首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Results of the studies of ionospheric parameter variations during the intense geomagnetic storm on November 7–11, 2004, in the 20°–80° N, 60°–180° E sector are presented. The data of ionospheric stations and the results of total electron content (TEC) measurements at the network of the GPS ground-based receivers and of the GPS receiver onboard the CHAMP satellite were used. Periods of total absorption and blanketing sporadic E layers were observed at high latitudes, whereas durable negative disturbances typical of geomagnetic storms of high intensity were detected at midlatitudes. In the afternoon hours of local time on November 8, 2004, a large-scale ionospheric disturbance of a frontal type was detected on the basis of foF2 and TEC measurements. The disturbance propagated southwestward at a mean velocity of about 200 m/s. The comparison of the relative amplitude of this large-scale disturbance according to the total electron content (~70%) and foF2 (~80%) measurements made it possible to assume a large vertical scale of the disturbance.  相似文献   

2.
The storm period of 8–12 November 2004 offers an opportunity for insight into the phenomena of low-latitude ionospheric structure during geomagnetically disturbed times because of the strength of the disturbances, the timing of the storms, and the instrumentation that was operating during the interval. We will take advantage of these factors to model the ambient ionosphere and the plasma turbulence responsible for radio scintillation within it, using the AFRL low-latitude ambient/turbulent ionospheric model and the storm-time model features described in the companion paper [Retterer, J.M., Kelley, M.C., 2009. Solar-wind drivers for low-latitude ionospheric models during geomagnetic storms. J. Atmos. Solar-Terr. Phys., this issue]. The model plasma densities show very good agreement with the densities measured by the Jicamarca ISR as well as with the total electron content (TEC) measured by the Boston College South American chain of GPS receivers. The detection by the radar of coherent returns from plasma turbulence match well the times of predicted ionospheric instability. The predicted geographic extent of the occurrence of equatorial plasma bubbles was matched by DMSP satellite observations and our forecasts of scintillation strength were validated with measurements of S4 at Ancon and Antofagasta by stations of the AFRL SCINDA network.  相似文献   

3.
Data collected from a GPS receiver located at low latitudes in the American sector are used to investigate the performance of the WinTEC algorithm [Anghel et al., 2008a, Kalman filter-based algorithm for near realtime monitoring of the ionosphere using dual frequency GPS data. GPS Solutions, accepted for publication; for different ionospheric modeling techniques: the single-shell linear, quadratic, and cubic approaches, and the multi-shell linear approach. Our results indicate that the quadratic and cubic approaches perform much better than the single-shell and multi-shell linear approaches in terms of post-fit residuals. The performance of the algorithm for the cubic approach is then further tested by comparing the vertical TEC predicted by WinTEC and USTEC [Spencer et al., 2004. Ionospheric data assimilation methods for geodetic applications. In: Proceedings of IEEE PLANS, Monterey, CA, 26–29 April, pp. 510–517] at five North American stations. In addition, since the GPS-derived total electron content (TEC) contains contributions from both ionospheric and plasmaspheric sections of the GPS ray paths, in an effort to improve the accuracy of the TEC retrievals, a new data assimilation module that uses background information from an empirical plasmaspheric model [Gallagher et al., 1988. An empirical model of the Earth's plasmasphere. Advances in Space Research 8, (8)15–(8)24] has been incorporated into the WinTEC algorithm. The new Kalman filter-based algorithm estimates both the ionospheric and plasmaspheric electron contents, the combined satellite and receiver biases, and the estimation error covariance matrix, in a single-site or network solution. To evaluate the effect of the plasmaspheric component on the estimated biases and total TEC and to assess the performance of the newly developed algorithm, we compare the WinTEC results, with and without the plasmaspheric term included, at three GPS receivers located at different latitudes in the American sector, during a solar minimum period characterized by quiet and moderate geomagnetic conditions. We also investigate the consistency of our plasmaspheric results by taking advantage of the specific donut-shaped geometry of the plasmasphere and applying the technique at 12 stations distributed roughly over four geomagnetic latitudes and three longitude sectors.  相似文献   

