首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We investigate the Madden–Julian Oscillation(MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices — the all-season Real-Time multivariate MJO index(RMM) and outgoing longwave radiation-based MJO index(OMI) — are used to compare the MJOrelated ozone anomalies. The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies(mainly within 20–200 h Pa) over the subtropics. The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4–7, when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean. Compared with the results based on RMM, the MJO-related stratospheric column ozone anomalies based on OMI are stronger and one phase ahead. Further analysis suggests that different sampling errors, observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements. The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies,i.e., the uplifted tropopause and the northward shifted westerly jet in the upper troposphere. Compared to the result based on RMM, the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI. Our study indicates that the circulation-based MJO index(RMM) can better characterize the MJOrelated anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere, especially over subtropical East Asia.  相似文献   

2.
Predictions of the Madden?CJulian oscillation (MJO) are assessed using a 10-member ensemble of hindcasts from POAMA, the Australian Bureau of Meteorology coupled ocean?Catmosphere seasonal prediction system. The ensemble of hindcasts was initialised from observed atmosphere and ocean initial conditions on the first of each month during 1980?C2006. The MJO is diagnosed using the Wheeler-Hendon Real-time Multivariate MJO (RMM) index, which involves projection of daily data onto the leading pair of eigenmodes from an analysis of zonal winds at 200 and 850?hPa and outgoing longwave radiation (OLR) averaged about the equator. Forecasts of the two component (RMM1 and RMM2) index are quantitatively compared with observed behaviour derived from NCEP reanalyses and satellite OLR using the bivariate correlation skill, root-mean-square error (RMSE), and measures of the MJO amplitude and phase error. Comparison is also made with a simple vector autoregressive (VAR) prediction model of RMM as a benchmark. Using the full hindcast set, we find that the MJO can be predicted with the POAMA ensemble out to about 21?days as measured by the bivariate correlation exceeding 0.5 and the bivariate RMSE remaining below ~1.4 (which is the value for a climatological forecast). The VAR model, by comparison, drops to a correlation of 0.5 by about 12?days. The prediction limit from POAMA increases by less than 2?days for times when the MJO has large initial amplitude, and has little sensitivity to the initial phase of the MJO. The VAR model, on the other hand, shows a somewhat larger increase in skill for times of strong MJO variability and has greater sensitivity to initial phase, with lower skill for times when MJO convection is developing in the Indian Ocean. The sensitivity to season is, however, greater for POAMA, with maximum skill occurring in the December?CJanuary?CFebruary season and minimum skill in June?CJuly?CAugust. Examination of the MJO amplitudes shows that individual POAMA members have slightly above observed amplitude after a spin-up of about 10?days, whereas examination of the MJO phase error reveals that the model has a consistent tendency to propagate the MJO slightly slower than observed. Finally, an estimate of potential predictability of the MJO in POAMA hindcasts suggests that actual MJO prediction skill may be further improved through continued development of the dynamical prediction system.  相似文献   

3.
国家气候中心MJO监测预测业务产品研发及应用   总被引:2,自引:1,他引:1       下载免费PDF全文
热带大气低频振荡 (MJO) 和北半球夏季季节内振荡 (BSISO) 对全球范围天气气候事件有重要影响,是次季节-季节 (S2S) 预报最主要的可预报性来源之一。国家气候中心 (BCC) 基于我国完全自主的T639全球分析场数据、风云三号气象卫星射出长波辐射 (OLR) 资料以及BCC第2代大气环流模式系统的实时预报,发展了MJO实时监测预测一体化业务技术,建立了ISV/MJO监测预测业务系统 (IMPRESS1.0),已投入实时业务运行,在全国气象业务系统得到应用。该文着重介绍该系统提供的MJO和BSISO指数监测预测数据和图形产品,并描述了这些业务产品在2015年对MJO典型个例的实时监测预测应用情况。监测分析和预报检验表明,基于我国自主资料的监测结果能够较为准确地表征MJO和BSISO指数的振荡和演变过程,该系统对MJO和BSISO事件分别至少具备16 d和10 d左右的预报技巧。因此,基于IMPRESS1.0的MJO/BSISO监测预测一体化业务产品可为制作延伸期预报提供重要的参考依据。  相似文献   

