首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
作者系统地进行了Tl—Ga—S三元系的合成实验研究。在300℃等温面上,发现了四个新相,Tl_4GaS_5为三元纯相,Ⅰ、Ⅱ、Ⅲ为固溶体相区,其成分变化范围分别是:(Ⅰ)Tl_(20)GaS_(16)—Tl_(20)Ga_2S_(17),(Ⅱ)Tl_(10)Ga_6S_(17)—Tl_5Ga_3S_7,(Ⅲ)Tl_2Ga_2S_5—TlGaS_2。此外,在630—900℃还存在一个成分为TlGa_5S_8—Tl_2Ga_(10)S_(11)的固溶体相。对这些新相均进行了X-射线粉晶衍射、光性及某些物性测试。X-射线粉晶衍射数据已进行了指标化。  相似文献   

2.
本文用抽真空石英管在干体系中对Tl-Ge-S三元系在300℃等温切面相关系和沿Tl_2-GeS_2及Tl_2-GeS变温切面假二元系相平衡进行了实验研究。 Tl-Ge-S三元系在300℃为三个液相区与三个二元相、八个三元相(包括三个固溶体)和十四个两相区、二十四个三相区稳定共存的复杂相关系。本实验首次合成了三个三元相(Tl_2Ge_(1-x)S_2、Tl_5Ge_(13)S_(24)、TlGe_3S_5)和三个固溶体相,即S·S·a(Tl_2~+Ge~(4+)S_3~Tl_2~+Ge_2~(2+)S_3)、S·S·b(Tl~+Ge_(0.5)~(2+)Ge_(0.5)~(4+)S_2~Tl~+Ge_3~(2+)S_4),S·S·c(Tl~+Ge_2~(2+)S_3~Tl_2~+Ge_5S_6)。  相似文献   

3.
本文用抽空石英管法对三元硫化物体系Ag_2S-Cu_2S-PbS和Ag_2S-Cu_2S-Bi_2S_3在500℃的相图进行了研究。 Ag_2S-Cu_2S-PbS体系500℃相关系,受方铅矿和固溶体f.c.c.(Ag_xCu_(2-x)S)、b.c.c.(Cu_xAg_(2-x)S)所控制。在接近PbS-Cu_2S连线处有一液相区。随温度下降,方铅矿可与Cu_2-Ag_2S二元系上所有各相平衡共存。 Ag_2S-Cu_2S-Bi_2S_3体系在500℃时则包含六个固溶体,即块硫铋银矿、铜银铅铋矿、杂硫铋银矿、硫铋铜矿、CuBi_3S_5、Cu_3Bi_5S_9和新合成“C”(Ag_(1.1)Cu_(4.8)Bi_(5.8)S_(12))。最令人感兴趣的是无铜、无铅的铜银铅铋矿(Ag_2Bi_4S_7)合成成功。 以上二个三元系中矿物稳定性及共生关系也根据相图研究结果进行了讨论。  相似文献   

4.
对Cu-Mo-Sn-S四元系500-640℃的相关系进行研究,并对相关的Cu-Sn-S三元系做了进一步研究与测定。实验表明,500℃时Cu-Sn-S系的稳定的三元化合物有Cu_4SnS_4、Cu_4SnS_6(或Cu_(9.75)Sn_(2.17)S_(13))、Cu_5Sn_2S_7(或Cu_(4.90)Sn_2S_(7.01))、Cu_2SnS_3和Cu_2Sn_3S_7(或Cu_2Sn_(3.26)S_(7.51))。这些三元化合物,除Cu_4SnS_4外,都与硫形成双变关系。 Cu-Mo-Sn-S四元系在500℃时相关系主要表现为MoS_2与Cu_4SnS_6、Cu_5Sn_2S_7、Cu_2SnS_3和Cu_2Sn_3S_7等各相的双变关系,以及金属与Cu_4SnS_4、Cu_5Sn_2S_7、Cu_2SnS_3和Cu_2Sn_3S_7的双变关系。 以不同起始原料,不同温度和方法合成Cu-Mo-Sn-S四元系中唯一的四元化合物——硫钼锡铜矿未获得成功。  相似文献   

