首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To constrain the depositional age of the lowermost Nakdong Formation in the Early Cretaceous Gyeongsang Basin, SHRIMP U–Pb age determination was carried out on zircon separates. The U–Pb compositions of detrital zircons from the Nakdong Formation yield a wide range of ages from the Archean to the Cretaceous but show a marked contrast in age distribution according to the geographical locations within the basin. The provenance of the southern Nakdong Formation is dominantly the surrounding Yeongnam Massif, which is composed of Paleoproterozoic metamorphic rocks and Triassic to Jurassic plutonic rocks, whereas the central to northern Nakdong Formation records significant sediment derivation from the Okcheon Metamorphic Belt, which is distributed to the northwest, in addition to the contribution from the Yeongnam Massif. It is suggested that the maximum depositional age of the Nakdong Formation is ca 127 Ma, based on its youngest detrital zircon age population. The onset of its deposition at 127 Ma coincided with the tectonic inversion in East Asia from a compressional to an extensional geodynamic setting, probably due to the contemporaneous change in the drift direction of the Izanagi Plate and its subsequent oblique subduction.  相似文献   

2.
The Sindong Group forms the lowermost basin‐fill of the Gyeongsang Basin, the largest Cretaceous nonmarine basin located in southeastern Korea, and comprises the Nakdong, Hasandong, and Jinju Formations with decreasing age. The depositional age of the Sindong Group has not yet been determined well and the reported age ranges from the Valanginian to Albian. Detrital zircons from the Sindong Group have been subjected to U–Pb dating using laser ablation inductively coupled plasma mass spectrometry. The Sindong Group contains noticeable amounts of detrital magmatic zircons of Cretaceous age (138–106 Ma), indicative of continuous magmatic activity prior to and during deposition of the Sindong Group. The youngest detrital zircon age of three formations becomes progressively younger stratigraphically: 118 Ma for the Nakdong Formation, 109 Ma for the Hasandong Formation, and 106 Ma for the Jinju Formation. Accordingly, the depositional age of the Sindong Group ranges from the late Aptian to late Albian, which is much younger than previously thought. Lower Cretaceous magmatic activity, which supplied detrital zircons to the Sindong Group, changed its location spatially through time; it occurred in the middle and northern source areas during the early stage, and then switched to the middle to southern source areas during the middle to late stages. This study reports first the Lower Cretaceous magmatic activity from the East Asian continental margin, which results in a narrower magmatic gap (ca 20 m.y.) than previously known.  相似文献   

3.
Yong I. Lee 《Island Arc》2008,17(4):458-470
The currently available paleogeographic maps of the East Asia continental margin during the Mesozoic have been recast in the light of recent research results on sediments distributed in Korea and Japan. Both the Korean peninsula and the Inner zone of Southwest Japan exchanged sediment supply during the Middle to Late Mesozoic, suggestive of a close paleogeographic relationship between the two countries at the active continental margin setting. During the latest Middle to earliest Late Jurassic the Mino–Tamba trench was developed along the southeastern Korean peninsula, from which trench‐fill sediments were sourced and to which an accretionary complex was accreted. Lower Cretaceous quartz‐arenite clasts of the Tetori Group in the Hida Marginal Belt of Southwest Japan were derived from pre‐Mesozoic quartz‐arenite strata distributed in the southern central and east central Korean peninsula, suggesting that the Tetori Basin was located close to the central eastern part of the Korean peninsula at the time of deposition of quartz‐arenite clasts, contrary to conventional thought of far distance between the two areas based on paleomagnetic data. During the early Late Cretaceous radiolaria‐bearing chert pebbles and sands in the northern part of the non‐marine Gyeongsang Basin distributed in the southeastern Korean peninsula were derived from the uplifted Mino–Tamba accretionary complex distributed in southwest Japan, suggesting that the Mino–Tamba terrane was land‐connected with the eastern Korean peninsula. These new findings suggest that in contrast to conventional thought, the collage of tectonic blocks in Southwest Japan has assembled in post‐early Late Cretaceous time.  相似文献   

