首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Estuaries located in the northern Gulf of Mexico are expected to experience reduced river discharge due to increasing demand for freshwater and predicted periods of declining precipitation. Changes in freshwater and nutrient input might impact estuarine higher trophic level productivity through changes in phytoplankton quantity and quality. Phytoplankton biomass and composition were examined in Apalachicola Bay, Florida during two summers of contrasting river discharge. The <20 μm autotrophs were the main component (92?±?3 %; n?=?14) of phytoplankton biomass in lower (<25 psu) salinity waters. In these lower salinity waters containing higher dissolved inorganic nutrients, phycocyanin containing cyanobacteria made the greatest contribution to phytoplankton biomass (69?±?3 %; n?=?14) followed by <20 μm eukaryotes (19?±?1 %; n?=?14), and phycoerythrin containing cyanobacteria (4?±?1 %; n?=?14). In waters with salinity from 25 to 35 psu that were located within or in close proximity to the estuary, >20 μm diatoms were an increasingly (20 to 70 %) larger component of phytoplankton biomass. Lower summer river discharges that lead to an areal contraction of lower (5–25 psu) salinity waters composed of higher phytoplankton biomass dominated by small (<20 μm) autotrophs will lead to a concomitant areal expansion of higher (>25 psu) salinity waters composed of relatively lower phytoplankton biomass and a higher percent contribution by >20 μm diatoms. A reduction in summer river discharge that leads to such a change in quantity and quality of estuarine phytoplankton available will result in a reduction in estuarine zooplankton productivity and possibly the productivity of higher trophic levels.  相似文献   

2.
Data were collected in the Tagus estuary from 1999–2007 on a monthly basis and combined with published results and for several previous years between 1980 and 1995, so that a comprehensive analysis could be performed over a non-continuous 27-year period. Sampling conditions and methods were similar for all datasets. Extreme wet and dry years were observed. River flow was strongly linked to phytoplankton abundance, with the highest biomass attained in dry years. The observed range of annual median Chl a was 1.8–7.6 µg L?1 and the overall median was 3.5 µg L?1. Dissolved inorganic nitrogen (DIN) and silicate showed a clear seasonal pattern, with a maximum in winter?spring, indicating a freshwater origin. Although wastewater treatment started in 1990, no difference was detected from 1980 to the present in terms of DIN and phosphorus. The recorded seasonal pattern for biomass with highest values in late spring–summer period is comparable to other temperate tidally influenced ecosystems. In spite of interannual differences in terms of Chl a concentration or the time of the maximum Chl a occurrence, a repeatable pattern could be identified. The mean growth development time for phytoplankton was 163 days (June 12) ranging 129–206 days (May 9–July 26) during the sampling period. No obvious changes in phytoplankton community structure were observed over time: diatoms were always the dominant group, and cryptophytes were relatively abundant throughout autumn–winter. The dominant species have remained essentially the same since 1969. River inflow, light availability, and temperature were the major factors shaping phytoplankton variability patterns. The strong influence of tidal mixing on the estuarine waters appears to lower the risk of potential eutrophication in the Tagus estuary. The lack of change in nutrients and phytoplankton biomass and composition observed in this study is an important contribution towards the assessment of natural variability versus responses to man-induced inputs in this severely anthropogenically disturbed estuary.  相似文献   

