首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
The observations of active region (AR) NOAA 10792 in the Ca II 8498 ? line with an ATB-1 solar telescope at the Sternberg State Astronomical Institute, Moscow State University (SSAI MSU) on July 30, 2005, are illustrated, and the events are analyzed using the data obtained on spacecraft. Three flares and accompanying coronal mass ejections (CMEs) are considered. It has been indicated that the beginning of the first compact CME lagged behind the flare onset by 3 min. Plasma ascended with acceleration that reached 0.4 km/s2 at the flare maximum. The matter was also apparently accelerated after the flare maximum, since an ejection could only appear at the edge of the occulting C 2 LASCO coronograph disk at 0557 UT when acceleration is about 0.5 km/s2. The second CME (of the halo type) leaded the beginning of the corresponding flare.  相似文献   

2.
The SOHO observations with LASCO and EIT present an ideal opportunity to study the relationship between prominence eruptions and coronal mass ejections (CME). High-cadence measurements of prominence eruptions demonstrate that the prominence eruption is not generally the cause of the associated CME, but that it is more probable that the destabilisation of the CME in fact releases the constraints on the prominence, causing it to erupt. We report here selected observations of associated CMEs and prominence eruptions covering the period of SOHO operations from mid-January 1996 to October 1999. In addition to the causality, we find that in general the projected speed of the prominence eruption matches fairly closely the projected speed of the associated CME, but it is always lower. Furthermore, the prominence eruption is generally simply one facet of the coronal transient activity, of which there are often several other discrete parts. The prominence eruption is also generally offset in heliolatitude from the centre of the CME.  相似文献   

3.
Statistical analysis is performed for the relationship of coronal mass ejections (CMEs) and X-ray flares with the fluxes of solar protons with energies >10 and >100 MeV observed near the Earth. The basis for this analysis was the events that took place in 1976–2015, for which there are reliable observations of X-ray flares on GOES satellites and CME observations with SOHO/LASCO coronagraphs. A fairly good correlation has been revealed between the magnitude of proton enhancements and the power and duration of flares, as well as the initial CME speed. The statistics do not give a clear advantage either to CMEs or the flares concerning their relation with proton events, but the characteristics of the flares and ejections complement each other well and are reasonable to use together in the forecast models. Numerical dependences are obtained that allow estimation of the proton fluxes to the Earth expected from solar observations; possibilities for improving the model are discussed.  相似文献   

4.
Correlation between the parameters of coronal mass ejections (CMEs) that are detected on the LASCO coronographs and are associated with eruptive prominences and the distances of CME axes from the coronal streamer belt has been analyzed. The deviations of CME trajectories from the radial direction have been investigated.  相似文献   

5.
结合实地观测和STEREO/HI图像观测分析2010年CME事件   总被引:1,自引:0,他引:1       下载免费PDF全文
本文使用了基于单颗STEREO卫星日球层成像仪(Heliospheric Imager,HI)图像的固定Φ角拟合法(Fixed-Φ,FΦ)和调和均值拟合法(Harmonic-mean,HM),结合STEREO和ACE卫星的太阳风实地观测数据,深入分析了2010年15个日冕物质抛射(CME)事件,对比讨论了这两种方法在提取CME参数如太阳赤道平面的主传播方向、传播速度的效果,其中FΦ拟合法假设CME是固定方向传播的小质点,HM拟合法假设CME为具有球形前沿的通量绳结构,结果发现:(1)使用HM拟合法分析得到的CME主传播方向与太阳-实地观测点的夹角平均值是9.5°,小于FΦ拟合法的19.7°;(2)HM拟合法分析的预计到达时间与实测ICME起始时间的平均误差和最大误差分别为0.282天和0.805天,明显小于FΦ拟合法.本文也使用结合STEREO两颗卫星HI图像的直接三角法(Direct-triangulation,DT)和球面切线法(Tangent-to-a-sphere,TS),深入分析了5个朝向地球的CME事件,其中,DT和FΦ拟合法的假设相同,TS和HM拟合法的假设相同,结果发现:(1)这两种方法分析的CME主传播方向与日地连线的夹角最大值分别是13.2°和21.1°,明显小于单颗卫星观测的20.7°和27.5°;(2)其中4个CME事件使用方法得到的线性拟合加速度不超过0.4 m·s-2,这说明CME在主传播方向上的速度变化在1AU内不超过100 km·s-1;(3)使用TS方法得到的预计到达时间与实测ICME起始时间的绝对误差最小,平均值和最大值分别是2.3 h和5.8 h.可见,利用HI图像提取CME传播参数时,加入CME前沿结构假设和结合多角度观测都能够有效地减小拟合误差.  相似文献   