4.
The belt boundary thrust within the Cretaceous–Neogene accretionary complex of the Shimanto Belt, southwestern Japan, extends for more than ~ 1 000 km along the Japanese islands. A common understanding of the origin of the thrust is that it is an out of sequence thrust as a result of continuous accretion since the late Cretaceous and there is a kinematic reason for its maintaining a critically tapered wedge. The timing of the accretion gap and thrusting, however, coincides with the collision of the Paleocene–early Eocene Izanagi–Pacific spreading ridges with the trench along the western Pacific margin, which has been recently re‐hypothesized as younger than the previous assumption with respect to the Kula‐Pacific ridge subduction during the late Cretaceous. The ridge subduction hypothesis provides a consistent explanation for the cessation of magmatic activity along the continental margin and the presence of an unconformity in the forearc basin. This is not only the case in southwestern Japan, but also along the more northern Asian margin in Hokkaido, Sakhalin, and Sikhote‐Alin. This Paleocene–early Eocene ridge subduction hypothesis is also consistent with recently acquired tomographic images beneath the Asian continent. The timing of the Izanagi–Pacific ridge subduction along the western Pacific margin allows for a revision of the classic hypothesis of a great reorganization of the Pacific Plate motion between ~ 47 Ma and 42 Ma, illustrated by the bend in the Hawaii–Emperor chain, because of the change in subduction torque balance and the Oligocene–Miocene back arc spreading after the ridge subduction in the western Pacific margin.  相似文献   

5.
The Cretaceous tectonic and geodynamic settings of the southeastern Russian continental margin are discussed using data generated during several recent geological studies. The structural patterns of the East Asian Cretaceous continental margin are the result of the influence of global and regional processes. The interaction and reorganization of the Eurasian, Pacific and other related plates induced intraplate tectonic processes such as rifting, subduction, collision, transform faulting, and basin formation. Three major basin types are recognized in this area: (i) mainly marine active continental margins associated with shear components (Sangjian–Middle Amur Basin); (ii) passive continental margins (Bureya, Partizansk, and Razdolny basins); (iii) intracontinental basins (Amur–Zeya Basin). The evolution of the biota in this region allows the examination of Early and Late Cretaceous biostratigraphy, faunal and floral changes, and the phytogeography of the southeastern Russian continental margin.  相似文献   

6.
The NE- to NNE-striking Tan-Lu Fault Zone (TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate, and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis, and indicates initiation of the Paleo-Pacific (Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.  相似文献   

7.
Abstract Mesozoic accretionary complexes of the southern Chichibu and the northern Shimanto Belts, widely exposed in the Kanto Mountains, consist of 15 tectonostratigraphic units according to radiolarian biochronologic data. The units show a zonal arrangement of imbricate structure and the age of the terrigenous clastics of each unit indicates successive and systematic southwestward younging. Although rocks in these complexes range in age from Carboniferous to Cretaceous, the trench-fill deposits corresponding to the Hauterivian, the Aptian to Middle Albian and the Turonian are missing. A close relationship between the missing accretionary complexes and the development of strike-slip basins is recognizable. The tectonic nature of the continental margin might have resulted from a change from a convergent into a transform or oblique-slip condition, so that strike-slip basins were formed along the mobile zones on the ancient accretionary complexes. Most terrigenous materials were probably trapped by the strike-slip basins. Then, the accretion of the clastic rock sequence occurred, probably as a result of the small supply of terrigenous materials in the trench. However, in the case of right-angle subduction, terrigenous materials might have been transported to the trench through submarine canyons and deposited there. Thus, the accretionary complexes grew rapidly and thickened. Changes both in oceanic plate motion and in the fluctuation of terrigenous supply due to the sedimentary trap caused pulses of accretionary complex growth during Jurassic and Cretaceous times. In the Kanto Mountains, three tectonic phases are recognized, reflecting the changes of the consuming direction of the oceanic plates along the eastern margin of the Asian continent. These are the Early Jurassic to early Early Cretaceous right-angle subduction of the Izanagi Plate, the Early to early Late Cretaceous strike-slip movement of the Izanagi and Kula Plates, and the late Late Cretaceous right-angle subduction of the Kula Plate.  相似文献   

