首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
针对不规则波浪作用下Wigley型船的运动响应问题进行了系统的研究,采用统计学方法深入探讨了船舶不规则运动幅值和响应周期的分布规律,并通过傅里叶变换对船舶运动响应进行了频谱特征分析。结果表明,船舶横摇方向与升沉和纵摇方向随机运动的响应特征有显著差异。在升沉与纵摇方向,波浪谱峰频率远离自振频率,前十分之一大振幅运动对应周期离散性较小,基本稳定在波浪谱峰周期附近,但小振幅运动周期分布离散性较大,频谱分析指出船舶升沉与纵摇运动响应频谱在波浪谱峰频率附近出现明显峰值。而在横摇方向,波浪谱峰频率与自振频率相耦合,不同振幅的横摇运动响应周期均稳定在自振周期附近,且周期离散性较小,频谱分析也表明横摇运动响应频谱主要集中于船舶运动自振频率附近。  相似文献   

2.
"海洋石油201"号等多艘铺管船在东海海域进行铺管施工时受低频涌浪环境影响横摇运动强烈,严重影响了正常铺管作业。为了分析铺管船横摇过大的原因,从理论上分析了铺管船可能发生较大横摇的波浪条件,并对"海洋石油201"号铺管船在遭遇波浪周期等于横摇固有周期1/2倍和1倍,不同波高的规则波中航向角分别为0°、30°、60°和90°时的运动特性进行了模型试验。试验结果表明铺管船遭遇周期为其横摇固有周期一半的涌浪时未发生参数横摇,而遭遇与其横摇固有周期接近的涌浪时发生谐摇是导致其横摇运动过大的原因。研究成果与相应的气象资料结合,可为铺管船施工气候窗口的选择提供依据。  相似文献   

3.
船舶随浪运动稳性仿真计算   总被引:2,自引:0,他引:2  
本文利用Liapunov理论,研究了船舶在规则波浪运动的稳性;利用摄动理论,求解出船舶运动响应;并讨论了船舶横摇与垂荡运动频率、最大横摇角和波浪要素对稳性曲线GZ的影响,以及流体动压力对稳性曲线的修正,从而给计算船舶在随浪中的稳性提供了一种方法。  相似文献   

4.
随着船舶大型化和港口建设深水化发展,外海不同周期波浪作用下大型系泊船泊稳问题与小型系泊船相比出现了新的特点。为此,利用数值模型方法研究了在不同入射角度和周期的涌浪作用下港内大型系泊船的水动力响应,针对系泊船的泊稳情况探讨了船舶的运动规律和运动特性。研究发现,在涌浪周期较大的情况下,限定波高的泊稳标准不足以用来确定系泊船的正常作业条件,港内泊船的水平运动(纵荡、横荡和艏摇)极易超出运动标准值并影响装卸作业效率,并且船舶的水平运动表现出主要由次重力波主导的低频运动特性,而垂直运动(垂荡、横摇和纵摇)表现出主要由短波主导的波频运动特性。  相似文献   

5.
浮基多体系统自激运动响应的时域分析方法   总被引:2,自引:2,他引:2  
浮基多体系统上部机构作业时不仅存在多体系统内部各物体间的耦合作用 ,还存在浮基与流场间的耦合作用。本文将浮基在流场中引起的辐射势表示为浮基加速度与时域规范化速度势乘积的卷积形式 ,导出流体动压力及静水系泊恢复力与浮基运动的关系。使用多刚体力学的凯恩方法得到系统的动力学方程。最后给出了在时域中数值求解系统运动响应的具体步骤  相似文献   

6.
超细长三体船耐波性试验研究   总被引:9,自引:0,他引:9  
通过三体船模型耐波性试验,包括横摇试验,规则波中的迎浪试验,研究了侧体布置位置和舭龙骨对三体船横摇运动的影响以及在波浪中的纵摇和垂荡运动特点。  相似文献   

7.
Spar平台垂荡-纵摇耦合运动失稳机理   总被引:1,自引:0,他引:1  
研究参数激励和强迫激励共同作用下Spar平台垂荡-纵摇耦合运动的失稳机理.考虑静稳性和排水体积的变化,推导平台的垂荡回复力和纵摇回复力矩表达式,建立规则波浪中平台垂荡-纵摇耦合的运动方程.以经典Spar平台为例,分析平台垂荡-纵摇耦合运动发生马休类型不稳定运动的条件以及平台运动失稳的形式,给出波高和波浪周期平面上平台因大幅运动失稳的参数域.结果表明,当波高相对较小时,波浪的临界周期接近于垂荡固有周期,平台失稳的形式为马休失稳;当波高相对较大时,波浪的临界周期远离垂荡固有周期,平台由于大幅摇摆运动而失稳.  相似文献   

