首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The partitioning of iron between Mg-rich perovskite (Pv) and ferropericlase (Fp) was investigated for a pyrolitic bulk composition over a wide range of simulated lower-mantle pressures and temperatures from 28 to 114 GPa and from 1,900 to 2,300 K, in a laser-heated diamond anvil cell (DAC). The recovered DAC samples are chemically homogeneous, indicating a relatively small temperature gradient during laser heating. The chemical compositions of coexisting Pv, Fp, and Ca-rich perovskite (CaPv) were determined by energy-dispersive X-ray spectroscopy (EDS) using an EDS instrument attached to a transmission electron microscope. Our results demonstrate that at pressures above 90 GPa, Pv becomes more Fe-rich with increasing pressure, which is likely due to the effects of high-spin to low-spin crossover of Fe3+ in Pv. We highlight that such a change in Fe–Mg partitioning between Pv and Fp should have a strong influence on the physical properties of the deep lower mantle.  相似文献   

2.
Three natural lawsonites from Syke Rock, Mendocino Co., Reed Ranch, Marin Co., and Blake Gardens, Sonoma Co., all from the Coast Range Region in California, were studied by 57Fe Mössbauer spectroscopy, electron microprobe analysis, and X-ray powder diffraction. The samples contain about 0.6, 1.0, and 1.4 wt% of total iron oxide, respectively. 57Fe Mössbauer spectra are consistent with the assumption that high-spin Fe3+ substitutes for Al in the octahedrally coordinated site. The Mössbauer spectrum of lawsonite from Syke Rock exhibits a second doublet with 57Fe hyperfine parameters typical for octahedrally coordinated high-spin Fe2+. Electronic structure calculations in the local spin density approximation yield quadrupole splittings for Fe3+ in quantitative agreement with experiment indicating, however, that substitution of Al by Fe3+ must be accompanied by local distortion around the octahedral site. Model calculations also reproduce the room temperature hyperfine parameters of ferrous high-spin iron assuming the substitution of Ca by Fe2+. However, it cannot be excluded that Fe2+ may occupy a more asymmetric site within the microstructural cavity occupied by Ca and a H2O molecule.  相似文献   

3.
Natural alexandrite Al2BeO4:Cr from Malyshevo near Terem Tschanka, Sverdlovsk, Ural, Russia, has been characterized by 57Fe Mössbauer spectroscopy, electron microprobe, X-ray single-crystal diffractometry and by electronic structure calculations in order to determine oxidation state and location of iron. The sample contains 0.3 wt% of total iron oxide. The 57Fe Mössbauer spectrum can be resolved into three doublets. Two of them with hyperfine parameters typical for octahedrally coordinated high-spin Fe3+ and Fe2+, respectively, are assigned to iron substituting for Al in the octahedral M2-site. The third doublet is attributed to Fe3+ in hematite. Electronic structure calculations in the local spin density approximation are in reasonable agreement with experimental data provided that expansion and/or distortion of the coordination octahedra are presumed upon iron substitution. The calculated hyperfine parameters of Fe3+ are almost identical for the M1 and M2 positions, but the calculated ligand-field splitting is by far too large for high-spin Fe3+ on M1.  相似文献   

4.
Single-crystal and powder electron paramagnetic resonance (EPR) spectroscopic studies of natural amethyst quartz, before and after isochronal annealing between 573 and 1,173 K, have been made from 90 to 294 K. Single-crystal EPR spectra confirm the presence of two substitutional Fe3+ centers. Powder EPR spectra are characterized by two broad resonance signals at g = ~10.8 and 4.0 and a sharp signal at g = 2.002. The sharp signal is readily attributed to the well-established oxygen vacancy electron center E 1′. However, the two broad signals do not correspond to any known Fe3+ centers in the quartz lattice, but are most likely attributable to Fe3+ clusters on surfaces. The absolute numbers of spins of the Fe3+ species at g = ~10.8 have been calculated from powder EPR spectra measured at temperatures from 90 to 294 K. These results have been used to extract thermodynamic potentials, including Gibbs energy of activation ΔG, activation energy E a, entropy of activation ΔS and enthalpy of activation ΔH for the Fe3+ species in amethyst. In addition, magnetic susceptibilities (χ) have been calculated from EPR data at different temperatures. A linear relationship between magnetic susceptibility and temperature is consistent with the Curie–Weiss law. Knowledge about the stability and properties of Fe3+ species on the surfaces of quartz is important to better understanding of the reactivity, bioavailability and heath effects of iron in silica particles.  相似文献   