8.
Widespread Mesozoic magmatism occurs in the Korean Peninsula (KP). The status quo is poles apart between the northern and southern parts in characterizing its distribution and nature, with the nearly absence of any related information in North Korea. We have the opportunity to have conducted geological investigations in North Korea and South Korea during the past ten years through international cooperation programs. This led to the revelation of a number of granitoids and related volcanic rocks and thus facilitates the comparison with those in East China and Japan. Mesozoic granitoids in the KP can be divisible into three age groups: the Triassic group with a peak age of ~220 Ma, the Jurassic one of ~190–170 Ma and the late Early Cretaceous one of ~110 Ma. The Triassic intrusions include syenite, calc-alkaline to alkaline granite and minor kimberlite in the Pyeongnam Basin of North Korea. They have been considered to form in post-orogenic settings related to the Central Asian Orogenic Belt (CAOB) or the Dabie-Sulu Orogenic Belt (DSOB). The Jurassic granitoids constitute extensive occurrence in the KP and are termed as the Daebo-period magmatism. They correlate well with coeval counterparts in NE China encompassing the northeastern part of the North China Craton (NCC) and the eastern segment of the CAOB. They commonly consist of biotite or two-mica granites and granodiorites, with some containing small dark diorite enclaves. On one hand, Early Jurassic to early Middle Jurassic magmatic rocks are rare in most areas of the NCC, whilst Middle-Late Jurassic ones are not developed in the KP. On the other hand, both NCC and KP host abundant Cretaceous granites. However, the present data revealed contrasting age peaks, with ~130–125 Ma in the NCC and ~110–105 Ma in the KP. Cretaceous granites in the KP comprise the dominant biotite granites and a few amphibole granites. The former exhibit mildly fractionated REE patterns and zircon ε Hf(t) values from -15 to -25, whereas the latter feature strongly fractionated REE patterns and zircon ε Hf(t) values from -10 to -1. Both granites contain inherited zircons of ~1.8–1.9 or ~2.5 Ga. These geochemical characters testify to their derivation from re-melting distinct protoliths in ancient basement. Another Cretaceous magmatic sub-event has been entitled as the Gyeongsang volcanism, which is composed of bimodal calc-alkaline volcanic rocks of 94–55 Ma and granitic-hypabyssal granitic bodies of 72–70 Ma. Synthesizing the Mesozoic magmatic rocks across the KP, NCC and Japan can lead to the following highlights: (1) All Triassic granites in the NCC, KP and Japan have similar characteristics in petrology, chronology and geochemistry. Therefore, the NCC, KP and Japan tend to share the same tectonic setting during the Triassic, seemingly within the context of Indosinian orogensis. (2) Jurassic to earliest Cretaceous magmatic rocks in the NCC seem to define two episodes: episode A from 175 to 157 Ma and episode B from 157 to 135 Ma. Jurassic magmatic rocks in the KP span in age mainly from 190 to 170 Ma, whereas 160–135 Ma ones are rare. With the exception of ~197 Ma Funatsu granite, Jurassic magmatic rocks are absent in Japan. (3) Cretaceous granites in the KP have a peak age of ~110, ~20 Ma younger than those in the NCC, while Japan is exempt from ~130–100 Ma granites. (4) The spatial-temporal distribution and migratory characteristics of the Jurassic-Cretaceous magmatic rocks in Japan, KP, and NE China-North China indicate that the subduction of the Paleo-Pacific plate might not be operative before Late Cretaceous (~130–120 Ma). (5) Late Cretaceous magmatic rocks (~90–60 Ma) occur in the southwestern corner of the KP and also in Japan, coinciding with the metamorphic age of ~90–70 Ma in the Sanbagawa metamorphic belt of Japan. The magmatic-metamorphic rock associations and their spatial distribution demonstrate the affinities of sequentially subduction zone, island arc and back-arc basin from Japan to Korea, arguing for the Pacific plate subduction during Late Cretaceous. (6) This study raises another possibility that the Mesozoic cratonic destruction in the NCC, which mainly occurred during ~150–120 Ma, might not only be due to the subduction of the Paleo-Pacific Plate, but also owe much to the intraplate geodynamic forces triggered by other adjacent continental plates like the Eurasian and Indian plates.  相似文献   

