首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Reductive dechlorination of perchloroethylene (PCE) and trichloroethylene (TCE) by vitamin B12 is an analogue of the microbial reductive dechlorination reaction and is presently being applied as a remediation technique. Stable carbon isotopic analysis, an effective and powerful tool for the investigation and monitoring of contaminant remediation, was used to characterize the isotopic effects of reductive dechlorination of PCE and TCE by vitamin B12 in laboratory microcosms. In laboratory experiments, 10 mg/L vitamin B12 degraded >90% of the initial 20 mg/L PCE with TCE, the primary product of PCE degradation, accounting for between 64% and 72% of the PCE degraded. In experiments with TCE, 147 mg/L vitamin B12 degraded >90% of the initial 20 mg/L TCE with cis -dichloroethene ( c DCE), the primary product of degradation accounting for between 30% and 35% of the TCE degraded. Degradation of both PCE and TCE exhibited first-order kinetics. Strong isotopic fractionation of the reactant PCE and of the reactant TCE was observed over the course of degradation. This fractionation could be described with a Rayleigh model using enrichment factors of −16.5%o and −15.8%o for PCE, and −17.2%o and −16.6%o for TCE. Fractionation was similar in all experiments, with a mean enrichment factor of −16.5%o ± 0.6%o. The occurrence of such large enrichment factors indicates that isotopic analysis can be used to monitor the dechlorination of PCE and TCE by vitamin B12 and remediation of ground water plumes. Evidence indicates that isotopic fractionation is taking place during complexation of the chlorinated ethenes to vitamin B12, as has been suggested for reductive dechlorination by zero valent iron. The differences between e values for this reaction and those observed for anaerobic biodegradation of the chlorinated ethenes suggest that there may be differences in the rate-determining step for these two processes.  相似文献   

2.
The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis‐DCE compound‐specific isotope analysis of carbon and chlorine collected over a 16‐month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis‐DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ37Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis‐DCE. Carbon isotopic values range between ?28.9 and ?20.7‰ VPDB for TCE, and ?26.5 and ?11.8‰ VPDB for cis‐DCE. In most wells, isotopic values remained steady over the 15‐month study. Isotopic enrichment from TCE to cis‐DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine‐carbon isotopic enrichment ratios (?Cl/?C) were 0.18 for TCE and 0.69 for cis‐DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume.  相似文献   

3.
Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is able to provide valuable insight into the fundamental processes and their complex interactions during bioremediation of chlorinated ethenes in DNAPL source zones.  相似文献   

4.
Contamination of groundwater with chlorinated ethenes is common and represents a threat to drinking water sources. Standard anaerobic bioremediation methods for the highly chlorinated ethenes PCE and TCE are not always effective in promoting complete degradation. In these cases, the target contaminants are degraded to the daughter products DCE and/or vinyl chloride. This creates an additional health risk, as vinyl chloride is even more toxic and carcinogenic than its precursors. New treatment modalities are needed to deal with this widespread environmental problem. We describe successful bioremediation of a large, migrating, dilute vinyl chloride plume in Massachusetts with an aerobic biostimulation treatment approach utilizing both oxygen and ethene. Initial microcosm studies showed that adding ethene under aerobic conditions stimulated the rapid degradation of VC in site groundwater. Deployment of a full‐scale treatment system resulted in plume migration cutoff and nearly complete elimination of above‐standard VC concentrations.  相似文献   

5.
Large laboratory columns (15.2 cm diameter, 183 cm long) were fed with groundwater containing trichloroethylene (TCE), were biostimulated and bioaugmented, and were monitored for over 7.5 years. The objective of the study was to observe how the selection of the carbon and energy source, i.e., whey, Newman Zone® standard surfactant emulsified oil and Newman Zone nonionic surfactant emulsified oil, affected the rate and extent of dechlorination. Column effluent was monitored for TCE and its degradation products, redox indicators (nitrate‐N, Fe(II), sulfate), and changes in iron mineralogy. Total bacteria and Dehalococcoides mccartyi strains were quantified using q‐PCR. Complete dechlorination was only observed in the whey treated columns, occurring 1 year after bioaugmentation with addition of a culture known to dechlorinate TCE to ethene, and 3 years later in the non‐bioaugmented column. The addition of the emulsified oils with or without bioaugmentation resulted in dechlorination only through cis‐DCE and vinyl chloride. While Dehalococcoides mccartyi strains are the only known bacteria that can fully dechlorinate TCE, their presence, either natural or augmented, was not the sole determiner of complete dechlorination. The establishment of a supporting microbial community and biogeochemistry that developed with continuous feeding of whey, in addition to the presence of D. mccartyi, were necessary to support complete reductive dechlorination. Results confirm that careful selection of a biostimulant is critical to the success of TCE dechlorination in complex soil environments.  相似文献   