3.
In order to examine the variations in concentrations of dimethylsulfide (DMS) and its fluxes to the atmosphere, 25 major and medium estuaries from Indian subcontinent were sampled during wet and dry periods. River discharge brought substantial amount of nutrients and suspended particulate matter (SPM) to the Indian estuaries; however, the concentration of phytoplankton biomass was severely limited by latter due to shallowing of photic depth. Bacillariophyceae was the dominant phytoplankton group in the Indian estuaries followed by green algae, Cyanophyceae, and Dinophyceae. Relatively higher concentrations of DMS were observed in the estuaries located along the east (3.6 ± 5.7 nM) than the west coast of India (0.8 ± 0.3 nM) during wet period whereas no significant differences were observed during dry period. The concentrations of DMS were significantly lower during wet than dry period and it was consistent with the phytoplankton biomass. The slope of the relation between DMS and phytoplankton biomass displayed a significant spatial variation due to contribution of different groups of phytoplankton in the Indian estuaries. The concentrations of DMS in the Indian estuaries were higher than other estuaries in the world except some Chinese estuaries. The annual mean flux (1.95 ± 2.5 μmol m?2 day?1) from the Indian estuaries is lower than that of other estuaries in the world, except Pearl River estuary due to inhibition of phytoplankton growth by suspended load and low flushing rates.  相似文献   

4.
In shallow estuaries with strong river influence, the short residence time and pronounced gradients generate an environment for plankton that differs substantially in its dynamics from that of the open ocean, and the question arises “How is phytoplankton biomass affected?” This study assesses the small-scale spatial and temporal distribution of phytoplankton in Apalachicola Bay, a shallow bar-built estuary in the Florida Panhandle. Phytoplankton peaks were characterized to gain insights into the processes affecting spatial heterogeneity in biomass. Chlorophyll a (Chl a) distribution at 50-m spatial resolution was mapped using a flow-through sensor array, Dataflow©, operated from a boat that sampled four transects across the bay every 2 weeks for 16 months. Chl a peaks exceeding background concentrations had an average width of 1.3?±?0.7 km delineated by an average gradient of 3.0?±?6.0 μg Chl a L?1 km?1. Magnitude of E-W wind, velocity of N-S wind, tidal stage, and temperature affected peak characteristics. Phytoplankton contained in the peaks contributed 7.7?±?2.7% of the total integrated biomass observed along the transects during the study period. The river plume front was frequently a location of elevated Chl a, which shifted in response to river discharge. The results demonstrate that despite the shallow water column, river flushing, and strong wind and tidal mixing, distinct patchiness develops that should be taken into consideration in ecological studies and when assessing productivity of such ecosystems.  相似文献   

5.
Differences in phytoplankton community composition along a riverine to, freshwater tidal continuum was an important factor affecting the primary productivity and quantity of phytoplankton biomass available to the San Francisco Estuary food web downstream. The relative contribution of riverine and freshwater tidal phytoplankton was determined using measurements of primary productivity, respiration, and phytoplankton species composition along a riverine to freshwater tidal gradient in the San Joaquin River, one of two major rivers that flow into, the San Francisco Estuary. Chla-specific net primary productivity was greater in the freshwater tidal habitat and was correlated with both a higher growth efficiency and maximum growth potential compared with the river upstream. Cluster analysis indicated these differences in growth parameters were associated with differences in species composition, with greater percent diatom and green algal species biomass upstream and flagellate biomass downstream. Correlation between the chla specific net productivity and phytoplankton species composition suggested the downstream shift from riverine diatom and green algal species to flagellate species contributed to the seaward increase in net primary productivity. Environmental conditions, such as specific conductance and water transparency, may have influenced primary productivity along the riverine to freshwater tidal continuum through their effect on both species composition and growth rate. Data suggest light was not the sole controlling factor for primary productivity in this highly turbid estuary; phytoplankton growth rate did not increase when riverine plankton communities from low light conditions upstream were exposed to higher light conditions downstream. This study suggests that the availability of phytoplankton biomass to the estuarine food web may be influenced by management of both phytoplankton growth and community composition along the riverine to freshwater tidal continuum.  相似文献   

