Sunda shelf and its major source area of the Indonesian islands. Illite and chlorite originated mainly from the Mekong and Red rivers. Kaolinite was provided mainly by the Pearl River. Spectral analysis of the kaolin-ite/(illite chlorite) ratio displays a strong eccentricity period of 100 ka, implying the ice sheet-forced win-ter monsoon evolution; whereas higher frequency changes in the smectite content show an ice sheet-forced obliquity period of 41 ka, and precession periods of 23 and 19 ka and a semi-precession period of 13 ka as well, implying the tropical-forced summer monsoon evolution. The winter monsoon evolution is generally in coherence with the glacial-interglacial cyclicity, with intensified winter monsoon winds during glacials and weakened winter monsoon winds during interglacials; whereas the summer monsoon evolution provides an almost linear response to the summer insolation of low latitude in the Northern Hemisphere, with strengthened summer monsoon during higher insolation and weakened summer monsoon during lower insolation. The result suggests that the high-latitude ice sheet and low-latitude tropical factor could drive the late Quaternary evolution of East Asian winter and summer monsoons, respectively, implying their diplex and self-contained forcing mechanism.  相似文献   

19.
A long-standing question in Paleogene climate concerns the frequency and mechanism of transient greenhouse gas-driven climate shifts (hyperthermals). The discovery of the greenhouse gas-driven Paleocene–Eocene Thermal Maximum (PETM; ~ 55 Ma) has spawned a search for analogous events in other parts of the Paleogene record. On the basis of high-resolution bulk sediment and foraminiferal stable isotope analyses performed on three lower Danian sections of the Atlantic Ocean, we report the discovery of a possible greenhouse gas-driven climatic event in the earliest Paleogene. This event – that we term the Dan-C2 event – is characterized by a conspicuous double negative excursion in δ13C and δ18O, associated with a double spike in increased clay content and decreased carbonate content. This suggests a double period of transient greenhouse gas-driven warming and dissolution of carbonates on the seafloor analogous to the PETM in the early Paleocene at ~ 65.2 Ma. However, the shape of the two negative carbon isotope excursions that make up the Dan-C2 event is different from the PETM carbon isotope profile. In the Dan-C2 event, these excursions are fairly symmetrical and each persisted for about ~ 40 ky and are separated by a short plateau that brings the combined duration to ~ 100 ky, suggesting a possible orbital control on the event. Because of the absence of a long recovery phase, we interpret the Dan-C2 event to have been associated with a redistribution of carbon that was already in the biosphere. The Dan-C2 event and other early Paleogene hyperthermals such as the short-lived early Eocene ELMO event may reflect amplification of a regular cycle in the size and productivity of the marine biosphere and the balance between burial of organic and carbonate carbon.  相似文献   

20.
Two new δ18O time scales have been developed for the Brunhes Epoch using equatorial Pacific core V28-238. The first is based on a constant accumulation rate of aluminum, an assumption which has been shown to be acceptable for the last 360,000 years of the record by comparison with 230Th ages determined via the continuous strip-sample technique. The aluminum scale yields an age of 138,000 years for termination II and 693,000 years for the Brunhes-Matuyama reversal. Spectral and cross spectral analysis of the δ18O records of V28-238 and a detailed composite Indian Ocean record, using the aluminum time scale as well as two earlier time scales, indicates that the Pleistocene climate has been forced by periodic fluctuations of the earth's obliquity and precession. Based on this result, the second new time scale (TWEAQ) has been derived by tuning the δ18O record of V28-238 to the record of the earth's obliquity. TWEAQ yields an age of 127,000 years for termination II and 728,000 years for the Brunhes-Matuyama reversal. Spectral analysis of the δ18O record dated by TWEAQ indicates that 30% of the variance of the ice volume record can be ascribed to linear forcing by the earth's orbital parameters, but the trend of the data is consistent with a stochastic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号