6.
At a low permeability clay till site contaminated with chlorinated ethenes (Gl. Kongevej, Denmark), enhanced reductive dechlorination (ERD) was applied by direct push injection of molasses and dechlorinating bacteria. The performance was investigated by long‐term groundwater monitoring, and after 4 years of remediation, the development of degradation in the clay till matrix was investigated by high‐resolution subsampling of intact cores. The formation of degradation products, the presence of specific degraders Dehalococcoides spp. with the vinyl chloride (VC) reductase gene vcrA, and the isotope fractionation of trichloroethene, cis‐dichloroethene (cis‐DCE), and VC showed that degradation of chlorinated ethenes occurred in the clay till matrix as well as in sand lenses, sand stringers, and fractures. Bioactive sections of up to 1.8 m had developed in the clay till matrix, but sections, where degradation was restricted to narrow zones around sand lenses and stringers, were also observed. After 4 years of remediation, an average mass reduction of 24% was estimated. Comparison of the results with model simulation scenarios indicate that a mass reduction of 85% can be obtained within approximately 50 years without further increase in the narrow reaction zones if no donor limitations occur at the site. Long‐term monitoring of the concentration of chlorinated ethenes in the underlying chalk aquifer revealed that the aquifer was affected by the more mobile degradation products cis‐DCE and VC generated during the remediation by ERD.  相似文献   

7.
Chlororespiration is common in shallow aquifer systems under conditions nominally identified as anoxic. Consequently, chlororespiration is a key component of remediation at many chloroethene‐contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products is interpreted as evidence that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene‐contaminated shallow aquifer systems, however, nonconservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms and is consistent with contaminant degradation to nondiagnostic mineralization products like CO2. While anoxic mineralization of chloroethene compounds has been proposed previously, recent results suggest that oxygen‐based mineralization of chloroethenes also can be significant at dissolved oxygen concentrations below the currently accepted field standard for nominally anoxic conditions. Thus, reassessment of the role and potential importance of low concentrations of oxygen in chloroethene biodegradation are needed, because mischaracterization of operant biodegradation processes can lead to expensive and ineffective remedial actions. A modified interpretive framework is provided for assessing the potential for chloroethene biodegradation under different redox conditions and the probable role of oxygen in chloroethene biodegradation.  相似文献   

8.
Four samples of two commercially available iron brands used as substrate for iron permeable reactive barriers (PRBs) were tested for suitability for remediation of perchloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cDCE) and vinyl chloride (VC). Kinetic studies indicate that rates of reaction are enhanced for cDCE and VC on Connelly iron (2.8 x 10(-4) to 6.9 x 10(-4) L/m2/hr and 2.0 x 10(-4) to 9.0 x 10(-4) L/m2/hr, for cDCE and VC, respectively) vs. Peerless iron (3.1 x 10(-5) to 4.6 x 10(-5) L/m2/hr and 2.4 x 10(-5) to 4.1 x 10(-5) L/m2/hr, for cDCE and VC, respectively). Carbon isotopic analyses of the residual chlorinated ethylene (CE) during degradation indicate significant fractionation occurs during reductive dechlorination, with, for example, up to 70% enrichment in carbon isotopic values observed when VC is more than 99% degraded. Comparison of fractionation factors (epsilon) indicates significant differences in carbon isotopic fractionation for different iron types and for different CEs. For the lower CEs (cDCE and VC) in particular, both slower reaction rates and larger fractionation are observed for degradation on Peerless vs. Connelly iron. This is the first study to establish a correlation between the rate of abiotic degradation on Fe(0) and the extent of isotopic fractionation, and the first to confirm consistent differences in these two parameters as a function of iron type. The possibility that these differences in kinetics and carbon isotopic fractionation for cDCE and VC are related to differences in branching ratios between competing hydrogenolysis and beta-elimination reactions during reductive dechlorination on the iron surfaces is discussed.  相似文献   