6.
A relatively simple (in technology) method for separating K- and F-corona brightness based on LASCO data, which makes it possible to obtain the latitude distribution of this brightness in the field of view of the LASCO C2 and C3 coronographs at any instant for which white light corona images are available, has been proposed. It has been estimated that the error in determining K-corona brightness varies from 20 to 50% at distances of R ≤ 6R (R is the solar radius). At distances of R > (5–6)R , the accuracy of the K-corona brightness determination decreases and is of an estimative character. Nevertheless, it is often possible to trace the brightest coronal rays and the K-corona regions of decreased brightness (including such regions in coronal holes) to distances of R ≈ 15R and 25–30R for some events. This makes it possible to estimate and compare electron densities in different coronal structures to large distances. Examples of method testing are presented. For the first time, we have managed to obtain continuous (in latitude) distributions of K- and F-corona brightness, using this method.  相似文献   

7.
基于多视角观测的SEP事件与twin-CME关系研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文联合SOHO和STEREO-A/B(三视角)日冕观测和太阳高能粒子(SEP)观测,分析了2007—2014年间169个快速(速度>900 km·s-1)、宽角度(>60°)日冕物质抛射(CME)及其先行CME和关联SEP事件.通过相关分析,给出了SOHO/EPHIN 25~53MeV及STEREO/HET 23.8~60 MeV能量范围的大SEP事件通量判断阈值,分别为0.01和0.014(cm2·s·sr·MeV)-1.三视角CME观测能有效地避免投影效应产生的twin-CME事件误判,统计得到单一视角确定twin-CME事件的误判率一般低于10%,最高不超过15%.基于三视角判断的twin-CME事件及SEP事件峰值强度,得到判断twin-CME事件的时间阈值最短约为9 h(9~13 h).single-CME产生的SEP事件强度与CME速度、动能的相关性明显高于twin-CME,并且三视角下的相关性结果与单视角类似.结果表明,一个主CME可能存在多个先行CME,依据单卫星观测判断先行CME时有一定的误判几率,但少数单个先行CME的误判并不影响基于单卫星的统计规律或统计结果.  相似文献   

8.
Coronal mass ejections (CMEs) are large-scale magnetized plasma structures ejected from closed magnetic field regions of the Sun. White light coronagraphic observations from ground and space have provided extensive information on CMEs in the outer corona. However, our understanding of the solar origin and early life of CMEs is still in an elementary stage because of lack of adequate observations. Recent space missions such as Yohkoh and Solar and Heliospheric Observatory (SOHO) and ground-based radioheliographs at Nobeyama and Nancay have accumulated a wealth of information on the manifestations of CMEs near the solar surface. We review some of these observations in an attempt to relate them to what we already know about CMEs. Our discussion relies heavily on non-coronagraphic data combined with coronagraphic data. Specifically, we discuss the following aspects of CMEs: (i) coronal dimming and global disk signatures, (ii) non-radial propagation during the early phase, (iii) Photospheric magnetic field changes during CMEs, and (iv) acceleration of fast CMEs. The relative positions and evolution of coronal dimming, arcade formation, prominence eruption will be discussed using specific events. The magnitude and spatial extent of CME acceleration may be an important parameter that distinguishes fast and slow CMEs.  相似文献   