4.
马悦  梁萍  李文铠  何金海 《气象》2018,44(12):1593-1603
本文基于2001—2010年上海市11个基本气象站的逐日降水量和澳大利亚气象局的逐日大气低频振荡(MaddenJulian Oscillation,MJO)指数(包括RMM1和RMM2)资料,选取MJO指数作为预报因子,上海地区梅汛期降水量作为预报对象,建立了基于时空投影法(spatial-temporal projection model,STPM)的上海地区梅汛期降水延伸期预报模型。利用该模型对近6年(2011—2016年)的梅汛期降水进行回报试验,其预报技巧评估结果表明:该模型对未来10~25 d的降水具有较好预报效果,可较准确地预报出梅汛期3/4左右的降水量级和降水发生时段。其中,预报时效为10~20 d的预报技巧较高,而提前21~25 d的预报技巧略有下降。总体而言,基于MJO活动的STPM预报模型在上海地区梅汛期延伸期降水预报中具有较好的参考价值。  相似文献   

5.
The influence of ocean–atmosphere coupling on the simulation and prediction of the boreal winter Madden–Julian Oscillation (MJO) is examined using the Seoul National University coupled general circulation model (CGCM) and atmospheric—only model (AGCM). The AGCM is forced with daily SSTs interpolated from pentad mean CGCM SSTs. Forecast skill is examined using serial extended simulations spanning 26 different winter seasons with 30-day forecasts commencing every 5 days providing a total of 598 30-day simulations. By comparing both sets of experiments, which share the same atmospheric components, the influence of coupled ocean–atmosphere processes on the simulation and prediction of MJO can be studied. The mean MJO intensity possesses more realistic amplitude in the CGCM than in AGCM. In general, the ocean–atmosphere coupling acts to improve the simulation of the spatio-temporal evolution of the eastward propagating MJO and the phase relationship between convection (OLR) and SST over the equatorial Indian Ocean and the western Pacific. Both the CGCM and observations exhibit a near-quadrature relationship between OLR and SST, with the former lagging by about two pentads. However, the AGCM shows a less realistic phase relationship. As the initial conditions are the same in both models, the additional forcing by SST anomalies in the CGCM extends the prediction skill beyond that of the AGCM. To test the applicability of the CGCM to real-time prediction, we compute the Real-time Multivariate MJO (RMM) index and compared it with the index computed from observations. RMM1 (RMM2) falls away rapidly to 0.5 after 17–18 (15–16) days in the AGCM and 18–19 (16–17) days in the CGCM. The prediction skill is phase dependent in both the CGCM and AGCM.  相似文献   

6.
THE IMPACTS OF MADDEN-JULIAN OSCILLATION ON SPRING RAINFALL IN EAST CHINA   总被引:3,自引:1,他引:2  
Phase composite analyses are conducted to investigate the possible effect of the Madden–Julian oscillation(MJO)on the spring rainfall anomalies in East China by using the Real-time Multivariate MJO(RMM)index from Australian Meteorological Bureau.The results show that the rainfall anomalies over the mid-and lower-valley of Yangtze River are positive when the MJO shifts eastward to the mid-and eastern-Indian Ocean,and anomalous precipitation over South China are positive when the MJO moves further eastward to the maritime continent,whereas spring rainfall anomalies over East China are negative in the other MJO episodes.The MJO impacts on the precipitation over East China result from the changes in large-scale atmospheric circulation as well as vorticity and water vapor transportation in the mid-and lower-troposphere.  相似文献   

7.
MJO对我国东部春季降水影响的分析   总被引:12,自引:0,他引:12  
利用澳大利亚气象局的MJO(Madden-Julian Oscillation)指数,通过位相合成及对比分析研究了MJO对我国东部春季降水的影响.研究表明,当MJO传播至中东印度洋时,我国长江中下游地区的春季降水为正异常,当其进一步东传至中南半岛-印尼群岛一带时,我国华南地区的春季降水为正异常,而在其他活动阶段不利于我国东部的春季降水.对比分析表明,MJO的活动主要通过引起大尺度环流异常、对流层中低层涡度及水汽输送的异常,进而对我国东部春季降水产生明显的影响.  相似文献   