5.
对Li_2O-(Mg、Zn、Ni)O-V_2O_5三元体系在500—800℃相图的研究表明,在每个系统内部都出现了一个依端员组分摩尔比为1:2:1的化合物。即橄榄石型的LiMgVO_4,硅铍石型的LiZnVO_4和尖晶石型的LiNiVO_4。不同的是,Li_2O-MgO-V_2O_5中发现了第二个三元相和一个固溶体。LiO_2-NiO-V_2O_6中得出一个固溶体,而LiZnNO_4中未得固溶体。  相似文献   

6.
对Ag_2S-Bi_2S_3体系相图重新测定发现,硫铋银矿温度稳定范围是从室温直到其熔点773±5℃。在二元体系Ag_2S-Bi_2S_3内,硫铋银矿有一狭窄的固溶体区,在600℃时其组分变化范围是50.0+—54mol%Bi_2S_3,500℃时是50.0+—53.5mol%Bi_2S_3,400℃时是50.0+—52.5mol%Bi_2S_3。与此同时,α-AgBiS_2是在高于195±5℃富Ag_2S条件下稳定,低于此温度,转变为硫铋银矿。α-AgBiS_2在600℃时,其组分变化范围为46.5—50.0mol%Bi_2S_3,500℃时为47.0—50.0mol%Bi_2S_3,400℃时为48.0—50.0mol%Bi_2S_3。铜银铅铋矿纯银端元Ag_2Bi_4S_7最高稳定温度是697±5℃。高于此温度,转变为硫铋银矿和液相。块硫铋银矿(AgBi_3S_5)为同成分熔化,其熔点为745±5℃。  相似文献   

7.
本文用抽空石英管法对三元硫化物体系Ag_2S-PbS-Bi_2S_3和Cu_2S-PbS-Bi_2S_2的500℃相关系进行了研究。Cu_2S-PbS-Bi_2S_3体系的相图特征是Bi_2S_3-CuPbBiS_3。之间完全固溶关系,以及它与二元系Cu_2S-Bi_2S_3和PbS-Bi_2S_3各相之间双变关系。Ag_2S-PbS-Bi_2S_3体系相图被PbS-AgBi_S_2之间的完全固溶关系分成两部分:富铋与富银。富银部分仅有辉银矿与PbS-AgBiS_2固溶体之间简单双变关系,而富铋部分却包含丰富的银、铅铋硫盐。在抽空石英管法500℃下合成成功的有块硫铋银矿固溶体、铜银铅铋矿、硫铋铅矿固溶体、富硫铋铅矿和辉铅铋矿。 以上两个体系中矿物之间共生长关系及稳定范围也作了简短讨论。  相似文献   

8.
用合成和天然样品对硫尖晶石序列硫镍矿(Ni_3S_4)—紫硫镍矿(FeNi_2S_4)—胶黄铁矿(Fe_3S_4),特别是其中间组分〔“紫硫镍矿”(Fe,Ni)_3S_4〕的晶体化学和矿物性质进行了研究。在Ni_3S_4—FeNi_2S_4序列中,随着Fe含量增加,其热稳定性增大,晶胞参数a近似呈线性减小,反射率增大(波长为859nm时,反射谱线则表现出更复杂的变化。当成分在Fe_0.25Ni_2.75S_4—FeNi_2S_4之间时,其穆斯堡尔谱基本由双峰组成,同质异能位移和四极分裂值皆很小,并且前者还随Fe的增加而减小(0.23~0.35mm/sec)。我们认为,这是由于八面体位中Fe~(2+)处于低自旋状态所致。对谱线的进一步考察表明,在四面体中可能有铁存在(~18%)。这些数据与以前提出的硫尖晶石成键模型相吻合。虽然对天然样品的电子探针分析表明,从Ni_3S_4到Fe_3S_4,存在有完全固溶体,但成键模型表明,如果Fe含量超过FeNi_2S_4组分,则会变为亚稳相。这种可能的亚稳组分的形成和对成分相应于Fe_3S_4、贫硫达1—2%的紫硫镍矿的观察,以及与紫硫镍矿有关的低温相的不确定性,都可解释为是由于紫硫镍矿为原生矿物(镍黄铁矿)的变生矿物所致。因此,这种矿物在自然界中的形成,反应机制和动力学因素起着决定作用。  相似文献   