9.
Xiaoming  Li  Guilun  Gong  Xiaoyong  Yang  Qiaosong  Zeng 《Island Arc》2010,19(1):120-133
The Yanji area, located at the border of China, Russia, and Korea, where the Phanerozoic granitoids have been widely exposed, was considered part of the orogenic collage between the North China Block in the south and the Jiamusi–Khanka Massifs in the northeast. In this study, the cooling and inferred uplift and denudation history since the late Mesozoic are intensively studied by carrying out apatite and zircon fission-track analyses, together with electron microprobe analyses (EMPA) of chemical compositions of apatite from the granitoid samples in the Yanji area. The results show that: (i) zircon and apatite fission-track ages range 91.7–99.6 Ma and 76.5–85.4 Ma, respectively; (ii) all apatite fission-track length distributions are unimodal and yield mean lengths of 12–13.2 µm, and the apatites are attributed to chlorine-bearing fluorapatite as revealed by EMPA results; and (iii) the thermal history modeling results based on apatite fission-track grain ages and length distributions indicate that the time–temperature paths display similar patterns and the cooling has been accelerated for each sample since ca 15 Ma. Thus, we conclude that sequential cooling, involving two rapid (95–80 Ma and ca 15–0 Ma) and one slow (80–15 Ma) cooling, has taken place through the exhumation of the Yanji area since the late Cretaceous. The maximum exhumation is more than 5 km under a steady-state geothermal gradient of 35°C/km. Combined with the tectonic setting, this exhumation is possibly related to the subduction of the Pacific Plate beneath the Eurasian Plate since the late Cretaceous.  相似文献   

10.
11.
We have estimated the timescale of material circulation in the Sanbagawa subduction zone based on U–Pb zircon and K–Ar phengite dating in the Ikeda district, central Shikoku. The Minawa and Koboke units are major constituents of the high‐P Sanbagawa metamorphic complex in Shikoku, southwest Japan. For the Minawa unit, ages of 92–81 Ma for the trench‐fill sediments, are indicated, whereas the age of ductile deformation and metamorphism of garnet and chlorite zones are 74–72 Ma and 65 Ma, respectively. Our results and occurrence of c. 150 Ma Besshi‐type deposits formed at mid‐ocean ridge suggest that the 60‐Myr‐old Izanagi Plate was subducted beneath the Eurasian Plate at c. 90 Ma, and this observation is consistent with recent plate reconstructions. For the Koboke unit, the depositional ages of the trench‐fill sediments and the dates for the termination of ductile deformation and metamorphism are estimated at c. 76–74 and 64–62 Ma, respectively. In the Ikeda district, the depositional ages generally become younger towards lower structural levels in the Sanbagawa metamorphic complex. Our results of U–Pb and K–Ar dating show that the circulation of material from the deposition of the Minawa and Koboke units at the trench through an active high‐P metamorphic domain to the final exhumation from the domain occurred continuously throughout c. 30 Myr (from c. 90 to 60 Ma).  相似文献   

12.
Orogens formed by a combination of subduction and accretion are featured by a short-lived collisional history. They preserve crustal geometries acquired prior to the collisional event. These geometries comprise obducted oceanic crust sequences that may propagate somewhat far away from the suture zone, preserved accretionary prism and subduction channel at the interplate boundary. The cessation of deformation is ascribed to rapid jump of the subduction zone at the passive margin rim of the opposite side of the accreted block. Geological investigation and 40Ar/39Ar dating on the main tectonic boundaries of the Anatolide–Tauride–Armenian (ATA) block in Eastern Turkey, Armenia and Georgia provide temporal constraints of subduction and accretion on both sides of this small continental block, and final collisional history of Eurasian and Arabian plates. On the northern side, 40Ar/39Ar ages give insights for the subduction and collage from the Middle to Upper Cretaceous (95–80 Ma). To the south, younger magmatic and metamorphic ages exhibit subduction of Neotethys and accretion of the Bitlis–Pütürge block during the Upper Cretaceous (74–71 Ma). These data are interpreted as a subduction jump from the northern to the southern boundary of the ATA continental block at 80–75 Ma. Similar back-arc type geochemistry of obducted ophiolites in the two subduction–accretion domains point to a similar intra-oceanic evolution prior to accretion, featured by slab steepening and roll-back as for the current Mediterranean domain. Final closure of Neotethys and initiation of collision with Arabian Plate occurred in the Middle-Upper Eocene as featured by the development of a Himalayan-type thrust sheet exhuming amphibolite facies rocks in its hanging-wall at c. 48 Ma.  相似文献   