6.
To investigate to what extent episodic physical processes regulate nutrient availability and phytoplankton assemblages of the Mahon estuary (Minorca Island), we carried out an intensive field study during 2010–2011. During the study period, environmental conditions spanned from intense stratification to a continuous mixing and from lack of riverine inflow to intense runoff. Our data reveals a sequence of biogeochemical states of the estuary that result from the interplay between runoff, other non-periodic forcings (winds, sea level oscillations), and variations in water renewal. Seasonal runoff was revealed as a major driver of winter circulation and of the influx of inorganic nutrients, in particular nitrate. However, because of the combination between runoff and flushing time, the effects of floodwater events on phytoplankton are short-lived (days). Conversely, during summer, when freshwater influx declines, water renewal relies on pulsed atmospheric forcing that may be of local or remote origin. As depicted from the low nitrate concentrations (<1 μM) and enhanced ammonium (>1 μM), this change in circulation and external loads carries nutrient assimilation within the estuary head and forces the use of remnant nutrients through regenerating pathways to sustain an enhanced phytoplankton biomass at the lower estuary. Episodic variability represented between 52 and 65% of the annual chlorophyll variance. Despite the fact that episodic pulses represented intense departures from base biogeochemical state of the estuary, at time scale larger than weeks, the phytoplankton community composition and dynamics was largely regulated by the integrated effect of these episodes and other environmental drivers associated with seasonality rather than by individual storm events only. Our results suggest that even though the system presents good recovery capacity to individual storm episodes, it may be more vulnerable to increased nutrient fluxes during summer, as well as to changes in episode timing and frequency.  相似文献   

7.
The Swan River estuary, Western Australia, has undergone substantial hydrological modifications since pre-European settlement. Land clearing has increased discharge from some major tributaries roughly 5-fold, while weirs and reservoirs for water supply have mitigated this increase and reduced the duration of discharge to the estuary. Nutrient loads have increased disproportionately with flow and are now approximately 20-times higher than pre-European levels. We explore the individual and collective impacts of these hydrological changes on the Swan River estuary using a coupled hydrodynamic-ecological numerical model. The simulation results indicate that despite increased hydraulic flushing and reduced residence times, increases in nutrient loads are the dominant perturbation producing increases in the incidence and peak biomass of blooms of both estuarine and freshwater phytoplankton. Changes in salinity associated with altered seasonal freshwater discharge have a limited impact on phytoplankton dynamics.  相似文献   

8.
Nutrient dynamics in estuaries are temporally variable in response to changing physical–chemical conditions and biogeochemical processes involving primary producer groups such as phytoplankton, microphytobenthos, seagrass and macroalgae. In order to reveal intra-annual changes in the biomass of primary producer groups and associated changes in estuarine nutrient dynamics, we developed a box model, coupling water inflows and outflows and nitrogen dynamics in Wilson Inlet, a large, central-basin-dominated, intermittently closed estuary exposed to a Mediterranean climate in Western Australia. The model is calibrated and validated with monitoring data, aquatic plant biomass estimates and biogeochemical rate measurements. Macrophytes and their microalgal epiphytes appear to rapidly assimilate nutrients from the first flush from the catchment in winter, but this buffer capacity then ceases, and a phytoplankton ‘bloom’ develops in response to subsequent river runoff events in spring. Significant amounts of bioavailable nitrogen are exported to the ocean because phytoplankton predominance occurs while the sand bar is breached. Surface sediments play a key role for nitrogen dynamics: In late spring to autumn, high light availability at the sediment surface stimulates high primary production by microphytobenthos, leading to reduced benthic ammonium fluxes particularly in the deep basin. Microphytobenthos contributes about 60% of annual whole-system primary production. Despite high benthic primary production, nitrogen release from sediments is the biggest nitrogen source to the estuary.  相似文献   

