首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anisotropy of magnetic susceptibility (AMS) represents a valuable proxy able to detect subtle strain effects in very weakly deformed sediments. In compressive tectonic settings, the magnetic lineation is commonly parallel to fold axes, thrust faults, and local bedding strike, while in extensional regimes, it is perpendicular to normal faults and parallel to bedding dip directions. The Altotiberina Fault (ATF) in the northern Apennines (Italy) is a Plio-Quaternary NNW–SSE low-angle normal fault; the sedimentary basin (Tiber basin) at its hanging-wall is infilled with a syn-tectonic, sandy-clayey continental succession. We measured the AMS of apparently undeformed sandy clays sampled at 12 sites within the Tiber basin. The anisotropy parameters suggest that a primary sedimentary fabric has been overprinted by an incipient tectonic fabric. The magnetic lineation is well developed at all sites, and at the sites from the western sector of the basin it is oriented sub-perpendicular to the trend of the ATF, suggesting that it may be related to extensional strain. Conversely, the magnetic lineation of the sites from the eastern sector has a prevailing N–S direction. The occurrence of triaxial to prolate AMS ellipsoids and sub-horizontal magnetic lineations suggests that a maximum horizontal shortening along an E–W direction occurred at these sites. The presence of compressive AMS features at the hanging-wall of the ATF can be explained by the presence of gently N–S-trending local folds (hardly visible in the field) formed by either passive accommodation above an undulated fault plane, or rollover mechanism along antithetic faults. The long-lasting debate on the extensional versus compressive Plio-Quaternary tectonics of the Apennines orogenic belt should now be revised taking into account the importance of compressive structures related to local effects.  相似文献   

2.
罗良  贾东  李一泉  邓飞  孙圣思 《地质学报》2008,82(6):850-856
磁组构是一种灵敏的应变指示计。单一方向应力作用下,在平行层缩短的初始阶段,磁线理与地层走向是一致的。然而,在构造叠加背景下弱变形的沉积岩地区,另一个(多个)不同方向的应力使得已经产生定向排列的磁性矿物发生旋转,表现为磁线理和与地层走向斜交。川西北盆地在新生代是一个典型的构造叠加区域,来自龙门山和米仓山的变形在此相互作用。本文在川西北盆地分3条剖面在18个采样点中采集了172个样品进行了磁组构研究。研究区内观察到3种弱变形的磁组构类型:沉积磁组构、初始变形磁组构和铅笔状磁组构。由于应变的叠加,由盆地内部向造山带前缘没有出现应变由弱到强的变化趋势,同时磁线理的方向也不一致。由盆地向造山带,来自米仓山的变形逐渐增强,磁线理从与地层走向一致转变成与地层走向斜交。  相似文献   

3.
柴达木盆地西部狮子沟一带新生代沉积岩磁组构分析结果显示, 岩石磁组构具有磁面理发育、磁线理不发育、磁化率量值椭球呈压扁状的特点; 磁化率各向异性度P值不大, 反映总体构造变形相对较弱。岩石磁组构反映的应力状态总体为以NE向挤压为主, 与轴向NW的背斜构造发育相一致。该区岩石磁组构大多具有原始沉积磁组构特征, 磁面理产状大体上反映沉积岩层的层理, 同时也记录了受NE向挤压作用的痕迹。根据岩石磁组构与地层层理之间的关系分析, 柴西地区两翼不对称的狮子沟背斜具有断展褶皱性质, 其形成与下部的花土沟逆冲断层向南西方向的仰冲有关。   相似文献   