9.
Mineralization of 14C‐radiolabled vinyl chloride ([1,2‐14C] VC) and cis‐dichloroethene ([1,2‐14C] cis‐DCE) under hypoxic (initial dissolved oxygen (DO) concentrations about 0.1 mg/L) and nominally anoxic (DO minimum detection limit = 0.01 mg/L) was examined in chloroethene‐exposed sediments from two groundwater and two surface water sites. The results show significant VC and dichloroethene (DCE) mineralization under hypoxic conditions. All the sample treatments exhibited pseudo‐first‐order kinetics for DCE and VC mineralization over an extended range of substrate concentrations. First‐order rates for VC mineralization were approximately 1 to 2 orders of magnitude higher in hypoxic groundwater sediment treatments and at least three times higher in hypoxic surface water sediment treatments than in the respective anoxic treatments. For VC, oxygen‐linked processes accounted for 65 to 85% of mineralization at DO concentrations below 0.1 mg/L, and 14CO2 was the only degradation product observed in VC treatments under hypoxic conditions. Because the lower detection limit for DO concentrations measured in the field is typically 0.1 to 0.5 mg/L, these results indicate that oxygen‐linked VC and DCE biodegradation can be significant under field conditions that appear anoxic. Furthermore, because rates of VC mineralization exceeded rates of DCE mineralization under hypoxic conditions, DCE accumulation without concomitant accumulation of VC may not be evidence of a DCE degradative “stall” in chloroethene plumes. Significantly, mineralization of VC above the level that could reasonably be attributed to residual DO contamination was also observed in several nominally anoxic (DO minimum detection limit = 0.01 mg/L) microcosm treatments.  相似文献   

10.
An experiment was conducted to determine if biodegradation of trichloroethylene (TCE) can occur in previously uncontaminated ground water in saturated fractured saprolite (highly weathered material derived from sedimentary rocks). Two undisturbed columns (0.23 m diameter by 0.25 m long) of fractured saprolite were collected from approximately 2 m depth at an uncontaminated site on the Oak Ridge Reservation, Oak Ridge, Tennessee. Natural, uncontaminated ground water from the site, which was degassed and spiked with dissolved phase TCE, was continuously pumped through one column containing the natural microbial communities (the biotic column). In a second column, the microorganisms were inhibited and the dissolved phase TCE was added under aerobic conditions (dissolved oxygen conditions > 2 ppm). In effluent from the biotic column, reducing conditions rapidly developed and evidence of anaerobic biodegradation of TCE, by the production of cDCE, first appeared approximately 31 days after addition of TCE. Reductive dechlorination of TCE occurred after iron-reducing conditions were established and about the same time that sulfate reduction began. There was no evidence of methanogenesis. Analyses using polymerase chain reaction with specific primers sets detected the bacteria Geothrix, Geobacter, and Desulfococcus-Desulfonema-Desulfosarcina in the effluent of the biotic column, but no methanogens. The presence of these bacteria is consistent with iron- and sulfate-reducing conditions. In the inhibited column, there were no indicators of TCE degradation. Natural organic matter that occurs in the saprolite and ground water at the site is the most likely primary electron donor for supporting reductive dechlorination of TCE. The relatively rapid appearance of indicators of TCE dechlorination suggests that these processes may occur even in settings where low oxygen conditions occur seasonally due to changes in the water table.  相似文献   

11.
With the method used here, it was possible to determine the isotope content of both the initial compounds and their metabolites formed due to microbial degradation. The chemical analysis showed that the dominating degradation metabolite for both PCE and TCE degradation was cis-1,2-dichloroethene (cis-1,2-DCE). Apart from this, the formation of TCE, trans-1,2-DCE, 1,1-DCE, chloroethene (VC), ethene and ethane was observed. The isotope analysis showed no measurable fractionation of stable carbon isotopes, for the microbial degradation of PCE and TCE to cis-1,2-DCE. There was a small effect for trans-1,2-DCE and a stronger one for VC as metabolite of TCE.  相似文献   