9.
In this paper, we examine the nature of the main source of the sporadic solar wind on the Sun: coronal mass ejections (CMEs). Analysis of data from Mark 3 and Mark 4, the Digital Prominence Monitor (MLSO), and STEREO (EUVI) spacecraft has revealed the existence of two types of CMEs: gradual and impulse. They differ in the place, velocity, and angular size at the instant of their emergence. The source of gradual CMEs is located in the corona, at a distance of 1.1 R 0 < R ≤ 1.7 R 0 from the center of the Sun. They start moving from a state of rest, having an angular size ≈15–65° (in the heliographic coordinate system). Impulse CMEs are probably formed under the Sun’s photosphere. This may be due to the supersonic emergence of magnetic tubes (ropes) from the convective zone. The possibility of this phenomenon has been demonstrated earlier in theory. The radial velocity of such tubes at the photospheric level may be 100 km/s or higher; the minimum angular size is ∼1°.  相似文献   

10.
We describe the world's largest synthesis radio telescope, the Very Large Array (VLA), and how it can be used to complement observations with the Solar and Heliospheric Observatory (SOHO) and the Yohkoh solar spacecraft. The VLA provides images with high spatial and temporal resolution, often across the visible solar disk. The VLA also detects nonthermal radiation that is not observed with SOHO and Yohkoh, and provides estimates for the coronal magnetic field strengths that are not directly measured by these spacecraft. The VLA data can be combined with SOHO CDS, SOHO EIT, or Yohkoh SXT observations to provide new insights to the compact, variable sources, called blinkers and bright points, in the solar transition region or low corona. A new 400 cm VLA system provides images of nonthermal burst activity associated with Coronal Mass Ejections (CMEs), and may detect thermal emission from CMEs, that can be compared with SOHO's LASCO and EIT instruments to obtain new information about the origin and evolution of CMEs.  相似文献   

11.
通过对比两次快速晕状日冕物质抛射(CME)事件,分析相应的日面和行星际的观测资料,发现源区距离冕洞较远的CME引起了极强的太阳高能粒子(Solar Energetic Particle,SEP)事件,而源区非常靠近冕洞的CME则没有引起大的SEP事件.该结果表明,冕洞可能对CME形成SEP事件有阻碍作用.继而分析1997~2003年所有爆发在冕洞边缘的快速晕状CME,发现源区离冕洞距离小于02Rs(太阳半径)的CME均没有引起大的SEP事件.从而进一步证实了冕洞可能对邻近CME形成大SEP事件有影响,它阻碍SEP事件的形成.最后讨论了冕洞阻碍CME形成大SEP事件的可能原因.  相似文献   

12.
The two-position radio sounding of the solar wind by the Galileo and Cassini spacecraft has been first performed. These spacecraft followed the Sun from east to west from May 12 to 24, 2000 and sounded the regions spaced in radial directions by several millions of kilometers. Stable correlation has been revealed between fluctuation effects detected in spatially spaced radio-sounding paths of disturbed plasma structures of the coronal mass ejection (CME) type. The radio effects have been found to correlate also with the data on the solar wind density near the Earth orbit. It has been shown that the two-position radio-sounding method together with the data on solar radiation in the X-ray and optic ranges and with the results of local plasma measurements provides information on the structure and velocity of the propagation of CMEs from the photosphere to the Earth orbit. In the most powerful event recorded on May 13, 2000, the CME velocity at the heliocentric distances of about 15R (R is the solar radius) reached 1200 km/s. At (15–25) R , the velocity was about 1300 km/s. At distances larger than 25R , disturbance was decelerated from 1300 to 450 km/s near the Earth orbit.  相似文献   

13.
Identifying coronal mass ejection (CME) precursors in the solar corona would be an important step in space weather forecasting, as well as a vital key to understanding the physics of CMEs. Twisted magnetic field structures are suspected of being the source of at least some CMEs. These features can appear sigmoid (S or inverse-S) shaped in soft X-ray (SXR) images. We review recent observations of these structures and their relation to CMEs, using SXR data from the Soft X-ray Telescope (SXT) on the Yohkoh satellite, and EUV data from the EUV Imaging Telescope (EIT) on the SOHO satellite. These observations indicate that the pre-eruption sigmoid patterns are more prominent in SXRs than in EUV, and that sigmoid precursors are present in over 50% of CMEs. These findings are important for CME research, and may potentially be a major component to space weather forecasting. So far, however, the studies have been subject to restrictions that will have to be relaxed before sigmoid morphology can be used as a reliable predictive tool. Moreover, some CMEs do not display a SXR sigmoid structure prior to eruption, and some others show no prominent SXR signature of any kind before or during eruption.  相似文献   