5.
Assessing the ferric-ferrous ratio in magmas prior to eruption remains a challenging task. X-ray absorption near-edge structure (μXANES) spectra were collected at the iron K-edge in water-rich peralkaline silicic melt/glass inclusions trapped in quartz. These experiments were carried out between 800 and 20 °C. The chemical environment of iron was also determined in the naturally quenched samples (glass inclusions and matrix glass) and in the peralkaline rhyolitic reference glasses, with variable [Fe3+ / ∑Fe] ratios.In the reference glasses, both the intensity of the pre-peaks (Fe2+, Fe3+) and site geometry of iron change as the oxidation state increases. Fourfold-coordinated Fe3+ prevails in highly oxidised peralkaline silicic glasses, using alkalis for charge balance. The position of the pre-edge centroid of the 1s-3d transition correlates with the Fe3+ / ΣFe ratios that allowed calibration of the redox state of iron of our natural samples.At high temperatures, Fe2+ dominates in the pre-edge structure of melt inclusions. Upon cooling down to 20 °C, the intensity of the Fe3+ peak increases, the centroid position of the pre-edge features shifts by nearly 0.5 eV and the main edge moves slightly towards higher energies. The slower the cooling rate, the higher the ferric iron contribution. Iterative μXANES experiments performed on the same samples show that the process is reversible. However, this apparent oxidation of iron upon cooling is an artefact of changes in Fe coordination. It implies that the [Fe3+ / ΣFe] ratio of glassy samples, measured at 20 °C, may be overestimated by a factor > 1.7, and that this ratio cannot be reliably retrieved by probing naturally cooled glass inclusions, and most silicate glasses. High temperature μXANES experiments led first to an assessment of the ferric-ferrous ratio in the water-rich peralkaline melt in pre-eruptive magmatic conditions and second to the determination of the corresponding oxygen fugacity at 740 °C.  相似文献   

6.
The Fe3+/Fetot of all Fe-bearing minerals has been analysed by Mössbauer spectroscopy in a suite of biotite-rich to biotite-free graphitic metapelite xenoliths, proxies of an amphibolite-granulite transition through progressive biotite melting. Biotite contains 9 to 16% Fe3+/Fetot, whereas garnet, cordierite and ilmenite are virtually Fe3+ -free (0–1% Fe3+/Fetot) in all samples, regardless of biotite presence. Under relatively reducing conditions (graphite-bearing assemblages), biotite is the only carrier of Fe3+ during high-temperature metamorphism; therefore, its disappearance by melting represents an important event of iron reduction during granulite formation, because haplogranitic melts usually incorporate small amounts of ferric iron. Iron reduction is accompanied by the oxidation of carbon and the production of CO2, according to the redox reaction:
Depending on the nature of the peritectic Fe-Mg mineral produced (garnet, cordierite, orthopyroxene), the CO2 can either be present as a free fluid component, or be completely stored within melt and cordierite. The oxidation of graphite by iron reduction can account for the in situ generation of CO2, implying a consequential rather than causal role of CO2 in some granulites and migmatites. This genetic model is relevant to graphitic rocks more generally and may explain why CO2 is present in some granulites although it is not required for their formation.  相似文献   