8.
Ping Liu 《Climate Dynamics》2014,43(7-8):1939-1950
The real-time multivariate Madden–Julian oscillation (RMM; MJO) index has been widely employed to monitor the amplitude, phase, and time evolution of MJO events, as the index is formulated from the leading two combined-empirical orthogonal function (CEOF) modes of daily anomalous OLR and 850- and 200-hPa zonal winds, and the modes describe the MJO dynamics well. These two CEOF modes, however, are known to dominate in power spectra at zonal wavenumber one and may underestimate the power and structure at wavenumbers 2–5 where many MJO events are also prominent. This study approximated a baseline for MJO by applying band-pass filters to daily anomalies on 30–100 day periods and at 1–5 eastward propagating waves, as slightly different bands led to the same conclusions. Following the procedures to develop the RMM index, the daily anomalous data were derived and subjected to the CEOF analysis with all modes archived for diagnosis. Different numbers of the leading modes were compared in explained variance, standard deviation (STD), and wavenumber power spectra to describe the overall MJO magnitude and structure, and on the Hovmöller diagrams to represent the evolution of three distinct MJO events. Results show that the two leading CEOF modes explain only a small portion of the power spectra at wavenumbers 2–5. This spectral leakage notably reduces the MJO amplitude, particularly of the OLR in the western Pacific. The CEOF modes 3–10 can withhold power sufficiently such that the anomalies reconstructed by the first 10 modes contribute most of the baseline variance; their structures agree well with the baseline by constituting nearly the same proportion in the region from the central Indian Ocean to the dateline and by providing more complete evolutions of the three MJO events on the Hovmöller diagrams. Meanwhile, these modes introduce a notable amount of power for the equatorial Rossby and Kelvin waves that are partially embedded in the evolution of MJO. The first 50 of the total 432 CEOF modes retain all variance of the baseline MJO, while those higher than 10 contain less information and more noise and can be discarded. Furthermore, this study indicated that the longitudinal STD of the reconstructed anomalies detects the MJO phases and magnitudes in the western Pacific with more physical meaning and in better agreement with the Hovmöller diagrams than the RMM-like amplitude. The results provide an integral figure of the MJO structure from the CEOF analysis and a more robust RMM framework for monitoring the MJO’s evolution in real time and for validating its numerical forecast and simulations.  相似文献   

9.
热带大气季节内振荡对西北太平洋台风的调制作用   总被引:5,自引:1,他引:4  
潘静  李崇银  宋洁 《大气科学》2010,34(6):1059-1070
利用澳大利亚气象局的RMM-MJO (Real-time Multivariate MJO) 指数, 分析研究了热带大气季节内振荡 (简称MJO) 对西北太平洋台风的调制作用及其机理, 结果表明MJO活动对西北太平洋台风的生成有比较明显调制作用。在MJO活跃期, 对流中心位于赤道东印度洋 (即MJO第2、3位相) 和对流中心越过海洋性大陆来到西太平洋地区 (即MJO 第5、6位相) 时台风生成的个数比例为2∶1。本文对西太平洋地区的大气环流场进行了多种气象要素的合成分析, 在MJO的不同位相, 西太平洋地区的动力因子分布形势有很明显不同。在第2、3位相, 各种因子均呈现出抑制西太平洋地区对流及台风发展的态势; 而在第5、6位相则明显有促进对流发生发展, 为台风生成和发展创造了有利条件的大尺度环流动力场。这说明MJO 在不断东移的过程中, 将改变大气环流形势, 最终影响了台风的生成和发展。接着, 我们从积云对流这个联系台风和MJO的重要因子出发, 研究了不同MJO位相时凝结加热的水平和垂直分布, 以及与台风环流、 水汽通量的配置情况。结果表明在MJO不同位相, 热源分布明显不同, 而这种水平和垂直方向的不同分布特征必然反映潜热释放和有效位能向有效动能转换的差异, 再与水汽的辐合辐散相配合, 就从台风获得的能量角度揭示了大气MJO调节台风的生成和发展, 造成不同位相时台风生成有根本差别的原因。  相似文献   