9.
Hydrologic conditions, especially changes in freshwater input, play an important, and at times dominant, role in determining the structure and function of phytoplankton communities and resultant water quality of estuaries. This is particularly true for microtidal, shallow water, lagoonal estuaries, where water flushing and residence times show large variations in response to changes in freshwater inputs. In coastal North Carolina, there has been an increase in frequency and intensity of extreme climatic (hydrologic) events over the past 15 years, including eight hurricanes, six tropical storms, and several record droughts; these events are forecast to continue in the foreseeable future. Each of the past storms exhibited unique hydrologic and nutrient loading scenarios for two representative and proximate coastal plain lagoonal estuaries, the Neuse and New River estuaries. In this synthesis, we used a 13-year (1998–2011) data set from the Neuse River Estuary, and more recent 4-year (2007–2011) data set from the nearby New River Estuary to examine the effects of these hydrologic events on phytoplankton community biomass and composition. We focused on the ability of specific taxonomic groups to optimize growth under hydrologically variable conditions, including seasonal wet/dry periods, episodic storms, and droughts. Changes in phytoplankton community composition and biomass were strongly modulated by the amounts, duration, and seasonality of freshwater discharge. In both estuaries, phytoplankton total and specific taxonomic group biomass exhibited a distinctive unimodal response to varying flushing rates resulting from both event-scale (i.e., major storms, hurricanes) and more chronic seasonal changes in freshwater input. However, unlike the net negative growth seen at long flushing times for nano-/microphytoplankton, the pigments specific to picophytoplankton (zeaxanthin) still showed positive net growth due to their competitive advantage under nutrient-limited conditions. Along with considerations of seasonality (temperature regimes), these relationships can be used to predict relative changes in phytoplankton community composition in response to hydrologic events and changes therein. Freshwater inputs and droughts, while not manageable in the short term, must be incorporated in water quality management strategies for these and other estuarine and coastal ecosystems faced with increasing frequencies and intensities of tropical cyclones, flooding, and droughts.  相似文献   

10.
Tillamook Bay, Oregon, is a drowned river estuary that receives freshwater input from 5 rivers and exchanges ocean water through a single channel. Similar to other western United States estuaries, the bay exhibits a strong seasonal change in river discharge in which there is a pronounced winter maximum and summer minimum in precipitation and runoff. The behavior of major inorganic nutrients (phosphorus, nitrogen, and silica) within the watershed is examined over seasonal cycles and under a range of river discharge conditions for October 1997–December 1999. Monthly and seasonal sampling stations include transects extending from the mouth of each river to the mouth of the estuary as well as 6–10 sites upstream along each of the 5 major rivers. Few studies have examined nutrient cycling in Pacific Northwest estuaries. This study evaluates the distributions of inorganic nutrients to understand the net processes occurring within this estuary. Based upon this approach, we hypothesize that nutrient behavior in the Tillamook Bay estuary can be explained by two dominant factors: freshwater flushing time and biological uptake and regeneration. Superimposed on these two processes is seasonal variability in nutrient concentrations of coastal waters via upwelling. Freshwater flushing time determines the amount of time for the uptake of nutrients by phytoplankton, for exchange with suspended particles, and for interaction with the sediments. Seasonal coastal upwelling controls the timing and extent of oceanic delivery of nutrients to the estuary. We suggest that benthic regeneration of nutrients is also an important process within the estuary occurring seasonally according to the flushing characteristics of the estuary. Silicic acid, nitrate, and NH4 + supply to the bay appears to be dominated by riverine input. PO4 −3 supply is dominated by river input during periods of high river flow (winter months) with oceanic input via upwelling and tidal exchange important during other times (spring, summer, and fall months). Departures from conservative mixing indicate that internal estuarine sources of dissolved inorganic phosphorus and nitrogen are also significant over an annual cycle.  相似文献   