4.
Measurements at GPS ground stations of the International GPS Service (IGS) havebeen used to derive the total electron content (TEC) of the ionosphere over Europe and overthree North American stations for the 6–11 January 1997 storm event. The derived TEC dataindicate large deviations from the average behaviour especially at high latitudes on thenight-side/early morning longitude sector.The high-latitude perturbation causes a well-pronounced positive phase on the day-sidesector over Europe.Both meridional winds as well as transient electric fields are assumed to contribute to thesignature of the ionospheric perturbation propagating from high to low latitudes. Theobservations indicate a subsequent enhanced plasma loss which is probably due to theequatorward expansion of storm induced composition changes.  相似文献   

5.
It is well known that ionospheric perturbations are characterised by strong horizontal gradients and rapid changes of the ionisation. Thus, space weather induced severe ionosphere perturbations can cause serious technological problems in Global Navigation Satellite Systems (GNSS) such as GPS. During the severe ionosphere storm period of 29–31 October 2003, reported were several significant malfunctions due to the adverse effects of the ionosphere perturbations such as interruption of the WAAS service and degradation of mid-latitudes GPS reference services. To properly warn service users of such effects, a quick evaluation of the current signal propagation conditions expressed in a suitable ionospheric perturbation index would be of great benefit. Preliminary results of a comparative study of ionospheric gradients including vertical sounding and Total Electron Content (TEC) data are presented. Strong enhancements of latitudinal gradients and temporal changes of the ionisation are observed over Europe during the 29–30 October storm period. The potential use of spatial gradients and rate of change of foF2 and TEC characterising the actual perturbation degree of the ionosphere is discussed. It has been found that perturbation induced spatial gradients of TEC and foF2 strongly enhance during the ionospheric storm on 29 October over the Central European region in particular in North–South direction exceeding the gradients in East–West direction by a factor of 2.  相似文献   

6.
本文利用设在武汉(11436°E,3053°N,磁纬194°)的GPS电离层TEC和电波闪烁监测仪的测量数据,分析了2004年11月强磁暴期间TEC的响应以及电波闪烁和TEC起伏的特征.结果表明,在这次强磁暴期间,武汉及其邻近地区电离层TEC的响应以正暴相为主,正暴相分别出现在两次主相期间,最大正偏离达到50 TECU.这次磁暴另一个重要影响是主相期间L波段振幅闪烁的活动性及其强度显著增强.S4指数最大接近10.伴随增强的闪烁活动,多次观测到深度耗尽的等离子体泡与TEC起伏,TEC变化率的标准差ROTI指数也显著增强.分析揭示, ROTI指数与S4指数呈正相关,相关系数达到097.线性回归计算得到,ROTI和S4的比率为964.  相似文献   

7.
基于陆态网络GPS数据的电离层空间天气监测与研究   总被引:7,自引:2,他引:5       下载免费PDF全文
中国大陆构造环境监测网络(简称陆态网络)是以全球卫星导航定位系统(GNSS)为主,辅以多种空间观测技术,实时动态监测大陆构造环境变化,探求其对资源、环境和灾害的影响的地球科学综合观测网络.基于陆态网络约200个基准站的GPS观测数据,本文探讨了其在电离层空间天气监测与研究方面的应用.包括磁暴期间电离层暴扰动形态,大尺度电离层行进式扰动,太阳耀斑引起的电离层骚扰和低纬电离层不规则体结构等.研究结果表明:陆态网络布局合理,观测数据质量良好,完全可用于中国及周边地区电离层空间天气监测与研究,为进一步开展我国电离层空间天气预警和预报奠定了观测基础.  相似文献   

8.
利用2004年11月6~10日磁暴发生期间南极区域内的中国中山站GPS常年跟踪站(ZHON)和国际GPS服务站(CAS1, MCM4, SYOG, MAW1)的GPS观测数据,计算了可观测卫星传播路径上的TEC和ROT值,进而依据TEC的波动频率和幅度推估出极区碎片的个数,分析了极区磁暴期间电离层响应及其极区碎片特性. 最终所得TEC和ROT结果与极区地磁场Dst和Kp指数信息相吻合,如实地反映了磁暴事件和极区碎片的出现. 本文所做工作在国内尚未开展,因此所用方法和结论为将来这一方向的研究提供了一定的参考.  相似文献   