10.
The regional influence of the Madden–Julian oscillation (MJO) on South America is described. Maps of probability of weekly-averaged rainfall exceeding the upper tercile were computed for all seasons and related statistically with the phase of the MJO as characterized by the Wheeler–Hendon real-time multivariate MJO (RMM) index and with the OLR MJO Index. The accompanying surface air temperature and circulation anomalies were also calculated. The influence of the MJO on regional scales along with their marked seasonal variations was documented. During December–February when the South American monsoon system is active, chances of enhanced rainfall are observed in southeastern South America (SESA) region mainly during RMM phases 3 and 4, accompanied by cold anomalies in the extratropics, while enhanced rainfall in the South Atlantic Convergence Zone (SACZ) region is observed in phases 8 and 1. The SESA (SACZ) signal is characterized by upper-level convergence (divergence) over tropical South America and a cyclonic (anticyclonic) anomaly near the southern tip of the continent. Impacts during March–May are similar, but attenuated in the extratropics. Conversely, in June–November, reduced rainfall and cold anomalies are observed near the coast of the SACZ region during phases 4 and 5, favored by upper-level convergence over tropical South America and an anticyclonic anomaly over southern South America. In September–November, enhanced rainfall and upper-level divergence are observed in the SACZ region during phases 7 and 8. These signals are generated primarily through the propagation of Rossby wave energy generated in the region of anomalous heating associated with the MJO.  相似文献   

11.
郝立生  LITim  马宁  梁苏洁  谢均 《大气科学》2020,44(3):639-656
本文基于华北夏季降水资料和热带大气季节内振荡(Madden–Julian Oscillation,简称MJO)指数、NCEP/NCAR(美国国家环境预报中心/美国国家大气研究中心)再分析环流资料,采用多种统计方法分析MJO与2018年华北夏季降水的关系及影响机制。结果表明:(1)MJO与华北夏季降水有密切的联系。虽然MJO不能移到较高纬度直接影响华北夏季降水,但MJO对流区的气旋会在其北侧激发出反气旋环流,这对“气旋—反气旋对”在缓慢东移过程中,处于较高纬度的反气旋会直接影响华北夏季降水。即MJO会间接影响华北夏季降水,表现为当夏季MJO进入5、6位相时,华北地区夏季会出现明显降水过程,但降水强弱与MJO振幅大小有关。(2)影响机制方面。在850 hPa,伴随MJO的“气旋—反气旋对”的东移,它会造成华北夏季偏南风水汽输送加强(对应RMM1)或东南风水汽输送加强(对应RMM2),从而有利于降水过程发生。在500 hPa层,MJO通过中层扰动向中高纬的传播,诱导副热带高压移到朝鲜半岛附近并加强,对西来高空槽形成阻挡作用,有利于华北地区产生上升运动,从而有利于华北夏季降水过程发生。(3)可以用MJO制作华北夏季延伸期降水过程预报。  相似文献   

12.
By analyzing observational data, previous studies have indicated that the tropical Madden-Julian Oscillation (MJO) is active during the boreal winter but relatively weak during the boreal summer. However, the factors that control seasonal MJO variation are not clear. To quantitatively understand the relative contributions of the occurrence frequency of enhanced MJO events and their averaged strength and lifespan to seasonal MJO amplitude, we defined the MJO events of 1979–2014 and analyzed their features in different seasons by using the Real-time Multivariate MJO (RMM) index and the newly proposed RMM-r index. The results indicate that the MJO events show a higher frequency of occurrence, a stronger intensity and a longer duration during the boreal winter (Dec.–Feb.) and spring (Mar.–May). However, the frequency, strength and lifespan of MJO events are all reduced during the boreal summer (Jun.–Aug.) and autumn (Sep.–Nov.). The enhanced MJO events in winter–spring also show a large ratio of variance for eastward to westward components. To elucidate how large-scale background fields affect seasonal MJO variation, a series of sensitivity experiments was conducted by using a 2.5-layer model that can simulate MJO-like features. It is found that the variation in low-level moisture (vertical wind shear) is the key large-scale factor affecting the seasonal variation in MJO strength (in propagation). In comparison with the summer–autumn seasons when the MJO is relatively weakened, the relatively abundant low-level moisture near the equator during boreal winter–spring may strengthen the development of MJO convection and circulation, whereas the relatively weak easterly shear (or the westerly shear anomaly) is conducive to the enhancement of an eastward-propagating MJO component.  相似文献   