11.
Freshwater inputs often play a more direct role in estuarine phytoplankton biomass (chlorophyll a) accumulation than nitrogen (N) inputs, since discharge simultaneously controls both phytoplankton residence time and N loading. Understanding this link is critical, given potential changes in climate and human activities that may affect discharge and watershed N supply. Chlorophyll a (chla) relationships with hydrologic variability were examined in 3-year time series from two neighboring, shallow (<5?m), microtidal estuaries (New and Neuse River estuaries, NC, USA) influenced by the same climatic conditions and events. Under conditions ranging from drought to floods, N concentration and salinity showed direct positive and negative responses, respectively, to discharge for both estuaries. The response of chla to discharge was more complex, but was elucidated through conversion of discharge to freshwater flushing time, an estimate of transport time scale. Non-linear fits of chla to flushing time revealed non-monotonic, unimodal relationships that reflected the changing balance between intrinsic growth and losses through time and along the axis of each estuary. Maximum biomass occurred at approximately 10-day flushing times for both systems. Residual analysis of the fitted data revealed positive relationships between chla and temperature, suggesting enhanced growth rates at higher temperatures. N loading and system-wide, volume-weighted chla were positively correlated, and biomass yields per N load were greater than other marine systems. When combined with information on loss processes, these results on the hydrologic control of phytoplankton biomass will help formulate mechanistic models necessary to predict ecosystem responses to future climate and anthropogenic changes.  相似文献   

12.
The magnitude and extent of eutrophication was assessed at 27 segments in 23 estuaries in the Southern California Bight (SCB) between October 2008 and 2009. We applied thresholds from the existing assessment frameworks from both the European Union and the U.S. National Eutrophication Assessment to measurements of three indicators [macroalgae biomass and cover, phytoplankton biomass, and dissolved oxygen (DO) concentration] to categorize eutrophic condition in each estuary. Based on these frameworks, a large fraction of segments had moderate or worse eutrophic condition—78 % based on macroalgae, 39 % for phytoplankton, and 63 % for DO. Macroalgal biomass exceeding 70 g dw m?2 and 25 % cover was found at 52 % of sites during any sampling event and in 33 % of segments for 8 weeks or longer, a duration found to negatively impact benthic infauna. Duration of hypoxic events (DO?<?4 mg L?1) was typically short, with most events less than one day; although 53 % of segments had at least one event longer than 24 h. Assessment frameworks of eutrophic condition are likely to evolve over time as the body of literature on eutrophication grows, including aspects such as the applicability of indicators in specific habitat types, indicator thresholds, and how event frequency and duration are incorporated. This paper informs this debate by discussing how eutrophic conditions in SCB estuaries are categorized using different indicators and thresholds. To this end, categorization of estuarine eutrophic condition was found to be very sensitive to the type of threshold, how data are integrated to represent duration or spatial extent, and how indicators are used as multiple lines of evidence.  相似文献   

13.
Repeated surveys of the Kennebec estuary, a macrotidal river estuary in Maine, USA, between 2004 and 2008 found spatial and temporal variability both in sources of carbon dioxide (CO2) to the estuary and the air–sea flux of estuary CO2. On an annual basis, the surveyed area of the Kennebec estuary had an area-weighted average partial pressure of CO2 (pCO2) of 559 μatm. The area-weighted average CO2 flux to the atmosphere was 3.54 mol C m?2 year?1. Overall, the Kennebec estuary was an annual source of 7.2?×?107 mol CO2 to the atmosphere. Distinct seasonality in estuarine pCO2 was observed, with shifts in the seasonal pattern evident between lower and higher salinities. Fluxes of CO2 from the estuary were elevated following two summertime storms, and inputs of riverine CO2 outweighed internal estuarine CO2 inputs in nearly all months. River and estuarine inputs of CO2 represented 68 and 32 % of the total CO2 contributions to the estuary, respectively. This study examines the variability of CO2 in a large New England estuary, and highlights the comparatively high contribution of CO2 from riverine sources.  相似文献   

