首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 828 毫秒
1.
GPS/GLONASS卫星钟差联合估计过程中,由于GLONASS系统采用频分多址技术区分卫星信号,因而会产生频率间偏差(IFB)[1]。本文在GPS/GLONASS卫星定轨过程中的IFB参数特性分析的基础上,引入IFB参数,实现顾及频率间偏差的GPS/GLONASS卫星钟差实时估计。同时,为解决实时估计中待估参数过多导致的实时性较弱等问题,基于非差伪距观测值和历元间差分相位观测值改进实时估计数学模型,实现多系统卫星钟差的联合快速估计。结果表明:GPS/GLONASS联合估计时需引入IFB参数并优化其估计策略,采用MGEX和iGMAS跟踪站的实测数据进行实时钟差解算,快速估计方法可实现1.6 s逐历元快速、高精度估计,与GBM提供的最终精密卫星钟差相比,GPS卫星钟差实时精度约为0.210 ns,GLONASS卫星约为0.298 ns。  相似文献   

2.
采用频分多址技术(FDMA),GLONASS系统双差模糊度固定存在两个问题:不同卫星波长不一致,双差后不能保持模糊度整数特性;共视卫星频率不同,不同卫星之间存在大小不同的频间偏差(IFB)。传统的双差不能很好处理GLONASS相对定位模糊度固定问题。文中考虑将双差所涉及的两颗卫星的站间单差模糊度分别求解,不受共视卫星波长不一致的影响。同时采用参数估计法消除不同厂商接收机的频间偏差影响。试验结果表明采用文中方法可以正确固定GLONASS模糊度,并且达到与GPS相当的解算精度,GPS/GLONASS组合定位精度和可靠性也比GPS单系统有所提高。  相似文献   

3.
用遗传算法搜索GPS单频单历元整周模糊度   总被引:10,自引:2,他引:10  
介绍了短基线利用单频单历元双差载波相位定位时模糊度固定的基本理论,探讨了利用遗传算法快速搜索GPS单频单历元整周模糊度的一些理论和实现的方法.提出了用改进的正则化方法改善浮动解来提高搜索成功率的新思路。算例分析表明,在一定的条件下.应用遗传算法搜索整周模糊度成功率高、稳键性较好。  相似文献   

4.
针对GLONASS的双差模糊度失去整周特性以及附加模糊度参数的卡尔曼滤波模型,该文提出了一种基于站间单差模糊度分别求解的方法和一种能够在实时动态定位中获得卡尔曼滤波参数的方法,从而实现了BDS/GLONASS双系统联合实时动态差分(RTK)定位。对在石家庄采集的BDS三频与GLONASS双频短基线数据进行了解算,并对比分析了其他定位模式的结果。实验表明,该方法能够正确固定GLONASS模糊度,其单频和双频的模糊度固定率分别为91.2%、99.6%。GLONASS的定位精度与BDS相当。BDS/GLONASS组合定位精度和稳定性相较于单系统也有所改善,其中BDS三频+GLONASS双频的定位精度最高,总体精度为2.22 cm。频率增加缩短了初始化时间,为实现单历元获得固定解提供了可能性。  相似文献   

5.
针对单历元RTK定位中受到卫星升起、周跳频发等外界条件干扰时,整周模糊度长时间不能固定,严重影响RTK定位实时精度的问题。文中提出一种用载波相位约束整周模糊度的方法来提高模糊度固定率、Ratio值和解算精度,并且结合GPS单系统、GPS/GLONASS双系统两组实测数据进行未加入和加入载波相位约束整周模糊度的比较实验。结果表明该方法可行。  相似文献   

6.
段举举  沈云中 《测绘学报》2012,41(6):825-830
论文介绍了GPS/GLONASS组合静态相位相对定位模型,将GLONASS双差观测方程的模糊度参数表示成参考卫星的单差模糊度和双差模糊度参数;用误差分析法证明了单差模糊度按实参数估计不影响基线解算精度,而GLONASS双差模糊度必须按整参数进行解算;用Helmert方差分量估计确定GPS和GLONASS观测值的合理权比。实际观测数据处理结果表明:GPS/GLONASS组合定位较单一系统解算的基线精度均有提高,尤其比GLONASS单系统的解算精度有显著提高,比GPS单系统的精度也有适当提高,其中单历元基线解算精度约提高了10%,当单一系统的可用卫星数少于4颗时,GPS/GLONASS组合定位更具有应用价值。  相似文献   