7.
The investigation of the NH3 loss in the NH4+-vermiculite (Santa Olalla) by thermogravimetry, evolved gas analysis, chemical analysis, X-ray diffraction and IR spectroscopy is reported here. The mass loss during heating takes place in two steps at about 650 and 825 °C. Additionally, the releases of H2O and NH3 occurs simultaneously. The experimental results indicate that the protons remaining in the interlayer space after NH3 removal trigger the H2O release. X-ray diffraction shows that during the decomposition of NH4+-vermiculite there are two domains with different interlayer spaces at ~9 and ~10 Å. As the decomposition proceeds, the intensity of the 9 Å peak increases at the expense of the second one. The change in the IR-stretching modes of the structural OH groups during heating indicates that the OH groups surrounded by 3Mg2+ or 2Mg2+Fe2+ are released at lower temperatures than those with environments like 2Mg2+Fe3+, 2Mg2+Al3+ or more complex ones.  相似文献   

8.
A method to estimate the oxygen fugacity (fO2) during the crystallizationof kimberlites is developed using the Fe content of CaTiO3 perovskite(Pv), a common groundmass phase in these rocks. With increasingfO2, more Fe exists in the kimberlitic liquid as Fe3+, and thuspartitions into Pv. Experiments to study the partitioning ofFe between Pv and kimberlite liquid were conducted at 100 kPaon simple and complex anhydrous kimberlite bulk compositionsfrom 1130 to 1300°C over a range of fO2 from NNO –5 to NNO + 4 (where NNO is the nickel–nickel oxide buffer),and at Nb and rare earth element (REE) contents in the startingmaterials of 0–5 wt % and 1500 ppm, respectively. Thepartitioning of Fe between Pv and kimberlite liquid is influencedmostly by fO2, although the presence of Nb increases the partitionof Fe3+ into perovskite at a given T and fO2. Multiple linearregression (MLR) of all the experimental data produces a relationshipthat describes the variation of Fe and Nb in Pv with fO2 relativeto the NNO buffer:

(uncertaintiesat 2, and Nb and Fe as cations per three oxygens). Over therange of conditions of our experiments, this relationship showsno temperature (T) dependence, is not affected by the bulk Fecontent of the kimberlite starting material and reproduces experimentaldata to within 1 log fO2 unit. KEY WORDS: kimberlites; oxygen fugacity; perovskite; ferric iron; magma  相似文献   

9.
The relatively low-variance mineral assemblage of a talc-kyanite eclogite from Dabie Shan enabled application of both conventional geothermobarometers (garnet-clinopyroxene geothermometer and the garnet-omphacite-phengite geobarometer) and a multi-equilibrium method to determine peak P-T conditions (THERMOCALC, average PT). The results were highly discrepant: 840 °C / 31.1 kbar vs. 590 °C / 29.8 kbar. Mössbauer spectroscopy showed that Fe3+/Fetotal in omphacite was significantly higher than the value obtained from standard formula recalculation. When the activities were corrected for Fe endmembers, geothermobarometry gave consistent results (606 °C / 31.3 kbar vs. 585 °C / 30.8 kbar). These are close to those obtained earlier by average PT, confirming the robustness of the multi-equilibrium approach. The high Fe3+ concentration in omphacite is best explained using a Ca-eskola endmember Ca0.5[]0.5AlSi2O6 and allowing corresponding vacancies in the omphacite structure.Editorial responsibility: W. Schreyer  相似文献   