14.
Dynamics of heavy metals in the surface sediments of Mahanadi river estuarine system were studied for three different seasons. This study demonstrates that the relative abundance of these metals follows in the order of Fe > Mn > Zn > Pb > Cr > Ni ≥ Co > Cu > Cd. The spatial pattern of heavy metals supported by enrichment ratio data, suggests their anthropogenic sources possibly from various industrial wastes and municipal wastes as well as agricultural runoff. The metal concentrations in estuarine sediments are relatively higher than in the river due to adsorption/accumulation of metals on sediments during saline mixing, while there is a decreasing trend of heavy metal concentrations towards the marine side. The temporal variations for metals, such as Fe, Mn, Zn, Ni and Pb exhibit higher values during monsoon season, which are related to agricultural runoff. Higher elemental concentrations are observed during pre-monsoon season for these above metals (except Ni) at the polluted stations and for metals, such as Cr, Co and Cd at all sites, which demonstrate the intensity of anthropogenic contribution. R-mode factor analysis reveals that “Fe–Mn oxy hydroxide”, “organic matter”, “CaCO3”, and “textural variables” factors are the major controlling geochemical factors for the enrichment of heavy metals in river estuarine sediment and their seasonal variations, though their intensities were different for different seasons. The relationships among the stations are highlighted by cluster analysis, represented in dendrograms to categorize different contributing sites for the enrichment of heavy metals in the river estuarine system.  相似文献   

15.
We focus on the question of whether high phytoplankton production events observed in a United States Pacific Northwest estuary consist of estuarine species blooms fueled by oceanic nutrient input or reflect offshore oceanic blooms that have advected into the estuary. Our approach is to use certain phytoplankton species as indicators associated with water mass origin, either estuarine or oceanic, to help resolve this question in Willapa Bay, Washington. We used species analysis and primary production data from 10 selected dates in May–September of 1998 and 1999, representing periods of high through low productivity. Out of 108 phytoplankton species identified from Willapa Bay, nine were selected and tested as indicators of oceanic species, six as estuarine, and two as surf zone. Our test results demonstrated the oceanic and estuarine species to be satifactory indicators of source waters. The prevalence of these species indicators in our samples revealed that the highest primary production and the appearance ofPseudo-nitzschia spp. were associated with oceanic intrusions of phytoplankton biomass into Willapa Bay. While the largest blooms were oceanic in origin, numerous medium-sized production events were from either oceanic, surf zone, or estuarine sources, indicating a complex situation.  相似文献   

16.
The concentrations of dissolved boron have been measured during different seasons in three estuaries, the Tapi, Narmada and the Mandovi situated on the western coast of India, to investigate its geochemical behavior and inputs from the localized anthropogenic pressures of industrial effluents and sewage discharge. The measured boron concentrations in these estuaries (except the Tapi during non-monsoon) at salinity ≤0.1 fall in a narrow range?~?2–4 μmol/kg (average B?~?2.4?±?0.8 μmol/kg) within the reported wide range?~?0.1–18.6 μmol/kg for global rivers. The much higher estimate of boron concentration in the Tapi River during non-monsoon is attributed to its possible additional supply from the sewage and/or industrial effluents discharged along the river course. During monsoon, the rains seem to be a significant source of dissolved boron to all the three rivers. The distribution of dissolved boron in each estuary exhibits a conservative behavior during the seasons sampled suggestive of no measurable addition or removal of boron in the estuarine region. The orders of magnitude differences in boron concentration between the river waters and seawater, and the conservative behavior of dissolved boron indicate that its major contributor to the estuaries sampled is seawater.  相似文献   

17.
Phytoplankton patchiness, as expressed by community composition and size distribution, during the rainy season in the Langat River estuary (Malaysia) is described. Four sites in the estuary were sampled on two different occasions. The sampling area covered a stretch of the river from upstream to downstream of aquaculture activities (shrimp farms). Water samples from a shrimp farm outlet were also analyzed for nutrient and phytoplankton content. Differences in community structure between stations were found by means of multivariate procedures. Genera composition and total biomass were related to environmental factors, revealing salinity, light, and nutrients as important explaining factors. Elevated phytoplankton biomass and total phosphorus concentration, as well as lower inorganic nitrogen: phosphorus ratios, were found downstream of the shrimp farming activities. The size distribution spectrum of the phytoplankton population downstream of the shrimp farms was significantly different from that at the other stations but not different than that found in the sampled effluent from the shrimp farms, where phytoplankton biomass was also high. Twenty-two of the 24 recorded genera from the shrimp farm outlet were also found downstream of the farming activities. A number of different environmental factors potentially alter conditions for phytoplankton in the lower reaches of the estuary as compared to the upper regions. A cause and effect relationship explaining the differences noted between the upper and lower reaches of the estuary cannot be established. This study suggests that nutrient enrichment from the shrimp farming activities is of a magnitude that may contribute to the phytoplankton community changes observed in the lower reaches of the estuary.  相似文献   