13.
The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO strength,according to which active(or inactive) years of preceding winter MJO are divided.By utilizing the data provided by NCEP/NCAR,CMAP and China’s 160 stations from 1979 to 2008,we studied the preceding winter MJO strength and discovered that the summer precipitation in the basin are of significantly negative correlation,i.e.when the preceding winter MJO is relatively active,the summer precipitation in the basin decreases,and vise verse.We also analyzed the causes.When the preceding winter MJO is relatively active,its release of potential heat facilities Inter-Tropical Convergence Zone(ITCZ) to strengthen and locate northward in winter and propagate northeastward.This abnormal situation lasts from winter to summer.In mid-May,ITCZ jumps northward to the South China Sea,the western Pacific subtropical high withdraws eastward,and the South China Sea summer monsoon sets off and strengthens.In summer,ITCZ propagates to South China Sea-subtropical western Pacific,the zonal circulation of subtropical Pacific strengthens,and a local meridional circulation of the South China Sea to the basin area forms,giving rise to the East Asia Pacific teleconnection wave-train.An East Asian monsoon trough and the Meiyu front show opposite features from south to north,the East Asian summer monsoon strengthens and advances northward.As a result,the summer monsoon is weakened as the basin is controlled by the subtropical high continually,with less rain in summer.On the contrary,when the preceding winter MJO is inactive,ITCZ weakens and is located southward,the subtropical high is located southward in summer,and the basin is in a region of ascending airflow with prevailing southwest wind.The East Asian monsoon trough and EASM weaken so that summer monsoon is reduced in the basin where precipitation increases.  相似文献   

14.
By analyzing NCEP-NCAR reanalysis daily data for 1979–2016, the modulation by Madden-Julian Oscillation (MJO) of the wintertime surface air temperature (SAT) over high latitude is examined. The real-time multivariate MJO (RMM) index, which divides the MJO into eight phases, is used. It is found that a significantly negative SAT anomaly over the northern high latitude region of (180°–60 °W, 60°–90 °N) lags the MJO convection for 1∼2 weeks in phase 3, in which the enhanced convective activity exists over the Indian Ocean. While a significantly positive SAT anomaly appears over the same region following the MJO phase 7, as the tropical heating shows an opposite sign. Analysis of the anomalous circulation indicates that the observed SAT signal is probably a result of the northeastward propagating Rossby wave train triggered by MJO-related tropical forcing through Rossby wave energy dispersion. By using an anomalous atmospheric general circulation model (AGCM), the significant effect of tropical forcing on organizing the extratropical circulation anomaly is confirmed. Analysis of a temperature tendency equation further reveals that the intraseasonal SAT anomaly is primarily attributed to the advection of the mean temperature by the wind anomaly associated with the anomalous circulation of the MJO-related variability.  相似文献   