7.
北斗三号多频相位模糊度无几何单历元固定方法   总被引:2,自引:1,他引:2  
章浙涛  李博峰  何秀凤 《测绘学报》1957,49(9):1139-1148
北斗三号全球卫星导航系统目前已提供5个频率的观测数据,因此理论上可进行多频相位模糊度解算(MCAR)。本文系统研究了MCAR的基本理论和方法,包括三频(TCAR)、四频(FCAR)和五频(FiCAR)相位模糊度固定。首先,从线性组合角度出发,给出了TCAR、FCAR和FiCAR方法在内的基本数学模型。其次,探讨了高质量信号及在不同基线长度条件下的最优线性组合。此外,分析了利用无几何模型单历元模糊度固定的常用方法。最后,利用实测北斗三号五频观测数据进行了试验。结果表明,MCAR可有效进行单历元模糊度固定,同时频率数增加可显著提高模糊度固定成功率。  相似文献   

8.
GLONASS伪距频间偏差难以利用经验模型消除。在RTK定位解算中,尤其是需顾及大气延迟的中长距离异质基线,IFCB会降低模糊度收敛速度,甚至导致模糊度固定错误。本文基于双差HMW组合和消电离层组合,提出一种站间IFCB实时估计算法,实时获取各频段的非组合站间单差IFCB。试验结果表明,站间IFCB长期稳定,可达数个纳秒;在GPS/GLONASS观测值先验误差比值为3:5的条件下,未改正的IFCB可能导致基线GPS/GLONASS组合RTK定位性能比单GPS差。将本文提出算法应用于RTK定位,能够有效消除IFCB的影响,RTK模糊度浮点解精度、定位收敛速度和固定率都有明显改善,部分基线的RTK定位首次固定时间从9.2 s提高到2.1 s,固定解比率从84.5%提高到97.9%。  相似文献   

9.
研究了一种适合变形监测的考虑随机模型精化的单频单历元算法。分析了单频单历元相位双差观测方程法矩阵的特性;基于吉洪诺夫正则化方法,将秩亏的法方程由秩亏变为满秩,得到模糊度的浮动解及其相应的均方误差矩阵,结合LAMBDA方法可准确地固定模糊度,得到基线向量的单历元解;给出了实时权的计算公式,用实时权代替固定权,提高了解算模糊度的成功率。通过一个3km长的基线算例说明算法的效果。  相似文献   

10.
在进行GPS/GLONASS联合卫星钟差估计时,GLONASS码频间偏差(inter-frequency bias,IFB)因卫星频率间的差异而无法被测站接收机钟差参数吸收,其一部分将进入GLONASS卫星钟差估值中。通过引入多个"时频偏差"参数(inter-system and inter-frequency bias,ISFB)及附加基准约束对测站GLONASS码IFB进行函数模型补偿,实现其与待估卫星钟差参数的有效分离,并对所估计实时卫星钟差和实时精度单点定位(real-time precise point positioning,RT-PPP)进行精度评估。结果表明,在卫星钟差估计观测方程中忽略码IFB,会明显降低GLONASS卫星钟差估值精度;新方法能有效避免码IFB对卫星钟差估值的影响,所获得GPS、GLONASS卫星钟差与ESA(European Space Agency)事后精密钟差产品偏差平均均方根值分别小于0.2 ns、0.3 ns。利用实时估计卫星钟差进行静态RT-PPP,当观测时段长为2 h时,GPS单系统、GPS/GLONASS组合系统的3D定位精度优于10 cm,GLONASS单系统3D定位精度约为15 cm;三种模式24 h单天解的3D定位精度均优于5 cm。  相似文献   