13.
Abstract   Abundant dinosaur fossils including dinosaur footprints, eggs and nests, teeth and bones have been found from the Cretaceous non-marine deposits of Korea. Among them, dinosaur tracks are the most distinctive, and some track sites are among the most famous in the world. Until now, 27 dinosaur track localities have been discovered from the Cretaceous strata in the Gyeongsang Basin and several small basins. Ornithopod tracks are most abundant at most Korean track sites, and most of them are identified as Caririchnium ; that is, large ornithopod footprints with wide hoof impressions. Most theropod tracks are found in Neungju Basin and they consist of various types of small or medium-sized bird-like footprints, and other large footprints. Sauropod tracks are also abundant in the Gyeongsang Basin. The sauropod tracks vary in size, shape, and pattern of trackway, and suggest that diverse sauropods existed in this area. These diverse tracks in South Korea suggest that various dinosaurs flourished at the margins of lakes distributed in the southern part of the Korean Peninsula during the Cretaceous.  相似文献   

14.
Ar-Ar dating results of late Mesozoic-Cenozoic volcanic rocks from the Yanji area, NE China provide a new volcano-sedimentary stratigraphic framework. The previously defined “Triassic-Jurassic” volcanic rocks (including those from Sanxianling, Tuntianying, Tianqiaoling and Jingouling Fms.) were erupted during 118―106 Ma, corresponding to Early Cretaceous. The new eruption age span is slightly younger than the main stage (130―120 Ma) of the extensive magmatism in the eastern Central Asian Orogenic Belt and its adjacent regions. Subduction-related adakites occurring in the previously defined Quanshuicun Fm. were extruded at ca. 55 Ma. Based on these new Ar-Ar ages, the late Mesozoic to Palaeocene volcano-sedimentary sequences is rebuilt as: Tuopangou Fm., Sanxianling/Tuntianying Fm. (118―115 Ma), Malugou/Tianqiaoling Fm. (K1), Huoshanyan/Jingouling Fm. (108―106 Ma), Changcai Fm. (K2), Quanshuicun Fm. (~55 Ma) and Dalazi Fm. Our results suggest that subduction of the Pa- laeo-Pacific Ocean beneath the East Asian continental margin occurred during 106 to 55 Ma, consistent with the paleomagnetic observations and magmatic records which indicated that the Izanagi-Farallon ridge subduction beneath the southwestern Japan took place during 95―65 Ma.  相似文献   

15.
Tetsuya  Tokiwa 《Island Arc》2009,18(2):306-319
Paleomagnetic studies and hotspot track analyses show that the Kula Plate was subducted dextrally with respect to the Eurasian Plate from the Coniacian to Campanian. However, geological evidence for dextral subduction of the Kula Plate has not been reported from Southwest Japan. Studies of the Coniacian to lower Campanian Miyama Formation of the Shimanto Belt reveal that the mélange fabrics show a dextral sense of shear both at outcrop and microscopic scales. In addition, thrust systems at map-scale also show dextral shearing. Restored shear directions in the mélange indicate dextral oblique subduction of an oceanic plate. This indicates that the Kula Plate subducted dextrally along the eastern margin of Asia during the Coniacian to early Campanian. Combinations with other published kinematic and age constraints suggest that Southwest Japan experienced a change from sinistral to dextral and back to sinistral shear between 89–76 Ma. This history is compatible with global-scale plate reconstructions and places good constraints on the timing of plate boundary interaction with the Cretaceous East Asian margin.  相似文献   