10.
Fifteen samples of (Mg,Fe)SiO3 majorite with varying Fe/Mg composition and one sample of (Mg,Fe)(Si,Al)O3 majorite were synthesized at high pressure and temperature under different conditions of oxygen fugacity using a multianvil press, and examined ex situ using X-ray diffraction and Mössbauer and optical absorption spectroscopy. The relative concentration of Fe3+ increases both with total iron content and increasing oxygen fugacity, but not with Al concentration. Optical absorption spectra indicate the presence of Fe2+–Fe3+ charge transfer, where band intensity increases with increasing Fe3+ concentration. Mössbauer data were used in conjunction with electron microprobe analyses to determine the site distribution of all cations. Both Al and Fe3+ substitute on the octahedral site, and charge balance occurs through the removal of Si. The degree of Mg/Si ordering on the octahedral sites in (Mg,Fe)SiO3 majorite, which affects both the c/a ratio and the unit cell volume, is influenced by the thermal history of the sample. The Fe3+ concentration of (Mg,Fe)(Si,Al)O3 majorite in the mantle will reflect prevailing redox conditions, which are believed to be relatively reducing in the transition zone. Exchange of material across the transition boundary to (Mg,Fe) (Si,Al)O3 perovskite would then require a mechanism to oxidize sufficient iron to satisfy crystal-chemical requirements of the lower-mantle perovskite phase.  相似文献   

11.
Comparison of polarized optical absorption spectra of natural Ca-rich diopsides and synthetic NaCrSi2O6 and LiCrSi2O6 clinopyroxenes, evidences as vivid similarities, as noticeable differences. The similarities reflect the fact that in all cases Cr3+ enters the small octahedral M1-site of the clinopyroxene structure. The differences are due to some iron content in the natural samples causing broad intense near infrared bands of electronic spin-allowed dd transitions of Fe2+(M1, M2) and intervalence Fe2+/Fe3+ charge-transfer transition, and by different symmetry and different local crystal fields strength of Cr3+ in the crystal structures. The positions of the spin-allowed bands of Cr3+, especially of the low energy one caused by the electronic 4 A 2g → 2 T 1g transition, are found to be in accordance with mean M1–O distances. The local relaxation parameter ε calculated for limCr 3+ → 0 from the spectra and interatomic á Cr - O ñ \left\langle {Cr - O} \right\rangle and á Mg - O ñ \left\langle {Mg - O} \right\rangle distances yields a very high value, 0.96, indicating that in the clinopyroxene structure the local lattice relaxation around the “guest” ion, Cr3+, deviates greatly from the “diffraction” value, ε = 0, than in any other known Cr3+-bearing systems studied so far. Under pressure the spin-allowed bands of Cr3+ shift to higher energies and decrease in intensity quite in accordance with the crystal field theoretical expectations, while the spin-forbidden absorption lines remain practically unshifted, but also undergo a strong weakening. There is no evident dependence of the Racah parameter B of Cr3+ reflecting the covalence of the oxygen-chromium bond under pressure: within the uncertainty of determination it may be regarded as practically constant. The values of CrO6 octahedral modulus, k\textpoly\textloc k_{\text{poly}}^{\text{loc}} , derived from high-pressure spectra of natural chromium diopside and synthetic NaCrSi2O6 kosmochlor are very close, ~203 and ~196 GPa, respectively, being, however, nearly twice higher than that of MgO6 octahedron in diopside, 105(4) GPa, obtained by Thompson and Downs (2008). Such a strong stiffening of the structural octahedron, i.e. twice higher value of k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} comparing with that of k\textMg2 + \textloc k_{{{\text{Mg}}^{2 + } }}^{\text{loc}} , may be caused by simultaneous substitution of Ca2+ by larger Na+ in the neighboring M2 sites at so-called jadeite-coupled substitution Mg2+ + Ca2+ → Cr3+ + Na+. It is also remarkable that the values of CrO6 octahedral modulus of NaCrSi2O6 kosmochlor obtained here are nearly twice larger than that of 90(16) GPa, evaluated by high-pressure X-ray structural refinement by Origlieri et al. (2003). Taking into account that the overall compressibility of the clinopyroxene structure should mainly be due to the compressibility of M1- and M2-sites, our k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} -value, ~196 GPa, looks much more consistent with the bulk modulus value, 134(1) GPa.  相似文献   