4.
In this work we analyse and check the results of anisotropy of magnetic susceptibility (AMS) by means of a comparison with palaeostress orientations obtained from the analysis of brittle mesostructures in the Cabuérniga Cretaceous basin, located in the western end of the Basque–Cantabrian basin, North Spain. The AMS data refer to 23 sites including Triassic red beds, Jurassic and Lower Cretaceous limestones, sandstones and shales. These deposits are weakly deformed, and represent the syn-rift sequence linked to basins formed during the Mesozoic and later inverted during the Pyrenean compression. The observed magnetic fabrics are typical of early stages of deformation, and show oblate, triaxial and prolate magnetic ellipsoids. The magnetic fabric seems to be related to a tectonic overprint of an original, compaction, sedimentary fabric. Most sites display a NE–SW magnetic lineation that is interpreted to represent the stretching direction of the Early Cretaceous extensional stage of the basin, without recording of the Tertiary compressional events, except for sites with compression-related cleavage.Brittle mesostructures include normal faults, calcite and quartz tension gashes and joints, related to the extensional stage. The results obtained from joints and tension gashes show a dominant N–S to NE–SW, and secondary NW–SE, extension direction. Paleostresses obtained from fault analysis (Right Dihedra and stress inversion methods) indicate NW–SE to E–W, and N–S extension direction. The results obtained from brittle mesostructures show a complex pattern resulting from the superposition of several tectonic processes during the Mesozoic, linked to the tectonic activity related to the opening of the Bay of Biscay during the Early Cretaceous. This work shows the potential in using AMS analysis in inverted basins to unravel its previous extensional history when the magnetic fabric is not expected to be modified by subsequent deformational events. Brittle mesostructure analysis seems to be more sensitive to far-field stress conditions and record longer time spans, whereas AMS records deformation on the near distance, during shorter intervals of time.  相似文献   

5.
Rare earth elements and yttrium geochemistry of dolomite from post-Variscan vein-type Zn–Pb–Cu mineralization was studied in the Nízký Jeseník and Upper Silesian Basins. Combined with crush–leach analyses of fluid inclusions, the study provided important information on fluid–rock interaction, physico-chemical and redox conditions during crystallization of the dolomite. The mineralization is hosted by Carboniferous siliciclastic rocks, representing Variscan flysch and molasse sedimentation. Dolomite samples contain highly variable contents of REE (between 18 and 295 ppm) and Y (between 17 and 95 ppm). REY patterns are divided into four different groups which differ in regional provenance, LREE vs. HREE enrichment/depletion and significance of Eu, Gd and Y anomalies. These patterns can be the result of 1) precipitation of dolomite from near neutral fluids with important concentrations of complexing ligands as a main factor for the REY partitioning, 2) interaction of migrating fluids with host or basement rocks, or, most probably, 3) a combination of both.Regarding the importance of complexing ligands, it is proposed that in all samples fluoride and chloride complexes prevailed over sulphate, bicarbonate and hydroxide complexes. Interaction of fluids with rocks was strongly affected by the fluid temperature. Dolomites which precipitated from fluids with homogenization temperature higher than 110 °C are mostly REY-enriched while fluids colder than 110 °C produced REY-depleted dolomite. The REY-enrichment may indicate higher effectiveness of leaching of REE-bearing minerals (probably monazite, allanite and biotite) at higher temperatures. The preferential loss of LREE can be caused by the recrystallization or remobilization of dolomite. Generally, an increase in salinity and contents of Cl and F in the fluids is mostly accompanied by a higher REY content in dolomite. Positive Eu anomalies and small negative Gd and Y anomalies are typical for most of the chondrite-normalized patterns. Positive EuCN anomalies in dolomites are most probably the result of an increase of Eh in the parent fluid. Distribution of Y is expected to be predominantly controlled by solution complexation.  相似文献   

6.
黄河源区位于青藏高原东北部,区内主要为三叠系沉积地层,发育一系列由北向南的推覆构造带,间有早期近直立的韧性剪切带。笔者对黄河源地区巴颜喀拉山群沉积岩进行了磁组构分析,结果显示岩石磁化率各向异性度P值和磁化率百分率各向异性度H值均不大,反映该地区总体韧性变形较弱,较强韧性变形仅发育于局部地段;岩石磁组构具有磁面理发育、磁线理不发育、磁化率椭球呈压扁形椭球体的特点,反映在挤压应力作用下,岩石发生了压扁变形,主应力方位主要为NNE-SSW(近SN)向,其次为NE-SW向。根据岩石磁组构分析认为黄河源地区存在两条韧性剪切带,韧性剪切带与现今湖泊水体的展布有一定的耦合关系;北部韧性剪切带沿现今黄河河谷分布,控制着扎陵湖、鄂陵湖和玛多"四姐妹湖"的展布;南部韧性剪切带沿岗纳格玛错—野牛沟一线展布,控制着岗纳格玛错和尕拉拉错等残余湖泊的分布。  相似文献   