16.
Abstract Understanding the evolution and destruction of past oceans not only leads to a better understanding of earth history, but permits comparison with extant ocean basins and tectonic processes. This paper reviews the history of the Early Paleozoic circum-Atlantic oceans by analogy with the Pacific Ocean and Mesozoic Tethys. Rifting and continental separation from 620 to 570 Ma led to the development of passive margins along parts of the northern margin of Gondwana (the western coast of South America); eastern Laurentia (eastern North America, NW Scotland and East Greenland), and western Baltica (western Scandinavia). Meagre paleomagnetic data suggest that western South America and eastern North America could have been joined together to form facing margins after breakup. Although western Baltica is an apparently obvious candidate for the margin facing NW Scotland and East Greenland, the paleomagnetic uncertainties are so large that other fragments could have been positioned there instead. The Iapetus Ocean off northeastern Gondwana was probably a relatively wide Pacific-type ocean with, during the late Precambrian to early Ordovician, the northern margin of Gondwana as a site of continentward-dipping subduction zone(s). The 650-500 Ma arc-related igneous activity here and the associated deformation gave rise to the Cadomian, ‘Grampian’, Penobscotian, and Famantinian igneous and orogenic events. By 490-470 Ma, marginal basins had formed along the eastern Laurentian margin as far as NE Scotland, along parts of the northern margin of Gondwana, and off western Baltica, but none are known from the East Greenland margin. These basins closed and parts were emplaced as ophiolites shortly after their formation by processes that, at least in some cases, closely resemble the emplacement of the late Cretaceous Semail ophiolite of Oman. This orogenic phase seems to have involved collision and attempted subduction of the continental margin of Laurentia, Gondwana and Baltica. In Baltica it gave rise to some eclogite facies metamorphism. Marginal basin development may have been preceded by arc formation as early as ca 510 Ma. A double arc system evolved outboard from the eastern Laurentian and western Baltica margins, analogous to some of the arc systems in the present-day western Pacific. At 480-470 Ma, there was a second phase of breakup of Gondwana, affecting the active Gondwanan margin. Eastern and Western Avalonia, the Carolina Slate Belt, Piedmont, and other North American exotic continental blocks rifted away from Gondwana. Farther east, Armorica, Aquitainia, Iberia and several European exotic continental blocks also rifted away, though it is unlikely that they all rifted at the same time. Between 460-430 Ma, peaking at ca 450 Ma, orogenic events involved continuing arc-continent collision(s). From 435-400 Ma the remaining parts of the Eastern Iapetus Ocean were destroyed and the collision of Baltica with Laurentia caused the 430-400 Ma Scandian orogeny, followed by suturing of these continents during the Siluro-Devonian Acadian orogeny or Late Caledonian orogeny to 380 Ma, leaving a smaller but new ocean south of the fragments that had collided with the Laurentian margin farther south. The Ligerian orogeny 390-370 Ma collision of Gondwana-derived Aquitaine-Cantabrian blocks with Eastern Avalonia-Baltica and removed the part of the Iapetus south of Baltica. Prior to any orogenic events, the Eastern Iapetus Ocean between Baltica and Laurentia may have resembled the present-day central Atlantic Ocean between Africa and North America. The ocean appears to have closed asymmetrically, with arcs forming first outboard of the western margin of Baltica while the East Greenland margin was unaffected. The Western Iapetus Ocean between Laurentia and Gondwana also closed asymmetrically with a dual arc system developing off Laurentia and an arc system forming off the northern margin of Gondwana. Like the Pacific Ocean today, the Eastern Iapetus Ocean had a longer and more complex history than the Western Iapetus Ocean: it was already in existence at 560 Ma, probably developed over at least 400 million years, by mid-Cambrian time was many thousands of kilometres wide at maximum extent, and was associated with a < 30 million year phase of marginal basin formation. In contrast, the Western Iapetus Ocean appears to have been much narrower, shorter lived (probably < 100 million years), and associated with the rifting to form two opposing passive carbonate margins, analogous to the Mesozoic Tethys or the present-day Mediterranean.  相似文献   

17.
The Cretaceous Toki granitic pluton of the Tono district, central Japan was emplaced in the East Asian continental margin at about 70 Ma. The Toki granite has apatite fission‐track (AFT) ages ranging from 52.1 ±2.8 Ma to 37.1 ±3.6 Ma (number of measurements, n = 33); this indicates the three‐dimensional thermal evolution during the pluton's low‐temperature history (temperature in the AFT partial annealing zone: 60–120 °C). The majority of the Toki granite has a spatial distribution of older ages in the shallower parts and younger ages in the deeper parts, representing that the shallower regions arrived (were exhumed) at the AFT closure depth earlier than the deeper regions. Such a cooling pattern was predominantly constrained by the exhumation of the Toki granitic pluton and was related to the regional denudation of the Tono district. The age–elevation relationships (AERs) of the Toki granite indicate a fast exhumation rate of about 0.16 ±0.04 mm/year between 50 Ma and 40 Ma. The AFT inverse calculation using HeFTy program gives time‐temperature paths (tT paths), suggesting that the pluton experienced continuous slow cooling without massive reheating since about 40 Ma until the present day. A combination of the AERs and AFT inverse calculations represents the following exhumation history of the Toki granite: (i) the fast exhumation at a rate of 0.16 ±0.04 mm/year between 50 Ma and 40 Ma; (ii) slow exhumation at less than 0.16 ±0.04 mm/year after 40 Ma; and (iii) exposure at the surface prior to 30–20 Ma. The Tono district, which contains the Toki granite, underwent slow denudation at a rate of less than 0.16 ±0.04 mm/year within the East Asian continental margin before the Japan Sea opening at 25–15 Ma and then within the Southwest Japan Arc after the Japan Sea opening, which is in good agreement with representative denudation rates obtained in low‐relief hill and plain fields.  相似文献   