12.
In situ biogeochemical transformation involves biological formation of reactive minerals in an aquifer that can destroy chlorinated solvents such as trichloroethene (TCE) without accumulation of intermediates such as vinyl chloride. There is uncertainty regarding the materials and geochemical conditions that are required to promote biogeochemical transformation. The objective of this study was to identify amendments and biogeochemical conditions that promote in situ biogeochemical transformation. Laboratory columns constructed with plant mulch were supplemented with different amendments and were operated under varying conditions of water chemistry and hydraulic residence time. Four patterns of TCE removal were observed: (1) no removal, (2) biotic transformation of TCE to cis‐1,2‐dichloroethene (cis‐1,2‐DCE), (3) biogeochemical transformation of TCE without accumulation of reductive dechlorination products, and (4) mixed behavior where a combination of patterns was observed either simultaneously or over time. Principal coordinates analysis and analysis of variance (ANOVA) identified factors that promoted biogeochemical transformation: (1) high influent sulfate concentration, (2) relatively high hydraulic retention time, (3) supplementation of mulch with vegetable oil, and (4) addition of hematite or magnetite. The combination of the first three factors promoted complete sulfate reduction and a high volumetric sulfate consumption rate. The fourth factor provided a source of ferrous iron and/or a surface to which sulfide could react to form reactive iron sulfides. Many columns demonstrated either no TCE removal or a biotic TCE transformation pattern. Modification of column operation to include all four factors identified above promoted biogeochemical transformation in these columns. These results support the importance of the factors in biogeochemical transformation.  相似文献   

13.
This study applies an optimized phytoscreening method to locate a chlorinated ethene plume discharging into a stream. To evaluate the conditions most suitable for successful phytoscreening, trees along the stream bank were monitored through different seasons with different environmental conditions and hence different uptake/loss scenarios. Vinyl chloride (VC) as well as cis‐dichloroethylene (cis‐DCE), trichloroethylene (TCE), and tetrachloroethylene (PCE) were detected in the trees, documenting that phytoscreening is a viable method to locate chlorinated ethene plumes, including VC, discharging to streams. The results reveal, that phytoscreening for VC is more sensitive to environmental conditions affecting transpiration than for the other chlorinated ethenes detected. Conditions leading to higher groundwater uptake by transpiration than contaminant loss by diffusion from the tree trunks are optimal (e.g., low relative humidity, plentiful hours of sunshine and an intermediate air temperature). Additionally, low precipitation prior to the sampling event is beneficial, as uptake of infiltrating precipitation dilutes the concentration in the trees. All chlorinated ethenes were sensitive to dilution by clean precipitation and in some months, this resulted in no detection of contaminants in the trees at all. Under optimal environmental conditions the tree cores allowed detection of chlorinated solvents and their metabolites in the underlying groundwater. Whereas, for less ideal conditions there was a risk of no detection of the more volatile VC. This study is promising for the future applicability of phytoscreening to locate shallow groundwater contamination with the degradation products of chlorinated solvents.  相似文献   

14.
High‐resolution soil and groundwater monitoring was performed to assess the long‐term impacts of bioremediation using bioaugmentation with a dechlorinating microbial consortium (and sodium lactate as the electron donor) in a well‐characterized trichloroethene (TCE) dense nonaqueous phase liquid (DNAPL) source area. Monitoring was performed up to 3.7 years following active bioremediation using a high‐density monitoring network that included several discrete interval multi‐level sampling wells. Results showed that despite the absence of lactate, lactate fermentation transformation products, or hydrogen, biogeochemical conditions remained favorable for the reductive dechlorination of chlorinated ethenes. In locations where soil data showed that TCE DNAPL sources persisted, local contaminant rebound was observed in groundwater, whereas no rebound or continuous decreases in chlorinated ethenes were observed in locations where DNAPL sources were treated. While ethene levels measured 3.7 years after active treatment suggested relatively low (2 to 30%) dechlorination of the parent TCE and daughter products, carbon stable isotope analysis showed that the extent of complete dechlorination was much greater than indicated by ethene generation and that the estimated first‐order rate constant describing the complete dechlorination of TCE at 3.7 years following active bioremediation was approximately 3.6 y–1. Overall, results of this study suggest that biological processes may persist to treat TCE for years after cessation of active bioremediation, thereby serving as an important component of remedial treatment design and long‐term attenuation.  相似文献   