9.
吴大清 《矿物学报》1989,9(3):232-240
用抽空石英管法研究以Fe_(0·96) Sb_(2·04) S_(4·12)为投影顶点,8×(PbS-SnS-SnS_2)为投影平面的Pb-Sn-Fe-Sb-S体系的相图表明,由于Pb(?)Sn~(2+)之间互相取代,500℃时辉锑锡铅矿固溶体中Sn~(2+)变化范围(以单位分子式11个金属原子总数为计量)是0—4.8个原子,400℃时则为0—4.0个原子。同时,Sn~(4+)变化范围是1.3—2.3个原子和1.5—2.1个原子。圆柱锡矿固溶体变化范围较小。500℃时Sn~(2+)变化范围是0.4—1.8个原子,400℃时为0.5—1.7。Sn~(+4)变化范围则分别为3.2—4.2个原子和3.3—4.2个原子。变更Fe含量(0.81—1.09)及Sb含量(1.83—2.29)进行的几组合成实验表明,上述两个矿物中Fe、Sb含量变化范围很小,不超过±0.15个原子。辉锑锡铅矿固溶体可与方铅矿、块硫锑铅矿、针硫锑铅矿、硫锡铅矿、硫锡矿、圆柱锡矿等形成平衡结线。而圆柱锡矿不与方铅矿、硫锡矿、硫锡铅矿形成平衡结线,但可与辉锑矿、SnS_2及上述其他矿物形成平衡结线。结合锡的硫化物及氧化物(锡石)热力学稳定场计算表明,在本体系内辉锑锡铅矿在300℃时稳定区的硫活度在lga_(s2)=-20(atm)附近,氧活度小于lga_(o2)=-40(atm),而圆柱锡矿稳定区硫活度大于lga_(s2)=-10(atm)。  相似文献   

10.
作者在辉锑锡铅矿-硫锑锡铁铅矿-potosiite以及圆柱锡矿两个固溶体系列的实验研究基础上,合成出铅全部被二价锡取代生成的无铅端员——无铅辉锑锡铅矿和无铅圆柱锡矿。并进一步在Fe-Sn-Sb-S体系内确定了第三个相——含铁、锑的斜方硫锡矿固溶体相的存在。无铅辉锑锡铅矿和无铅圆柱锡矿作为纯相只能在高温下被合成。铁锑斜方硫锡矿虽然也可以在600℃被合成,但在500℃以下,它在更广泛的范围内存在。文章也涉及到无铅的SnS-SnS_2-FeSb_2S_4假三元系内相的关系,即600℃时所观察到的随四价锡增加而依次出现的相及相的共生。  相似文献   

11.
Pant-y-ffynnon Quarry in South Wales yielded a rich cache of fossils in the early 1950s, including articulated specimens of new species (the small sauropodomorph dinosaur Pantydraco caducus and the crocodylomorph Terrestrisuchus gracilis), but no substantial study of the wider fauna of the Pant-y-ffynnon fissure systems has been published. Here, our overview of existing specimens, a few described but mostly undescribed, as well as freshly processed material, provides a comprehensive picture of the Pant-y-ffynnon palaeo-island of the Late Triassic. This was an island with a relatively impoverished fauna dominated by small clevosaurs (rhynchocephalians), including a new species, Clevosaurus cambrica, described here from a partially articulated specimen and isolated bones. The new species has a dental morphology that is intermediate between the Late Triassic Clevosaurus hudsoni, from Cromhall Quarry to the east, and the younger C. convallis from Pant Quarry to the west, suggesting adaptive radiation of clevosaurs in the palaeo-archipelago. The larger reptiles on the palaeo-island do not exceed 1.5?m in length, including a small carnivorous crocodylomorph, Terrestrisuchus, and a possible example of insular dwarfism in the basal dinosaur Pantydraco.  相似文献   

12.
Lithostratigraphy, physicochemical stratigraphy, biostratigraphy, and geochronology of the 77–70 Ma old series bracketing the Campanian–Maastrichtian boundary have been investigated by 70 experts. For the first time, direct relationships between macro- and microfossils have been established, as well as direct and indirect relationships between chemo-physical and biostratigraphical tools. A combination of criteria for selecting the boundary level, duration estimates, uncertainties on durations and on the location of biohorizons have been considered; new chronostratigraphic units are proposed. The geological site at Tercis is accepted by the Commission on Stratigraphy as the international reference for the stratigraphy of the studied interval. To cite this article: G.S. Odin, C. R. Geoscience 334 (2002) 409–414.  相似文献   