15.
利用1979~2013年实时多要素MJO(Madden-Julian Oscillation)监测(RMM)指数,美国NOAA逐日长波辐射资料和NCEP/NCAR再分析资料等,分析了全球变化背景下北半球冬季MJO传播的年代际变化特征。从全球平均气温快速增暖期(1985~1997)到变暖趋缓期(2000~2012),MJO 2~4位相频次减少,5~7位相频次增多,即MJO对流活跃区在热带印度洋地区停留时间缩短、传播速度加快,而在热带西太平洋停留时间加长、传播明显减缓。进一步分析发现,以上MJO的年代际变化特征与全球变化年代际波动有关。当太平洋年代际涛动(PDO)处于负位相时,全球变暖趋缓,热带东印度洋—西太平洋海温异常偏暖,使其上空对流加强,垂直上升运动加强,对流层低层辐合,大气中的水汽含量增多,该区域的湿静力能(MSE)为正异常。当MJO对流活跃区位于热带印度洋地区时,MJO异常环流对季节平均MSE的输送在强对流中心东侧为正、西侧为负,有利于东侧MSE扰动增加,使得MJO对流扰动东移加快;而当MJO对流活跃区在热带西太平洋地区,MJO异常环流对平均MSE的输送形成东负西正的形势,东侧MSE扰动减小,不利于MJO快速东传。因此,全球变化背景下PDO引起的大气中水汽含量及MSE的变化可能是MJO传播年代际变化的重要原因。  相似文献   

16.
崔静  杨双艳  LI Tim 《气象》2021,(1):49-59
基于1979—2016年NCEP-NCAR逐日再分析资料研究了热带季节内振荡(MJO)和北半球冬季高纬地区地表气温(SAT)之间的联系。利用实时多变量MJO(RMM)指数,将MJO分为8个位相,其中位相2(位相6)对应于位于印度洋地区的正(负)对流。不同MJO位相下的SAT合成结果显示MJO第二位相后的5~15 d,北半球高纬地区(60°~90°N、180°~60°W)有明显的负SAT异常;由于热带异常加热信号的改变,在MJO第六位相后的5~15 d该地区则对应于显著的正SAT异常。该地区温度的垂直结构在各个位相下也表现出类似的分布特征。合成的500 hPa位势高度异常场显示,在温度负(正)异常的位相对应有明显的位势高度负(正)异常,这种环流异常主要是由与热带对流异常相联系的向东北方向传播的罗斯贝波列所引起的。通过对波活动通量的计算,推断该东北方向传播的罗斯贝波列很可能是罗斯贝波能量频散的结果。合成的700 hPa比湿异常场和SAT之间在存在着较好的对应关系,考虑到对流层中层的比湿与向下长波辐射之间存在着正相关关系,说明该温度异常也可能与辐射过程相关。上述分析表明与MJO对流相关的大尺度环流异常对高纬地区季节内SAT变率有重要影响,该异常SAT信号可能来自平流输送和辐射过程等。准确把握MJO位相与SAT异常信号的联系也可以为北半球高纬地区SAT的延伸期预报提供一些可靠线索。  相似文献   

17.
雷徐奔  张文君  刘超 《气象学报》2022,80(4):503-514
利用1980—2020年中国753站逐日降水资料、NCEP/NCAR大气再分析资料以及哈得来中心的海表温度资料和实时多变量Madden-Julian振荡( MJO)指数,研究了MJO在印度洋地区(1—3位相)活跃日数对长江流域夏季降水日数的影响。结果表明两者存在显著的统计联系,在MJO活跃日数偏多的年份,MJO相关的西北太平洋反气旋环流异常有利于向长江中下游地区输送水汽,进而导致长江流域中下游范围内降水日数的增加,且这种影响主要体现在降水等级为大雨(25 mm/d)及以上强度的日数上。进一步研究发现,MJO在印度洋活跃日数与长江中下游夏季降水日数的关系存在年代际变化,两者显著的联系仅出现在2000年之后,之前的时段两者联系则较弱。这种关系的转变可能与印度洋海表温度变率减弱的背景有关,印度洋海洋年际变率变弱导致其对于长江中下游地区的影响减弱,进而使得MJO的调控作用凸显出来。夏季季节平均的印度洋MJO活跃日数可以对长江中下游的大雨以上的降水日数产生影响,且两者的关系在大约2000年之后变得尤为显著。   相似文献   