14.
Transient large-scale emitting chains and threads, associated with several coronal mass ejections (CMEs), are analyzed by the SOHO/EIT, TRACE, Yohkoh/SXT, Nobeyama Radioheliograph, and some other imaging data. It is illustrated that a pronounced evolution of the chains and threads in the EUV, soft X-ray, microwave, and other ranges can occur many hours both before and after a CME on a considerable part of the solar visible disk, especially near the place of a CME eruption. Such relations between chains and CMEs seem to be plausible due to both phenomena being the consequences of the evolution of large-scale magnetic fields and have often a global character.  相似文献   

15.
The combined observing power of the Yohkoh, SOHO and TRACE spacecraft, along with the continuing ground-based observations has proved invaluable for the detection of changes in the magnetic morphology preceding coronal mass ejections (CMEs). A wide range of activity from small scale dimmings to large scale eruptions covering half the solar disk have been observed. The relationship between flares and CMEs has also become clearer. Rather than one event causing the other it would seem that it is a global change in the magnetic field which causes both. Recently, there has been a lot of interest in the sigmoid (S-shaped) structures seen in soft X-rays. The likelihood of a CME occurring appears to increase if there is a sigmoidal structure observed. This has formed the basis of more extensive studies into predicting the time and location of a CME from the changes in behaviour of features on the solar disk.  相似文献   

16.
White corona images are analyzed based on the calibrated data of the LASCO-C2/SOHO instrument (processing level 1) and the solar wind (SW) parameters with hourly and minute resolutions on the Wind spacecraft. The quasistationary events, excluding coronal mass ejections and their manifestations in SW are studied. It has been indicated that the angular dimensions and relative variations in the density of the streamer belt segments remain almost unchanged over the entire distance from the Sun to the Earth’s orbit. In the Earth’s orbit, the ray structure of the belt streamer manifests itself as sharp (with steep fronts lasting several minutes and less) peaks (of several hours in duration) of the solar wind plasma density with maximal values N max > 10 cm?3.  相似文献   

17.
对自相似扩展(SSE)模型的改进和研究   总被引:1,自引:0,他引:1       下载免费PDF全文
自相似扩展拟合法(Self-Similar Expansion,SSE)假设日冕物质抛射(CME)具有恒定角宽度、沿径向向外传播的、自相似扩展的球形前沿,由日心出发的、与这个球形前沿相切的圆锥的圆锥角就是通常所说的CME角宽度,半角宽度取值范围是[0°,90°],固定Φ角拟合法(Fixed-Φ,FΦ)和调和均值拟合法(Harmonic-mean,HM)分别对应SSE模型的半角宽度为0°和90°的特殊情况.本文中修改后的自相似扩展拟合法(MSSE)假设CME具有自相似扩展的半球形前沿,能够提取的CME参数包括由日心出发的、圆锥截面过球心的圆锥的半圆锥角和CME的主传播方向、传播速度,其中半圆锥角取值范围是[0°,90°],FΦ和HM分别对应MSSE模型的半圆锥角为0°和45°的特殊情况,半圆锥角为90°时,CME前沿是以日心为圆心的半圆.MSSE拟合法扩大了SSE模型对CME前沿形态的描述范围,将半圆锥角作为判断CME是否能够到达、何时到达某颗卫星的重要参数.基于单颗STEREO卫星日球层成像仪(Heliospheric Imager,HI)图像,结合STEREO和ACE卫星的太阳风实地观测数据,本文深入分析了2010年23个CME事件,结果发现:在用于预报CME事件是否能到达某颗卫星、何时到达时,MSSE拟合法相比FΦ、HM和SSE拟合法,不但可以更准确地拟合CME主传播方向和传播速度,也可以缩小预计到达时间和到达速度的误差.  相似文献   