11.
The carrier phase inter-frequency bias (IFB) of GLONASS between receivers of different types is usually not zero. This bias must be estimated and removed in data processing so that the integer double difference (DD) ambiguities can be fixed successfully. Recently, the particle filter approach has been proposed to estimate the IFB rate in real time. In this approach, the IFB rate samples are first generated and used to correct the phase IFB in the GLONASS observations. Then, the weights of the rate samples are updated with a function related to RATIO which is for ambiguity acceptance testing in integer ambiguity resolution. Afterwards, the IFB rate is estimated according to the weighted particles. This approach can estimate IFB accurately with short convergence time and without prior information. However, when the system noise is set too low, the estimated results are unstable due to the serious problem of particle diversity-loss, even though the system model is accurate. Additionally, the computational burden is dependent on the number of particles, which has to be optimized for the computation at hand. Therefore, this study proposes two improvements for the IFB estimation in regard to the above two aspects. The first improvement is to solve the noise setting problem by employing a regularized particle filter (RPF). The second improvement optimizes the number of particles in the resampling step according to the standard deviation (STD) of the weighted particles via a controlling function. The two improvements result in significantly better performances. The regularization method allows for the system noise to be set as zero without disturbing the estimates, and consequently, more precise estimates can be achieved. In addition, the approach using the controlling function for adapting the number of particles has comparable performance in precision but the computation load is largely reduced.  相似文献   

12.
Yao  Yibin  Hu  Mingxian  Xu  Xiayan  He  Yadong 《GPS Solutions》2017,21(4):1871-1882
GPS Solutions - GLONASS double-differenced (DD) ambiguity resolution is hindered by the inter-frequency bias (IFB) in GLONASS observation. We propose a new algorithm for IFB rate estimation to...  相似文献   

13.
格洛纳斯(Global Navigation Satellite System,GLONASS)采用了频分多址技术,接收机在接收不同卫星信号时会产生频间偏差,阻碍了GLONASS长基线模糊度固定,限制了其定位定轨的精度。提出了一种新的GLONASS模糊度固定方法。该方法基于全球电离层格网产品,根据频间偏差率的变化范围,采用搜索的方法和线性模型去除相位频间偏差对宽窄巷模糊度的影响,实现了GLONASS无电离层组合模糊度固定。利用平均基线长度为763 km的全球卫星导航系统(Global Navigation Satellite System,GNSS)服务站实验网数据对该方法进行分析,结果表明:连续30 d内,模糊度固定成功率最高为95.4%,最低为88.8%,平均为93.45%;模糊度固定后,北(north,N)、东(east,E)、高(up,U)各分量重复性和均方根误差(root mean square er-ror,RMSE)值均得到不同程度的改善,E分量重复性和RMSE值分别改善了20%和14%,改善效果最为明显。  相似文献   

14.
GNSS single-epoch real-time kinematic (RTK) positioning depends on correct ambiguity resolution. If the number of observed satellites in a single epoch is insufficient, which often happens with a standalone GNSS system, the ambiguity resolution is difficult to achieve. China’s BeiDou Navigation Satellite System has been providing continuous passive positioning, navigation and timing services since December 27, 2012, covering China and the surrounding area. This new system will increase the number of satellites in view and will have a significant effect on successful ambiguity resolution. Since the BeiDou system is similar to GPS, the procedure of data processing is easier than that for the Russian GLONASS system. We briefly introduce the time and the coordinate system of BeiDou and also the BeiDou satellite visibility in China, followed by the discussion on the combined GPS/BeiDou single-epoch algorithm. Experiments were conducted and are presented here, in which the GPS/BeiDou dual-frequency static data were collected in Wuhan with the baseline distance varying from 5 to 13 km, and processed in separate and combined modes. The results indicate that, compared to a standalone GPS or BeiDou system, the combined GNSS system can increase the successful ambiguity fixing rate for single epochs and can also improve the precision of short baselines determination.  相似文献   

15.
An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK   总被引:16,自引:9,他引:7  
A user of heterogeneous GPS and GLONASS receiver pairs in differential positioning mode will experience ambiguity fixing challenges due to the presence of inter-channel biases. These biases cannot be canceled by differencing GLONASS observations, whether pseudorange or carrier phase. Fortunately, pre-calibration of GLONASS pseudorange and carrier phase observations can make ambiguity fixing for GPS/GLONASS positioning much easier. We propose an effective algorithm that transforms an RTK (real-time kinematic) solution in a mixed receiver baseline from a float to a fixed ambiguity solution. Carrier phase and code inter-channel biases are estimated from a zero baseline. Then, GLONASS both carrier phase and code observations are corrected accordingly. The results show that a mixed baseline can be transformed from a float (~100 %) to a fixed (more than 92 %) solution.  相似文献   