18.
Mixing plots, in which a dissolved constituent is plotted against salinity or chlorinity, are commonly used to interpret conservative and non-conservative processes in estuarine systems. A bend in the resulting curve is generally interpreted as indicative of the reactive or non-conservative nature of the constituent or the presence of multiple sources or sinks within the estuary. This paper demonstrates analytically that bends in mixing curves may also result from temporal variations in end-member (river or ocean) constituent concentrations even for conservative constituents. A one-dimensional dispersion equation is used to calculate the distribution of salinity and a conservative constituent in a model estuary. Both straight and bent mixing curves are shown resulting simply from changing the variability of the river constituent concentration. For no variability the curve is straight. For variability with a period much less than the flushing time, the average curve for a general data set straight, whereas the curve for a synoptic data set is bent. For variability with a period greater than the flushing time a bent curve results. Since bent mixing curves can occur for conservative properties, the use of these curves for interpretation of estuarine processes must be undertaken with an understanding of the temporal variability of the river and ocean constituents and their relationship to the estuary mixing properties and flushing time.  相似文献   

19.
Increased frequency and severity of droughts, as well as growing human freshwater demands, in the Apalachicola-Chattahoochee-Flint River Basin are expected to lead to a long-term decrease in freshwater discharge to Apalachicola Bay (Florida). To date, no long-term studies have assessed how river discharge variability affects the Bay’s phytoplankton community. Here a 14-year time series was used to assess the influence of hydrologic variability on the biogeochemistry and phytoplankton biomass in Apalachicola Bay. Data were collected at 10 sites in the bay along the salinity gradient and include drought and storm periods. Riverine dissolved inorganic nitrogen and phosphate inputs were correlated to river discharge, but chlorophyll a (Chl a) was similar between periods of drought and average/above-average river discharge in most of the Bay. Results suggest that the potentially negative impact of decreased riverine nutrient input on Bay phytoplankton biomass is mitigated by the nutrient buffering capacity of the estuary. Additionally, increased light availability, longer residence time, and decreased grazing pressures may allow more Chl a biomass to accumulate during drought. In contrast to droughts, tropical cyclones and subsequent increases in river discharge increased flushing and reduced light penetration, leading to reduced Chl a in the Bay. Analysis of the time series revealed that Chl a concentrations in the Bay do not directly mirror the effect of riverine nutrient input, which is masked by multiple interacting mechanisms (i.e., nutrient loading and retention, grazing, flushing, light penetration) that need to be considered when projecting the response of Bay Chl a to changes in freshwater input.  相似文献   

20.
The distributions of dissolved organic carbon (DOC), phytoplankton biomass (as measured by in vivo fluorescence), total nitrogen and phosphorus, and light extinction were observed on 10 cruises during 1989 and 1990 in the Pawcatuck River estuary located in southern Rhode Island. In the lower estuary, the distance of peak phytoplankton biomass from the head of the estuary was positively correlated with river discharge while the magnitude of the peak increased with decreasing discharge. High light-extinction appeared to limit the accumulation of biomass in the upper estuary. Variability in light extinction was largely (50%) explained by variation in the concentration of DOC. Salinity versus constituent plots suggested that DOC behaved nonconservatively in the estuary. These observational data indicate that the mixing behavior of DOC in the estuary influences light extinction and thus may limit accumulation of phytoplankton biomass in the upper estuary. This interpretation of observational data was supported by experimental work that demonstrated the significant contribution of DOC to light extinction, and by measurements, of phytoplankton productivity that showed greater light limitation in the upper estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号