8.
极限波浪作用下半潜平台运动响应时域数值模拟   总被引:2,自引:0,他引:2  
针对一座工作水深为500 m的半潜式海洋平台,运用时域耦合分析方法,计算其在极限波浪作用下的运动响应。通过比较平台在两种不同形式极限波浪(即畸形波和"三姐妹"波)作用下的运动响应,分析两种不同形式的极限波浪对平台运动的影响。同时通过分析畸形波的参数对平台运动幅值的影响,确定平台运动响应对畸形波参数的敏感性。分析结果表明:极限波浪在聚焦点处波高最大,当平台恰好位于聚焦点时,对平台来说最危险;畸形波的波峰值是影响平台运动的最主要参数,在平台初期设计中要考虑工作海域中极限波浪可能达到的最大值;在波峰值相同的条件下,平台运动的最大值随着畸形波的谱峰周期和有义波高的增加而增加。  相似文献   

9.
航行体近水面航行时会引起周围流场中流体的惯性运动,动能会随波浪扩散而耗散,航行体近水面运动时固有周期和幅值衰减率受水的影响可以用附加质量和阻尼系数描述。运用计算流体力学软件 STAR-CCM+开展航行体近水面自由横摇与纵摇衰减运动的数值仿真,根据不同初始角度条件下仿真得到的自由衰减时历曲线,分别计算横摇与纵摇的附加质量与阻尼系数,并结合实际运动情况,对不同初始角度条件下附加质量与阻尼系数的变化成因分别进行分析。  相似文献   

10.
船舶随浪运动隐性仿真计算   总被引:3,自引:0,他引:3  
林焰  邢殿录 《海洋工程》1994,12(3):30-41
本文利用Liapunov理论,研究了船舶在规划波良运动的稳性;利用摄动理论,求解出船舶运动响应;并讨论了船舶横摇与垂荡运动频率、最大横摇角和波浪要素对稳性曲线GZ的影响,以及流体动压力对稳性曲线的修正,从而给计算船舶在随浪中的稳性提供了一种。方法。  相似文献   

11.
可着陆式水下机器人由于变浮力机构的设计要求,其外形与结构较之传统的水下航行器更为复杂。在设计阶段对可着陆式水下机器人进行仿真和操纵性分析具有重要意义。文中采用多体系统动力学方法分析可着陆式水下机器人动力学特性,将作用在系统各组成部分上的流体动力、推进力以及其它作用力分别计算和考虑,建立了多体动力学模型,并进行了三维空间运动仿真。该方法为具有较复杂附体结构的水下机器人设计和动力学仿真提供了有效途径。  相似文献   

12.
The dynamic factor is the ratio of the maximum dynamic load to the static load acting on the wire ropes between the boom of a floating crane and a cargo. In this paper, the dynamic factor is analyzed based on dynamic simulations of a floating crane and a cargo, considering an elastic boom. For the simulation, we designed a multibody system that consists of a floating crane barge, an elastic boom, and a cargo connected to the boom through wire ropes. The dynamic equations of motion of the system are based on flexible multibody system dynamics. Six-degree-of-freedom motions are considered for the floating crane and for the cargo, and three-dimensional deformations for the elastic boom. The hydrostatic force, the hydrodynamic force, the gravitational force, and the wire rope forces are considered as external forces. The dynamic factor is obtained by numerically solving the equation. The effects of the elastic boom on heavy cargo lifting are discussed by comparing the simulation results of an elastic boom and a rigid boom.  相似文献   

13.
1 .IntroductionOnthedeepseabed ,30 0 0~ 50 0 0mbelowthePacificOcean ,manganesenodulesaresolidifiedandspread ,andmanycountriesintheworldarestudyinghowtominethem .AccordingtoYamazakietal.( 1 998)andAmannetal.( 1 991 ) ,theenvironmentofthedeepseabedisdifferentfromthedrylandinmanyways .Inparticular,thesurfaceoftheseabedisverysoft.Inordertoensuretheperformanceofrunningofamanganesenodulemineronsuchasoftsurface ,thetrackedvehiclemaybeapplied .Ac cordingtoHongandChoi ( 2 0 0 1 ) ,astudyisbeingdone…  相似文献   