18.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   

19.
Rosemary  Hickey-Vargas 《Island Arc》2005,14(4):653-665
Abstract Basalts and tonalites dredged from the Amami Plateau in the northern West Philippine Basin have the geochemical characteristics of intraoceanic island arc rocks: low 87Sr/86Sr (0.70297–0.70310), intermediate 143Nd/144Nd (0.51288–0.51292), moderate light rare earth element (LREE) enrichment (La/Yb = 4.1–6.6) and high La/Nb (1.4–4.3). The incremental heating of hornblende from tonalites yielded well‐defined plateaus and 40Ar/39Ar isochron ages of 115.8 ± 0.5 Ma and 117.0 ± 1.1 Ma, while plagioclase yielded disturbed Ar release patterns, with ages ranging from 70 to 112 Ma. Taken together, these results show that the Amami Plateau was formed by subduction‐related magmatism in the Early Cretaceous period, earlier than indicated by prior K/Ar results. The results support tectonic models in which the West Philippine Basin was opened within a complex of Jurassic–Paleocene island arc terranes, which are now scattered in the northern West Philippine Basin, the Philippine Islands and Halmahera. The Amami Plateau tonalites and basalts have higher Sr/Y and lower Y and 87Sr/86Sr compared with younger tonalitic rocks from the northern Kyushu–Palau Ridge and the Tanzawa complex, which were formed by the subduction of the Pacific Plate beneath the Philippine Sea Plate. Based on the geochemical characteristics of the basalts, the Early Cretaceous subduction zone that formed the Amami Plateau may have been the site of slab melting, which suggests that a younger and hotter plate was being subducted at that time. However, the Amami tonalites were probably formed from basaltic magma by fractional crystallization or by partial melting of basaltic arc crust, rather than by melting of the subducted slab.  相似文献   

20.
The NE-striking Yilan-Yitong Fault Zone(YYFZ) with a length of ca. 900 km is an important major fault zone in northeastern China. Its origin has been a controversial issue for a long time. Detailed field investigation and comprehensive analyses show that strike-slip faults or ductile shear belts exist as the origination structures on the both shoulders of the Cretaceous-Paleogene grabens. These strike-slip structures are dominated by brittle transcurrent faults, and appear as ductile shear belts only in the Weiyuanpu-Yehe and Shulan parts in the south and middle of the fault zone, respectively. The shear belts strike NE-SW and show steep mylonitic foliation and gentle mineral elongation lineation. Outcrop structures, microstructures and quartz c-axis fabrics demonstrate a sinistral shear sense with minor reverse component for the ductile shear belts. The microstructures suggest deformation temperatures of 400–450°C for the Weiyuanpu-Yehe shear belts and 350–400°C for the Shulan shear belt. A series of zircon U-Pb dating results for deformed and undeformed plutons or dikes in the shear belts constrain the strike-slip motion to the time between 160 and 126 Ma. It is further inferred from ages of main geological events in this region that the fault zone originated in the earliest Early Cretaceous. It is suggested therefore that the southern and middle parts of the Tan-Lu Fault Zone, which originated in Middle Triassic, propagated into northeastern China along the sinistral YYFZ under the earliest Early Cretaceous regional compression that is referred to as the Yanshan B event. The earliest Early Cretaceous initiation of the YYFZ results from both the high-speed oblique subduction of the Izanagi Plate and the final closure of the Mongol-Okhotsk Ocean, but the Izanagi Plate subduction played a major dynamic role in the fault zone origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号