13.
Robert L. Linnen   《Lithos》2005,80(1-4):267-280
The solubilities of columbite, tantalite, wolframite, rutile, zircon and hafnon were determined as a function of the water contents in peralkaline and subaluminous granite melts. All experiments were conducted at 1035 °C and 2 kbar and the water contents of the melts ranged from nominally dry to approximately 6 wt.% H2O. Accessory phase solubilities are not affected by the water content of the peralkaline melt. By contrast, solubilities are affected by the water content of the subaluminous melt, where the solubilities of all the accessory phases examined increase with the water content of the melt, up to 2 wt.% H2O. At higher water contents, solubilities are nearly constant. It can be concluded that water is not an important control of accessory phase solubility, although the water content will affect diffusivities of components in the melt, thus whether or not accessory phases will be present as restite material. The solubility behaviour in the subaluminous and peralkaline melts supports previous spectroscopic studies, which have observed differences in the coordination of high field strength elements in dry vs. wet subaluminous granitic glasses, but not for peralkaline granitic glasses. Lastly, the fact that wolframite solubility increases with increasing water content in the subaluminous melt suggests that tungsten dissolved as a hexavalent species.  相似文献   

14.
Some olistolites reworked in a Tertiary flysch of Mount Parnon (Peloponnesus, Greece) exhibit a Late Permian assemblage, dominated by Paradunbarula (Shindella) shindensis, Hemigordiopsis cf. luquensis and Colaniella aff. minima. This association corresponds to the Late Wuchiapingian (=Late Dzhulfian), a substage whose algae and foraminifera are generally little known. Contemporaneous limestones crop out in the middle part of the Episkopi Formation in Hydra, but they are rather commonly reworked in Mesozoic and Cainozoic sequences. The palaeobiogeographical affinities shared by the foraminiferal markers of Greece, southeastern Pamir, and southern China, are very strong (up to the specific level), and are congruent with the Pangea B reconstructions. To cite this article: E. Skourtsos et al., C. R. Geoscience 334 (2002) 925–931.  相似文献   

15.
PALEONTOLOGY     
正20141596 Liu Yunhuan(School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,China);Shao Tiequan Early Cambrian Quadrapyrgites Fossils of Xixiang Boita in Southern Shaanxi Province(Journal of Earth Sciences and Environment,ISSN1672-6561,CN61-1423/P,35(3),2013,p.39-43,3 illus.,20 refs.)  相似文献   

16.
正20141719 Chen Zhijun(State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China);Chen Jianguo Automated Batch Mapping Solution for Serial Maps:A Case Study of Exploration Geochemistry Maps(Journal of Geology,ISSN1674-3636,CN32-1796/P,37(3),2013,p.456-464,2 illus.,2 tables,10 refs.)  相似文献   

17.
正20140962 Chen Fenning(Xi’an Institute of Geology and Mineral Resources,Xi’an710054,China);Chen Ruiming Late Miocene-Early Pleistocene Ostracoda Fauna of Gyirong Basin,Southern Tibet(Acta Geologica Sinica,ISSN0001-5717,CN11-1951/P,87(6),2013,p.872-886,6illus.,56refs.)  相似文献   

18.
PETROLOGY     
正1.IGNEOUS PETROLOGY20142008Cai Jinhui(Wuhan Center,China Geological Survey,Wuhan 430205,China);Liu Wei Zircon U-Pb Geochronology and Mineralization Significance of Granodiorites from Fuzichong Pb-Zn Deposit,Guangxi,South China(Geology and Mineral Resources of South China,ISSN1007-3701,CN42-1417/P,29(4),2013,p.271-281,7illus.,  相似文献   

19.
正20141205Cheng Weiming(State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,CAS,Beijing 100101,China);Xia Yao Regional Hazard Assessment of Disaster Environment for Debris Flows:Taking Jundu Mountain,Beijing as an  相似文献   

20.
正20141266Fan Chaoyan(Guangdong Provincial Key Laboratory of Mineral Resources and Geological Processes,Guangzhou 510275,China);Wang Zhenghai On Error Analysis and Correction Method of Measured Strata Section with Wire Projection Method(Journal of  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号