15.
Mass discharge across transect planes is increasingly used as a metric for performance assessment of in situ groundwater remediation systems. Mass discharge estimates using concentrations measured in multilevel transects are often made by assuming a uniform flow field, and uncertainty contributions from spatial concentration and flow field variability are often overlooked. We extend our recently developed geostatistical approach to estimate mass discharge using transect data of concentration and hydraulic conductivity, so accounting for the spatial variability of both datasets. The magnitude and uncertainty of mass discharge were quantified by conditional simulation. An important benefit of the approach is that uncertainty is quantified as an integral part of the mass discharge estimate. We use this approach for performance assessment of a bioremediation experiment of a trichloroethene (TCE) source zone. Analyses of dissolved parent and daughter compounds demonstrated that the engineered bioremediation has elevated the degradation rate of TCE, resulting in a two‐thirds reduction in the TCE mass discharge from the source zone. The biologically enhanced dissolution of TCE was not significant (~5%), and was less than expected. However, the discharges of the daughter products cis‐1,2, dichloroethene (cDCE) and vinyl chloride (VC) increased, probably because of the rapid transformation of TCE from the source zone to the measurement transect. This suggests that enhancing the biodegradation of cDCE and VC will be crucial to successful engineered bioremediation of TCE source zones.  相似文献   

16.
The ability of bioremediation to treat a source area containing trichloroethene (TCE) present as dense nonaqueous phase liquid (DNAPL) was assessed through a laboratory study and a pilot test at Launch Complex 34, Cape Canaveral Air Force Center. The results of microcosm testing indicate that the indigenous microbial community was capable of dechlorinating TCE to ethene if amended with electron donor; however, bioaugmentation with a dechlorinating culture (KB-1; SiREM, Guelph, Ontario, Canada) significantly increased the rate of ethene formation. In microcosms, the activity of the dechlorinating organisms in KB-1 was not inhibited at initial TCE concentrations as high as 2 mM. The initially high TCE concentration in ground water (1.2 mM or 155 mg/L) did not inhibit reductive dechlorination, and at the end of the study, the average concentration of ethene (2.4 mM or 67 mg/L) was in stoichiometric excess of this initial TCE concentration. The production of ethene in stoichiometric excess in comparison to the initial TCE concentration indicates that the bioremediation treatment enhanced the removal of TCE mass (either sorbed to soil or present as DNAPL). Detailed soil sampling indicated that the bioremediation treatment removed greater than 98.5% of the initial TCE mass. Confirmatory ground water samples collected 22 months after the bioremediation treatment indicated that chloroethene concentrations had continued to decline in the absence of further electron donor addition. The results of this study confirm that dechlorination to ethene can proceed at the high TCE concentrations often encountered in source areas and that bioremediation was capable of removing significant TCE mass from the test plot, suggesting that enhanced bioremediation is a potentially viable remediation technology for TCE source areas. Dehalococcoides abundance increased by 2 orders of magnitude following biostimulation and bioaugmentation.  相似文献   

17.
This paper aims to reconcile discrepancies among reports of dechlorination performance in the presence of sulfate, by analyzing data from the literature, presenting results from laboratory experiments performed with mixed anaerobic microbial cultures, and synthesizing respective findings. A complete set of metrics for dechlorination progress was developed and used in the analysis of selected field and laboratory studies. When differences in site and experimental conditions are accounted for and definitions of dechlorination completeness are harmonized, the inverse relationship between dechlorination performance and sulfate concentration becomes clearer. This relationship was investigated in detail with laboratory experiments on mixed anaerobic microbial cultures enriched with the same concentration of trichloroethylene (TCE) and different sulfate concentrations, equal to near zero (considered as the baseline culture), 30, 400, and 1100 mg/L. In all experiments, sulfate reduction proceeded concurrently with dechlorination. The observed behavior was bimodal, indicating a transition in dechlorination performance between 30 and 400 mg/L. Under low donor to acceptor stoichiometry conditions, TCE dechlorination was incomplete in all experiments after 14 days, while the percentage of TCE moles reduced to vinyl chloride was lower by about 50% in the experiments with high sulfate concentrations. When donor was added in excess to stoichiometry needs for TCE reduction, TCE dechlorination was complete in the baseline culture, while only little ethene was detected in the high sulfate concentration cultures. When all studies are considered together, it appears that the presence of sulfate does not preclude complete dechlorination but rather delays it. Data analysis also suggests that the proposed upper limit of 500 mg/L for the range of initial sulfate concentration that is not problematic for dechlorination should be revised to a lower value.  相似文献   