18.
This study uses NCEP/NCAR daily reanalysis data, NOAA outgoing long-wave radiation (OLR) data, the real-time multivariate MJO (RMM) index from the Australian Bureau of Meteorology and Tibetan Plateau vortex (TPV) data from the Chengdu Institute of Plateau Meteorology to discuss modulation of the Madden-Julian Oscillation (MJO) on the Tibetan Plateau Vortex (TPV). Wavelet and composite analysis are used. Results show that the MJO plays an important role in the occurrence of the TPV that the number of TPVs generated within an active period of the MJO is three times as much as that during an inactive period. In addition, during the active period, the number of the TPVs generated in phases 1 and 2 is larger than that in phases 3 and 7. After compositing phases 1 and 7 separately, all meteorological elements in phase 1 are apparently conducive to the generation of the TPV, whereas those in phase 7 are somewhat constrained. With its eastward propagation process, the MJO convection centre spreads eastward, and the vertical circulation within the tropical atmosphere changes. Due to the interaction between the mid-latitude and low-latitude atmosphere, changes occur in the baroclinic characteristics of the atmosphere, the available potential energy and eddy available potential energy of the atmosphere, and the circulation structures of the atmosphere over the Tibetan Plateau (TP) and surrounding areas. This results in significantly different water vapour transportation and latent heat distribution. Advantageous and disadvantageous conditions therefore alternate, leading to a significant difference among the numbers of plateau vortex in different phases.  相似文献   

19.
This study evaluates performance of Madden–Julian oscillation (MJO) prediction in the Beijing Climate Center Atmospheric General Circulation Model (BCC_AGCM2.2). By using the real-time multivariate MJO (RMM) indices, it is shown that the MJO prediction skill of BCC_AGCM2.2 extends to about 16–17 days before the bivariate anomaly correlation coefficient drops to 0.5 and the root-mean-square error increases to the level of the climatological prediction. The prediction skill showed a seasonal dependence, with the highest skill occurring in boreal autumn, and a phase dependence with higher skill for predictions initiated from phases 2–4. The results of the MJO predictability analysis showed that the upper bounds of the prediction skill can be extended to 26 days by using a single-member estimate, and to 42 days by using the ensemble-mean estimate, which also exhibited an initial amplitude and phase dependence. The observed relationship between the MJO and the North Atlantic Oscillation was accurately reproduced by BCC_AGCM2.2 for most initial phases of the MJO, accompanied with the Rossby wave trains in the Northern Hemisphere extratropics driven by MJO convection forcing. Overall, BCC_AGCM2.2 displayed a significant ability to predict the MJO and its teleconnections without interacting with the ocean, which provided a useful tool for fully extracting the predictability source of subseasonal prediction.  相似文献   

20.
IAP AGCM4.0模式对热带大气季节内振荡的模拟评估   总被引:1,自引:1,他引:0  
基于中国科学院大气物理所大气环流模式IAP AGCM4.0总共30年(1979~2008年)的模拟结果,评估了IAP AGCM4.0模式对热带大气季节内振荡的模拟能力。分析结果表明IAP AGCM4.0模式可以在一定程度上模拟出热带大气季节内振荡的主要时空谱结构特征,在周期30~80天处存在明显的谱能量中心;模式模拟的季节内振荡东传的主要特征与观测基本一致,东移波的能量远大于西移波。基于RMM指数(All-season Real-time Multivariate MJO Index)的分析表明,模式模拟的850 h Pa和200 h Pa季节内尺度风场和对流活动在赤道地区的空间分布与观测基本一致。但与观测相比,模式模拟的热带大气季节内振荡的周期较短,东传速度快于观测,虚假的西传特征过强,对流活跃区域范围较小、强度较弱。就非绝热加热而言,模式模拟结果与再分析资料比较接近,但最大加热在印度洋和西太平洋地区出现的位相较晚。进一步分析表明,模式中影响对流触发的相对湿度阈值(RHc)的不同取值(RHc分别取为85%、90%、95%和100%),可以显著影响热带大气非绝热加热垂直廓线,从而影响模式对热带大气季节内振荡的模拟;当对流触发相对湿度阈值取为90%时,IAP AGCM4.0模式对热带大气季节内振荡模拟的能力相对最好,非绝热加热垂直廓线在不同位相的分布特征也与再分析资料最为接近。这说明模式对流参数化方案中不同参数的合适选取,可以改进模式对热带大气季节内振荡的模拟能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号