12.
Ferric iron in mantle-derived garnets   总被引:4,自引:0,他引:4  
The oxidation state of a mantle assemblage may be defined by heterogeneous reactions between oxygen and iron-bearing minerals. In spinel lherzolites, the presence of Fe3+ in spinel allows use of the assemblage olivine-orthopyroxene-spinel to define f O 2 at fixed T and P. As a first step towards establishing an analogous reaction for garnet lherzolites, garnets from mantle-derived xenoliths from South Africa and the USSR have been analyzed with 57Fe Mössbauer spectroscopy at 298 and 77K to determine Fe3+/Fe2+ and the coordination state of iron. Garnets from South African alkremites (pyrope+Mg-spinel) and eclogites, as well as garnet-spinel and low-temperature garnet lherzolites from both South Afica and the USSR, have Fe3+/Fe<0.07. In contrast, garnets from high-temperature garnet lherzolites from within the Kaapvaal craton of South Africa have Fe3+/Fe>0.10. Ferric iron is octahedrally coordinated, and ferrous iron is present in the dodecahedral site in all samples. The occurrence of significant Fe3+ in these garnets necessitates caution in the use of geothermometers and geobarometers that are applied to mantle samples. For example, the presence of 12% of the Fe as Fe3+ in garnets can increase temperatures calculated from existing Fe/Mg geothermometers by>200°C. The concomitant increase in pressures calculated from geobarometers that use the Al content in orthopyroxene coexisting with garnet are 10–15 kbar. Results of calculations based on heterogeneous equilibria between garnet, olivine, and pyroxene are consistent with the derivation of the peridotite samples from source regions that are relatively oxidized, between the f O 2 of the FMQ (quartz-fayalite-magnetite) buffer and that of the WM buffer. No samples yield values of f O 2 as reduced as IW (iron-wüstite buffer).  相似文献   

13.
The effect of CaO, Na2O, and K2O on ferric/ferrous ratio in model multicomponent silicate melts was investigated in the temperature range 1450–1550?°C at 1-atm total pressure in air. It is demonstrated that the addition of these network modifier cations results in an increase of Fe3+/Fe2+ ratio. The influence of network modifier cations on the ferric/ferrous ratio increases in the order Ca?<?Na?<?K. Some old controversial conceptions concerning the effect of potassium on Fe3+/Fe2+ ratio in simple model liquids are critically evaluated. An empirical equation is proposed to predict the ferric/ferrous ratio in SiO2–TiO2–Al2O3–FeO–Fe2O3–MgO–CaO–Na2O–K2O–P2O5 melts at air conditions.  相似文献   

14.
The mechanism of thermally induced oxidation of Fe2+ from natural pyrope has been studied at 1000 and 1100 °C using 57Fe Mössbauer spectroscopy in conjunction with XRD, XRF, AFM, QELS, TG, DTA and electron microprobe analyses. At 1000 °C, the non-destructive oxidation of Fe2+ in air includes the partial stabilization of Fe3+ in the dodecahedral 24c position of the garnet structure and the simultaneous formation of hematite particles (15–20 nm). The incorporation of the magnesium ions to the hematite structure results in the suppression of the Morin transition temperature to below 20 K. The general garnet structure is preserved during the redox process at 1000 °C, in accordance with XRD and DTA data. At 1100 °C, however, oxidative conversion of pyrope to the mixed magnesium aluminium iron oxide, Fe-orthoenstatite and cristoballite was observed. During this destructive decomposition, Fe2+ is predominantly oxidized and incorporated into the spinel structure of Mg(Al,Fe)2O4 and partially stabilized in the structure of orthoenstatite, (Mg,Fe)SiO3. The combination of XRD and Mössbauer data suggest the definite reaction mechanism prevailing, including the refinement of the chemical composition and quantification of the reaction products. The reaction mechanism indicates that the respective distribution of Fe2+and Fe3+ to the enstatite and spinel structures is determined by the total content of Fe2+ in pyrope.  相似文献   