9.
中国地区电离层TEC暴扰动研究   总被引:12,自引:2,他引:10       下载免费PDF全文
电离层总电子含量(TEC)是空间天气研究和监测预报的重要参量.本文引入了电离层TEC扰动指数DI, 对青岛等6个台站的DI数据进行分析,选取DI>0.35(DI≤-0.30)作为正(负)相电离层TEC扰动的强度标准,并以连续6 h及以上的DI满足该值来判定电离层TEC暴扰动事件.对电离层TEC暴扰动事件的统计分析表明,在地方时日落后至子夜前为发生高峰时段,正(负)相暴扰动事件平均持续时间约为10.9 h(10.5 h),正相暴发生率以冬季为多,夏季为少,而负相暴则以夏季略高.发现位于赤道异常驼峰区的广州站和位于高中纬度的海拉尔站比典型中纬地区的北京站电离层TEC暴扰动更易发生,且低纬地区以正相暴扰动为主.分析表明,约有70%的电离层TEC暴扰动伴随着有地磁扰动,但是电离层TEC暴扰动并不完全由地磁扰动所引起,强烈气象活动等局地环境因素也可能对电离层TEC暴扰动有着重要影响.  相似文献   

10.
This paper presents the results from a study designed to investigate the ability of a newly developed neural network (NN) based model to follow total electron content (TEC) dynamics over the Southern African region. The investigation is carried out by comparing results from the NN model with actual TEC data derived from Global Positioning System (GPS) observations and TEC values predicted by the International Reference Ionosphere (IRI-2007) model during magnetic storm periods over Southern Africa. The magnetic storm conditions chosen for the study presented in this paper occurred during the periods 16–21 April 2002, 1–6 October 2002, and 28 October–01 November 2003. A total of six South African GPS stations were used for the validation of the two models during these periods. A statistical analysis of the comparison between the actual TEC behaviour and that predicted by the two models is shown. In addition, ionosonde measurements from the South African Louisvale (28.5°S, 21.2°E) station, located close to one of the validation GPS stations used, are also considered during the Halloween storm period of 28–31 October 2003. The generalisation of TEC behaviour by the NN model is demonstrated by producing predicted TEC maps during magnetic storm periods over South Africa. Presented results demonstrate the ability of NNs in predicting TEC variability over South Africa during magnetically disturbed conditions, and highlight areas for improvement.  相似文献   

11.
2001年3月19日至22日期间电离层暴分析   总被引:1,自引:1,他引:0       下载免费PDF全文
本文利用2001年3月19日至22日期间ACE卫星观测的行星际资料、电离层垂测仪资料以及中国地区TEC资料,分析了发生在这期间的电离层暴过程.结果表明:(1)日冕物质抛射造成的行星际环境为电离层暴的发生提供了大尺度环境背景;(2)强烈的电离层负暴发生在磁暴恢复相阶段;(3)强烈电离层负暴能够用暴环流理论解释.  相似文献   

12.
2015年3月磁暴期间中国中低纬地区电离层变化分析   总被引:9,自引:0,他引:9       下载免费PDF全文
2015年3月17日爆发了本太阳活动周最大的地磁暴,Dst指数达到-233 nT.本文利用电离层测高仪f_。F_2和h_mF_2、北斗同步卫星(BDSGEO)TEC以及GPS电离层闪烁S4指数对此次磁暴期间中国中低纬地区(北京、武汉、邵阳和三亚)的电离层变化进行分析,并对此次磁暴所引发电离层暴的可能机制进行了探讨.磁暴期间,中低纬电离层暴整体表现为正相暴之后长时间强的负相暴.3月17日白天中纬正相暴为风场抬升电离层所致,而驼峰区及低纬地区正相暴由东向穿透电场所引起;3月18日白天长时间的强负相暴为西向扰动发电机电场和成分扰动所引起;3月17和18日夜间的负相暴可能是日落东向电场受到抑制以及赤道向风场对扩散的抑制导致驼峰向赤道压缩所致,同时被抑制的日落东向电场强度不足以触发产生赤道扩展F,导致低纬三亚和邵阳夜间电离层闪烁在磁暴期间受到完全抑制.这是我们首次基于北斗同步卫星TEC组网观测开展的电离层暴研究.  相似文献   