14.
Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.  相似文献   

15.
The Soft Yoke Mooring System (SYMS) is a single point mooring system for shallow water. It is composed of a mooring framework, mooring legs, yoke, and single point, and is located at the Floating Production Storage and Offloading (FPSO) through 13 hinge joints, such as universal joints and thrust bearings. Mooring restoring force, motions and postures of mooring components, and mechanical behaviors of hinge joints are major criteria for the structural design of the SYMS. Aiming at the difficulties of the multibody dynamics in traditional design of the SYMS, a multi-body dynamic mathematical modeling with seven independent degrees of freedom (DOFs) which is applicable to prototype field engineering was developed in this study. The proposed mathematical modeling of the SYMS multibody dynamic system has several advantages: 1. Internal tribological behaviors in hinge joints are considered within the presented multibody dynamics model to illustrate the good dynamic effects of the SYMS. 2. The multibody dynamic model can be applied in field service. Correctness and feasibility of the proposed multibody dynamic simulation method for describing motions and postures of hinges and single-body were validated by the prototype monitoring data. 3. The horizontal restoring force of the SYMS was calculated according to field measurement data. The motion state of each single body and internal stress distributions at each hinge joint in the SYMS are given. 4. The multibody dynamics calculation program can be directly used for the real-time monitoring of mechanical behaviors of the SYMS under the service state. The simulated results can provide real-time guarantee for safety alarming of the system. The vulnerability of the mooring system in service was evaluated based on long-term monitoring data analysis.  相似文献   

16.
A new approach to multibody dynamics is investigated by treating floating wind turbines as multibody systems. The system is considered as three rigid bodies: the tower, nacelle and rotor. Three large-amplitude rotational degrees of freedom (DOFs) of the tower are described by 1-2-3 sequence Euler angles. Translation of the entire system is described by Newton’s second Law applied to the center of mass (CM) of the system and transferred to 3 translational DOFs of the tower. Additionally, two prescribed DOFs governed by mechanical control, nacelle yaw and rotor spin, are combined with the 6 DOFs of the tower to formulate the 8-DOF equations of motion (EOMs) of the system. The CM of the system is generally time-varying and not constrained to any rigid body due to the arbitrary location of the CM of each body and relative mechanical motions among the bodies. The location of the CM being independent of any body is considered in both the solution to 3 translational DOFs and the calculation of angular momentum of each body for 3 rotational DOFs. The theorem of conservation of momentum is applied to the entire multibody system directly to solve 6 unknown DOFs. Motions computed using the six nonlinear EOMs are transformed to each body in a global coordinate system at every time-step for use in the computation of hydrodynamics, aerodynamics and restoring forcing, which preserves the nonlinearity between external excitation and structural dynamics. The new method is demonstrated by simulation of the motion of a highly compliant floating wind turbine. Results are verified by critical comparison with those of the popular wind turbine dynamics software FAST.  相似文献   

17.
以水下弹性缆索为研究对象,分析了处理缆索弹性的段前弹簧模型,发展了缆索的多体有限段模型,提出弹性缆段模型,将多体运动力学和弹性力学结合起来,用于求解弹性缆索的动力学响应。对于水下缆索所受的流场力,推导了流场分布力的质心等效力系,并通过揭示水下缆索的附加质量与缆索自身惯性的本质联系,得到了包含附加质量力影响的水下弹性缆索的动力学方程。对工程实例进行了仿真研究,结果与实际情况吻合良好。  相似文献   

18.
In this paper, the dynamic response simulation of heavy cargo suspended by a floating crane is performed. The dynamic equations of the motions of the floating crane and the heavy cargo must be considered by the coupled equations because the floating crane and the heavy cargo are connected by wire ropes and provide force and a moment for each other. Hence, the dynamic equations of motion are set up for considering the 6-degrees-of-freedom floating crane and the 6-degrees-of-freedom cargo based on multibody system dynamics. The nonlinear terms in the equations of motion are considered. In addition, the nonlinear hydrostatic force, the linear hydrodynamic force, the wire rope force, and the mooring force are considered as the external forces. Finally, we estimate the motion of the floating crane and the heavy cargo and also calculate the tension of the wire rope between the two.  相似文献   

19.
Autonomous vehicles are being developed to replace the conventional, manned surface vehicles that tow mine hunting towed platforms. While a wide body of work exists that describes numerical models of towed systems, they usually include relatively simple models of the towed bodies and neglect the dynamics of the towing vehicle. For systems in which the mass of the towing vehicle is comparable to that of the towed vehicle, it becomes important to consider the dynamics of both vehicles. In this work, we describe the development of a numerical model that accurately captures the dynamics of these new mine hunting systems. We use a lumped mass approximation for the towcable and couple this model to non-linear numerical models of an autonomous surface vehicle and an actively controlled towfish. Within the dynamics models of the two vehicles, we include non-linear controllers to allow accurate maneuvering of the towed system.  相似文献   

20.
Dynamic Analysis of Towed and Variable Length Cable Systems   总被引:2,自引:3,他引:2  
Towed cable systems are frequently used in marine measurements where the length of the towed cable varies during launch and recovery. In this paper a novel method for modeling variable length cable systems is introduced based on the finite segment formulation. The variable length of the towed cable is described by changing the length of the segment near the towing point and by increasing or decreasing the number of the discrete segments of the cable. In this way, the elastic effects of the cable can be easily handled since geometry and material properties of each segment are kept constant. Experimental results show that the dynamic behavior of the towed cable is consistent between the model and the physical cable. Results show that the model provides numerical efficiency and simulation accuracy for the variable length towed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号