15.
A novel complex continuous system of solid solutions involving vauquelinite Pb2Cu(CrO4)(PO4)(OH), bushmakinite Pb2Al(VO4)(PO4)(OH), ferribushmakinite Pb2Fe3+(VO4)(PO4)(OH), and a phase with the endmember formula Pb2Cu(VO4)(PO4)(H2O) or Pb2Cu(VO4)(РО3ОН)(ОН) is studied based on samples from the oxidation zone of the Berezovskoe, Trebiat, and Pervomaisko-Zverevsky deposits in the Urals, Russia. This is the first natural system in which chromate and vanadate anions show a wide range of substitutions and the most extensive solid solution system involving (CrO4)2– found in nature. The major couple substitution is Cr6+ + Cu2+ ? V5+ + M3+, where M = Fe, Al. The correlation coefficients calculated from 125 point analyses are: 0.96 between V and (Fe + Al), 0.96 between Cr and (Cu + Zn),–0.96 between V and (Cu + Zn),–0.97 between Cr and (Fe + Al), and–0.97 between (Fe + Al) and (Cu + Zn). The substitutions V5+ ? Cr6+ (correlation coefficient–0.98) and to a lesser extent P5+ ? As5+ (correlation coefficient–0.86) occur at two types of tetrahedral sites, whereas the metal–nonmetal/metalloid substitutions, i.e., V or Cr for P or As, are minor. The substitution Fe3+ ? Al3+ is also negligible in this solid solution system.  相似文献   

16.
Fe cycling at two sites in the Mediterranean Sea (southwest of Rhodes and in the North Aegean) has been studied, combining the pore water determination of nutrients, manganese, and iron, citrate-bicarbonate-dithionite (CDB) and total sediment extractions, X-ray diffraction, and 57Fe Mössbauer spectroscopy (MBS). At the Rhodes site, double peaks in the CDB-extractable Mn and Fe profiles indicate non-steady-state diagenesis. The crystalline iron oxide hematite, identified at both sites by room temperature (RT) MBS, appears to contribute little to the overall Fe reduction. MBS at liquid helium temperature (LHT) revealed that the reactive sedimentary Fe oxide phase was nanophase goethite, not ferrihydrite as is usually assumed. The pore water data at both sites indicates that upon reductive dissolution of nanophase goethite, the upward diffusing dissolved Fe2+ is oxidized by Mn oxides, rather than by nitrate or oxygen. The observed oxidation of Fe2+ by Mn oxides may be more common than previously thought but not obvious in sediments where the nitrate penetration depth coincides with the Mn oxide peak. At the Rhodes site, the solid-phase Fe(II) increase occurred at a shallower depth than the accumulation of dissolved Fe2+ in the pore water. The deeper relict Mn oxide peak acts as an oxidation barrier for the upward diffusing dissolved Fe2+, thereby keeping the pore water Fe2+ at depth. At the North Aegean site, the solid-phase Fe(II) increase occurs at approximately the same depth as the increase in dissolved Fe2+ in the pore water. Overall, the use of RT and cryogenic MBS provided insight into the solid-phase Fe(II) gradient and allowed identification of the sedimentary Fe oxides: hematite, maghemite, and nanophase goethite.  相似文献   