13.
Global Positioning System (GPS) derived total electron content (TEC) measurements were analyzed to investigate the ionospheric response during the X-class solar flare event that occurred on 5-6 December 2006 at geomagnetic conjugate stations: Syowa, Antarctica (SYOG) (GC: 69.00°S, 39.58°E; CGM: 66.08°S, 71.65°E) and árholt, Iceland (ARHO) (GC: 66.19°N, 342.89°E; CGM: 66.37°N, 71.48°E). Bernese GPS software was used to derive the TEC maps for both stations. The focus of this study is to determine the symmetry or asymmetry of TEC values which is an important parameter in the ionosphere at conjugate stations during these solar flare events. The results showed that during the first flares on 5 December, effects were more pronounced at SYOG than at ARHO. However, on 6 December, the TEC at ARHO showed a sudden spike during the flare with a different TEC variation at SYOG.  相似文献   

14.
The accuracy of single-frequency ocean altimeters benefits from calibration of the total electron content (TEC) of the ionosphere below the satellite. Data from a global network of Global Positioning System (GPS) receivers provides timely, continuous, and globally well-distributed measurements of ionospheric electron content. For several months we have been running a daily automatic Global Ionospheric Map process which inputs global GPS data and climatological ionosphere data into a Kalman filter, and produces global ionospheric TEC maps and ocean altimeter calibration data within 24 h of the end-of-day. Other groups have successfully applied this output to altimeter data from the GFO satellite and in orbit determination for the TOPEX/Poseidon satellite. Daily comparison of the global TEC maps with independent TEC data from the TOPEX altimeter is performed as a check on the calibration whenever the TOPEX data are available. Comparisons of the global TEC maps against TOPEX data will be discussed. Accuracy is best at mid-to-high absolute latitudes (∣latitude∣>30°) due to the better geographic distribution of GPS receivers and the relative simplicity of the ionosphere. Our highly data-driven technique is relatively less accurate at low latitudes and especially during ionospheric storm periods, due to the relative scarcity of GPS receivers and the structure and volatility of the ionosphere. However, it is still significantly more accurate than climatological models.  相似文献   

15.
Due to several complexities associated with the equatorial ionosphere, and the significant role which the total electron content (TEC) variability plays in GPS signal transmission, there is the need to monitor irregularities in TEC during storm events. The GPS SCINDA receiver data at Ile-Ife, Nigeria, was analysed with a view to characterizing the ionospheric response to geomagnetic storms on 9 March and 1 October 2012. Presently, positive storm effects, peaks in TEC which were associated with prompt penetration of electric fields and changes in neutral gas composition were observed for the storms. The maximum percentage deviation in TEC of about 120 and 45% were observed for 9 March and 1 October 2012, respectively. An obvious negative percentage TEC deviation subsequent to sudden storm commencement (SSC) was observed and besides a geomagnetic storm does not necessarily suggest a high scintillation intensity (S4) index. The present results show that magnetic storm events at low latitude regions may have an adverse effect on navigation and communication systems.  相似文献   

16.
The intensity of large-scale traveling ionospheric disturbances (LS TIDs), registered according to measurements of the total electron content (TEC) during the magnetic storms of October 29–31, 2003, and November 7–11, 2004, has been compared with that of local electron density disturbances. The data of TEC measurements at ground-based GPS receivers located near the ionospheric stations and the corresponding values of the critical frequency of the ionospheric F region (foF2) were used for this purpose. The variations in TEC and foF2 were similar for all events mentioned above. The previous assumption that the region of thickness 150–200 km in the vicinity of the ionospheric F region mainly contributes to TEC modulation was confirmed for the cases when the electron density disturbance at an F region maximum was not more than 50%. However, this region probably becomes more extensive in vertical when the electron density disturbance in the vicinity of the ionospheric F region is about 85%.  相似文献   