18.
The tetrachloroethene (PCE) source zone at a site in Endicott, New York had caused a dissolved PCE plume. This plume was commingled with a petroleum hydrocarbon plume from an upgradient source of fuel oil. The plume required a system for hydraulic containment, using extraction wells located about 360 m downgradient of the source. The source area was remediated using in situ thermal desorption (ISTD). Approximately 1406 kilograms (kg) of PCE was removed in addition to 4082 kg of commingled petroleum‐related compounds. The ISTD treatment reduced the PCE mass discharge into the plume from an estimated 57 kg/year to 0.07 kg/year, essentially removing the source term. In the 5 years following the completion of the thermal treatment in early 2010, the PCE plume has collapsed, and the concentration of degradation products in the PCE‐series plume area has declined by two to three orders of magnitude. Anaerobic dechlorination is the suspected dominant mechanism, assisted by the presence of a fuel oil smear zone and a petroleum hydrocarbon plume from a separate source area upgradient of the PCE source. Based on the post‐thermal treatment groundwater monitoring data, the hydraulic containment system was reduced in 2014 and discontinued in early 2015.  相似文献   

19.
Cone penctrometer test (CPT) based Raman spectroscopy was used to identify separate phase tetrachloroethylene (PCE) and trichlorocthylene (TCE) contamination in the subsurface at two locations during field tests conducted at the U.S. Department of Energy's (DOE) Savannah River site. Clear characteristic Raman spectral peaks for PCE and TCE were observed at two sites and several depths during CPT deployment. Because of the uniqueness of a Raman spectrum for a given compound, these data are compelling evidence of the presence of the two compounds. The Raman spectral results correlated with high PCE and TCE concentrations in soil samples collected from the same subsurface zones, confirming that the method is a viable dense nonaqueous phase liquid (DNAPL) characterization technique. The Raman spectroscopic identification of PCE and TCE in these tests represents the first time that DNAPLs have been unequivocally located in the subsurface by an in situ technique.
The detection limit of the Raman spectroscopy is related to the probability of contaminant droplets appearing on the optical window in the path of the probe light. Based on data from this fieldwork the Raman technique may require a threshold quantity of DNAPL to provide an adequate optical cross section for spectroscopic response. The low aqueous solubility of PCE and TCE and relatively weak optical intensity of the Raman signal precludes the detection of aqueous phase contaminants by this method, making it selective for DNAPL contaminants only.  相似文献   

20.
Degradation of dissolved chlorinated solvents using granular iron is an established in situ technology. This paper reports on investigations into mixing iron and bentonite with contaminated soil for in situ containment and degradation of dense nonaqueous phase liquid source zones. In the laboratory, hypovials containing soil, water, bentonite, iron, and free-phase trichloroethene (TCE) were assembled. Periodic measurement of TCE, chloride, and degradation products showed progressive degradation of TCE to nondetectable levels. Subsequently, a demonstration was conducted at Canadian Forces Base Borden near Alliston, Ontario, Canada, where, in 1991, a portion of the surficial aquifer was isolated and free-phase tetrachloroethene (PCE) was introduced. Using a drill rig equipped with large-diameter mixing blades, three mixed zones were prepared containing 0%, 5%, and 10% granular iron by volume. The bentonite was added to serve as a lubricant to facilitate injection of the iron and to isolate the contaminated zone. Analysis of core samples showed reasonably uniform distributions of iron through the mixed zones. Monitoring over a 13-month period following installation showed, relative to the control, a decline in PCE concentrations to virtually nondetectable values. Reaction rates in the laboratory tests were similar to those reported in the literature, while the rate in the field test was substantially lower. The lower rate may be a consequence of mass transfer limitations under the static conditions of the field test. Results indicate that mixing iron and bentonite into source zones may be an effective means of source-zone remediation, with the particular advantage of being relatively immune to effects of geologic heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号