17.
Iron-57 resonant absorption Mössbauer spectroscopy was used to describe the redox relations and structural roles of Fe3+ and Fe2+ in meta-aluminosilicate glasses. Melts were formed at 1500 °C in equilibrium with air and quenched to glass in liquid H2O with quenching rates exceeding 200 °C/s. The aluminosilicate compositions were NaAlSi2O6, Ca0.5AlSi2O6, and Mg0.5AlSi2O6. Iron oxide was added in the form of Fe2O3, NaFeO2, CaFe2O4, and MgFe2O4 with total iron oxide content in the range ∼0.9 to ∼5.6 mol% as Fe2O3. The Mössbauer spectra, which were deconvoluted by assuming Gaussian distributions of the hyperfine field, are consistent with one absorption doublet of Fe2+ and one of Fe3+. From the area ratios of the Fe2+ and Fe3+ absorption doublets, with corrections for differences in recoil-fractions of Fe3+ and Fe2+, the Fe3+/ΣFe is positively correlated with increasing total iron content and with decreasing ionization potential of the alkali and alkaline earth cation. There is a distribution of hyperfine parameters from the Mössbauer spectra of these glasses. The maximum in the isomer shift distribution function of Fe3+, δFe3+, ranges from about 0.25 to 0.49 mm/s (at 298 K relative to Fe metal) with the quadrupole splitting maximum, ΔFe3+, ranging from ∼1.2 to ∼1.6 mm/s. Both δFe3+ and δFe2+ are negatively correlated with total iron oxide content and Fe3+/ΣFe. The dominant oxygen coordination number Fe3+ changes from 4 to 6 with decreasing Fe3+/ΣFe. The distortion of the Fe3+-O polyhedra of the quenched melts (glasses) decreases as the Fe3+/ΣFe increases. These polyhedra do, however, coexist with lesser proportions of polyhedra with different oxygen coordination numbers. The δFe2+ and ΔFe2+ distribution maxima at 298 K range from ∼0.95 to 1.15 mm/s and 1.9 to 2.0 mm/s, respectively, and decrease with increasing Fe3+/ΣFe. We suggest that these hyperfine parameter values for the most part are more consistent with Fe2+ in a range of coordination states from 4- to 6-fold. The lower δFe2+-values for the most oxidized melts are consistent with a larger proportion of Fe2+ in 4-fold coordination compared with more reduced glasses and melts.  相似文献   

18.
The dependence of water concentration in synthetic (Mg, Fe2+)-cordierite on the composition of the solid solution was examined in experiments that lasted for 10 days at = 200–230 MPa, t = 600–700°C, and oxygen fugacity corresponding to the Fe-FeO buffer. Mass spectrometric data indicate that the dependence of water concentration in cordierite on its Fe mole fraction Fe2+/(Fe2+ + Mg) has maxima at compositions with F = 0.2–0.3. IR diffuse reflectance spectroscopic data and data on the structural setting of H2O molecules in the structural channels of alkali-free (Mg, Fe2+)-cordierite indicate that the H-H vector of some H2O molecules (H2O-II) is perpendicular to [001] of the crystal. The dependence of the magnetic properties of synthetic (Mg, Fe2+)-cordierite was studied by static magnetization technique at 5–300 K in an external magnetic field up to 20 kOe in strength.  相似文献   

19.
Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe3(SO4)2(OH)6), resulted in elevated concentrations of porewater Fe2+ (> 30 mmol L?1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000 μmol g?1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe8O8(OH)6SO4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.  相似文献   

20.
 We have investigated a well-ordered sample of natural Cr-bearing dickite from Nowa Ruda (Lower Silesia, Poland) using electron paramagnetic resonance (EPR) at X- and Q-band frequencies (9.42 and 33.97 GHz, respectively) and optical diffuse reflectance spectroscopy. The observation of the spin-forbidden transitions at 15500 and 14690 cm−1 allows us to unambiguously identify the major contribution of octahedrally coordinated Cr3+ ions in the optical spectrum. The X- and Q-band EPR spectra show two superposed Cr3+ signals. The corresponding fine-structure parameters were determined at room temperature and 145 K. These results suggest the substitution of Cr3+ for Al3+ in equal proportions in the two unequivalent octahedral sites of the dickite structure. In kaolin group minerals, the distortion around Cr3+ ions (λ≈ 0.2–0.4) in Al sites is significantly less rhombic than that observed around Fe3+ ions (λ≈ 0.6–0.8). Received: 29 June 2001 / Accepted: 22 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号