17.
The conjugacy effects of the GPS scintillation activities during the geomagnetic storms of October 2003, November 2003 and July 2004 have been investigated at the approximately geomagnetically conjugate stations: Scott Base, Antarctica (SBA) and Resolute Cornwallis Island (RESO) in the high Arctic region. The measurements aim at investigation of the similarities and differences of the scintillation activities occurring at the conjugate points in the polar regions under storm conditions and examine the relationship between the Storm Enhanced Density (SED) and scintillation activity. The measurements of the scintillation activities obtained from total scintillation index during these storm periods at both hemispheres showed asymmetry in the ionospheric scintillation occurrence at the conjugate points. Pronounced scintillation activity was observed at the nightside hemisphere with the total scintillation index higher than at the dayside hemisphere. The results also show that the durations of severe scintillation activity were longer at the nightside hemisphere. The measurements showed that the intense scintillation periods were corresponding to the presence of the SED events where more pronounced SED events were observed over the nightside hemisphere.  相似文献   

18.
The dynamic picture of the response of the high- and mid-latitude ionosphere to the strong geomagnetic disturbances on March 17–18, 2015, has been studied with ground-based and satellite observations, mainly, by transionospheric measurements of delays of GPS (Global Positioning System) signals. The advantages of the joint use of ground-based GPS measurements and GPS measurements on board of the Swarm Low-Earth-Orbit satellite mission for monitoring of the appearance of ionospheric irregularities over the territory of Russia are shown for the first time. The results of analysis of ground-based and space-borne GPS observations, as well as satellite, in situ measurements, revealed large-scale ionospheric plasma irregularities observed over the territory of Russia in the latitude range of 50°–85° N during the main phase of the geomagnetic storm. The most intense ionospheric irregularities were detected in the auroral zone and in the region of the main ionospheric trough (MIT). It has been found that sharp changes in the phase of the carrier frequency of the navigation signal from all tracked satellites were recorded at all GPS stations located to the North from 55° MLAT. The development of a deep MIT was related to dynamic processes in the subauroral ionosphere, in particular, with electric fields of the intense subauroral polarization stream. Analysis of the electron and ion density values obtained by instruments on board of the Swarm and DMSP satellites showed that the zone of highly structured auroral ionosphere extended at least to heights of 850–900 km.  相似文献   

19.
GPS地面台网和掩星观测结合的时变三维电离层层析   总被引:10,自引:1,他引:9       下载免费PDF全文
本文给出GPS地面台网和掩星观测结合的时变三维电离层层析的原理、算法和基于实测数据的反演结果.反演结果的比较表明,联合地基GPS与掩星观测数据进行重建,电子密度整体图像的重建质量特别是其垂直结构的重建质量得到了明显改善.在平静日和磁暴期间两种条件下利用实测数据的重建结果表明,GPS地面台网和掩星观测结合的电离层层析可以获得电离层电子密度在高度-纬度-经度-时间四维空间中的变化.重建结果清晰地显示了磁暴期间电离层负相暴效应,表明结合GPS地面台网和掩星观测的时变三维电离层层析可以有效地监测扰动条件下的大尺度电离层结构.  相似文献   

20.
Real time kinematic, or RTK, is a high-accuracy GPS relative positioning technique, which allows to measure positions in real time with an accuracy usually better than 1 decimeter. Ionospheric small-scale variability can strongly degrade RTK accuracy. In this paper, we present a method allowing to assess in a direct quantitative way the influence of the ionospheric activity on RTK accuracy. We apply this method to two different ionospheric situations: a day where strong travelling ionospheric disturbances (TIDs) were detected (December 24, 2004) and a day where a severe geomagnetic storm was observed (November 20, 2003). We show that on a 4 km baseline, strong TIDs have the same influence as the ionospheric variability induced by a geomagnetic storm on RTK accuracy: in both cases errors of more than 1.5 m are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号