16.
Rapid PPP ambiguity resolution using GPS+GLONASS observations   总被引:1,自引:1,他引:0  
Integer ambiguity resolution (IAR) in precise point positioning (PPP) using GPS observations has been well studied. The main challenge remaining is that the first ambiguity fixing takes about 30 min. This paper presents improvements made using GPS+GLONASS observations, especially improvements in the initial fixing time and correct fixing rate compared with GPS-only solutions. As a result of the frequency division multiple access strategy of GLONASS, there are two obstacles to GLONASS PPP-IAR: first and most importantly, there is distinct code inter-frequency bias (IFB) between satellites, and second, simultaneously observed satellites have different wavelengths. To overcome the problem resulting from GLONASS code IFB, we used a network of homogeneous receivers for GLONASS wide-lane fractional cycle bias (FCB) estimation and wide-lane ambiguity resolution. The integer satellite clock of the GPS and GLONASS was then estimated with the wide-lane FCB products. The effect of the different wavelengths on FCB estimation and PPP-IAR is discussed in detail. We used a 21-day data set of 67 stations, where data from 26 stations were processed to generate satellite wide-lane FCBs and integer clocks and the other 41 stations were selected as users to perform PPP-IAR. We found that GLONASS FCB estimates are qualitatively similar to GPS FCB estimates. Generally, 98.8% of a posteriori residuals of wide-lane ambiguities are within \(\pm 0.25\) cycles for GPS, and 96.6% for GLONASS. Meanwhile, 94.5 and 94.4% of narrow-lane residuals are within 0.1 cycles for GPS and GLONASS, respectively. For a critical value of 2.0, the correct fixing rate for kinematic PPP is only 75.2% for GPS alone and as large as 98.8% for GPS+GLONASS. The fixing percentage for GPS alone is only 11.70 and 46.80% within 5 and 10 min, respectively, and improves to 73.71 and 95.83% when adding GLONASS. Adding GLONASS thus improves the fixing percentage significantly for a short time span. We also used global ionosphere maps (GIMs) to assist the wide-lane carrier-phase combination to directly fix the wide-lane ambiguity. Employing this method, the effect of the code IFB is eliminated and numerical results show that GLONASS FCB estimation can be performed across heterogeneous receivers. However, because of the relatively low accuracy of GIMs, the fixing percentage of GIM-aided GPS+GLONASS PPP ambiguity resolution is very low. We expect better GIM accuracy to enable rapid GPS+GLONASS PPP-IAR with heterogeneous receivers.  相似文献   

17.
Integer ambiguity resolution (IAR) appreciably improves the position accuracy and shortens the convergence time of precise point positioning (PPP). However, while many studies are limited to GPS, there is a need to investigate the performance of GLONASS PPP ambiguity resolution. Unfortunately, because of the frequency-division multiple-access strategy of GLONASS, GLONASS PPP IAR faces two obstacles. First, simultaneously observed satellites operate at different wavelengths. Second and most importantly, distinct inter-frequency bias (IFB) exists between different satellites. For the former, we adopt an undifferenced method for uncalibrated phase delay (UPD) estimation and proposed an undifferenced PPP IAR strategy. We select a set of homogeneous receivers with identical receiver IFB to perform UPD estimation and PPP IAR. The code and carrier phase IFBs can be absorbed by satellite wide-lane and narrow-lane UPDs, respectively, which is in turn consistent with PPP IAR using the same type of receivers. In order to verify the method, we used 50 stations to generate satellite UPDs and another 12 stations selected as users to perform PPP IAR. We found that the GLONASS satellite UPDs are stable in time and space and can be estimated with high accuracy and reliability. After applying UPD correction, 91 % of wide-lane ambiguities and 99 % of narrow-lane ambiguities are within (?0.15, +0.15) cycles of the nearest integer. After ambiguity resolution, the 2-hour static PPP accuracy improves from (0.66, 1.42, 1.55) cm to (0.38, 0.39, 1.39) cm for the north, east, and up components, respectively.  相似文献   

18.
针对在城市峡谷环境下观测卫星较少、观测质量差和周跳频繁,导致动对动定位过程中双差模糊度不连续的问题,提出了一种GPS/BDS组合系统的单历元模糊度解算方法。通过GPS/BDS组合定位提高了卫星的可用数量,利用单历元模糊度固定减弱了周跳频繁带来的影响。实验采用GPS/BDS组合的7组数据,分析了在不同高度角下动对动定位单历元解的模糊度固定率、解算失败率、粗差率和定位精度。结果表明,GPS/BDS组合动对动定位单历元模糊度解算方法,在高遮挡的城市峡谷环境仍然可以取得较好的定位结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号