18.
地球弓激波的旋转非对称性   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对太阳风-磁层-电离层系统的全球MHD模拟,研究地球弓激波相对日地连线的旋转非对称性.模拟限于太阳风速度沿日地连线、地球磁偶极矩和行星际磁场(IMF)与日地连线垂直的简单情况.模拟结果表明,即便对于IMF强度为零的情况,弓激波相对日地连线也不具备旋转对称性质:终端面(晨昏子午面)及其向阳侧的弓激波截线的东西宽度大于南北宽度(约9%~11%),终端面尾侧的弓激波截线东西宽度小于南北宽度(约8%).在存在IMF的情况下,弓激波的位形同时受到磁层顶的形状和快磁声波速度各向异性的影响.磁层顶向外扩张并沿IMF方向拉伸,且其扩张和拉伸程度随IMF由北转南而增强.在磁鞘中,垂直于磁场方向的快磁声波速度高于平行方向.因此,磁层顶拉伸方向与快磁声波速度最大方向垂直,它们对弓激波位置的效应恰好相反;弓激波的最终形状取决于何种效应占据主导地位.对于终端面尾侧,快磁声波速度的各向异性起主导作用,弓激波截线沿IMF垂直方向的宽度大于平行方向.对于终端面及其向阳侧,弓激波截线的形状与IMF取向有关:在准北向或晨昏向IMF情况下,弓激波截线沿IMF垂直方向的宽度仍大于平行方向;在准南向IMF情况下,弓激波截线沿IMF垂直方向的宽度小于平行方向的.鉴于弓激波形状同IMF取向之间的密切关系,我们提议以IMF为基准方向,提取弓激波截线的平行半宽度Rb∥和垂直半宽度Rb⊥作为尺度参数.这些尺度参数和通常引入的弓激波截线的东西半宽度yb和南北半宽度zb相比,更为合理地表征了弓激波的几何性质.模拟结果表明,在终端面上,yb/zb和Rb∥/Rb⊥在IMF各向同性取向下的统计平均值均低于1,与观测得到的结论一致.  相似文献   

19.
Two large earthquakes occurred in the western part of China in 2008, one of them being the Yutian (35.6°N, 81.6°E) M7.3 earthquake that occurred on March 21 (BJT) and the other the Wenchuan (31.0°N, 103.4°E) M8.0 earthquake that occurred on May 12 (BJT). In this paper, the West Continental China (included in 20.0°–50.0°N, 70.0°–110.0°E region) was the study region for verifyong the predictability of the pattern informatics (PI) method using the receiver-operating characteristic curve (ROC) test and R score test. Different forecasting maps with different calculating parameters were obtained. The calculating parameters were the grid size Δx, base time t b, reference interval t b to t 1, change interval t 1 to t 2, and forecasting interval t 2 to t 3. In this paper, the base time t b fixed to June 1, 1971, the ending forecast time t 3 fixed to June 1, 2008, and the forecasting interval t 2 to t 3 changed from 1 to 10 years, and the grid sizes were chosen as 1° × 1° and 2° × 2°, respectively. The results show that the PI method could forecast the Yutian M7.3 and Wenchuan M8.0 earthquakes only using suitable parameters. Comparing the forecast results of grid sizes 1° × 1° and 2° × 2°, the models with 2° × 2° grids were better. Comparing the forecast results with different forecasting windows from 1 to 10 years, the models with forecasting windows of 4–8 years were better using the ROC test, and the models with forecasting windows of 7–10 years were better using the R score test. The forecast efficiency of the model with a grid size of 2° × 2° and forecast window of 8 years was the best one using either the ROC test or the R score test.  相似文献   

20.
Simultaneous observations of the slow solar wind off the southeast limb of the Sun were made in May 1999 using optical measurements from the C2 and C3 LASCO coronagraphs on board the SOHO spacecraft and radio-scattering measurements from the MERLIN and EISCAT facilities. The observations show the slow solar wind accelerating outwards from 4.5 solar radii (R), reaching a final velocity of 200–300 km s-1 by 25–30 R. The acceleration profile indicated by these results is more gentle than the average profile seen in earlier LASCO observations of larger scale features, but is within the variation seen in these studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号