7.
A combined sedimentological, shape-preferred orientation and anisotropy of magnetic susceptibility (AMS) analysis has been performed at the Arroyofrío Bed (Callovian–Oxfordian boundary level) in the locality of Moneva (Iberian Range, NE Spain). The Arroyofrío bed is a widespread iron-ooid limestone interval forming a condensed sequence. The present study has focused on the analysis of the potential presence of a preferred ooid orientation at the Arroyofrío bed. The obtained data show that ooids were originally ellipsoidal and had an imbricate disposition with respect to the bedding/lamination surface. The main ooid orientation within the bedding plane shows a NNE–SSW trend. Results of AMS analyses show a magnetic foliation parallel or slightly imbricated with respect to bedding and magnetic lineation parallel to the main ooid orientation. Magnetic mineralogy of studied samples shows that AMS is mainly controlled by magnetite with minor contributions of hematite and paramagnetic minerals (that can reach contributions of 35 %). The analyzed ooids show axial ratios between 1.4 and 2.8 (intrinsic anisotropy), while the anisotropy of their distribution shows lower anisotropies (e.g., Rs = 1.15) or very low values of the anisotropic magnetic parameters (e.g., P′ < 1.01). Sedimentary texture, matrix features, bioturbation and fossil content influenced both ooid main orientation and the magnetic fabric. Magnetic lineation and main orientation of long ooid axes are transverse to the inferred coastline in the studied area and parallel to the expected paleocurrent direction with respect to the Ejulve-Maestrazgo paleogeographic high. The direct correlation between AMS magnetic lineation and the ooid analysis permits to demonstrate that the paleocurrent imprint can be recorded by means of AMS despite the highly ferromagnetic context fabric and at coarse deposits. Obtained results support the interest and reliability of AMS to unravel paleocurrent imprints for paleogeographic reconstructions.  相似文献   

8.
北京怀柔崎峰茶-琉璃庙地区岩石磁组构特征及其构造意义   总被引:18,自引:3,他引:18  
磁组构是指磁化率的各向异性。北京崎峰茶-琉璃庙地区岩石磁组构造特征是磁各向异性度P值、磁椭球扁率E>0为主、磁面理发育而磁线理很差。本区构造变形强烈,以压扁变形为主,S-N向构造带是东盘上升、西盘下降,E-W向构造带是上盘由南向北逆冲。  相似文献   

9.
The Cascade Lake shear zone occurs on the eastern margin of the Tuolumne Intrusive Suite, Sierra Nevada Batholith, California. Foliation in the zone is NNW trending and subvertical, and lineation is moderately south plunging. Deformation is syn-tectonic with emplacement of the Cathedral Peak granodiorite. A deformation gradient exists toward the NE margin of this pluton, with higher strains and lower temperatures of deformation found near the contact. We compare fabric data collected very densely in this shear zone using several techniques: field fabrics, 3D orientation of K-feldspar megacrysts, and AMS (anisotropy of magnetic susceptibility) analysis. In general, the results from the three different methods are in agreement. Deformation in this shear zone is part of a larger pattern of deformation within the Cathedral Peak granodiorite, as recorded by AMS analysis, and dextral shearing associated within the last stage of plutonism within the Sierra Nevada magmatic arc.  相似文献   

10.
磁组构成分析是利用岩石磁化率各向异性研究构造变形特征及其应力作用方式和方向的方法,研究表明,中甲地区岩石各向异性度P值比较小,反映本区总体变形较弱,但变质石英砂岩相对变形较强。变质石英砂岩磁面理发育,磁线理较弱,显示压扁变形,变形主压应力方向是NW-SE向。火山(碎屑)岩具有明显的磁线理,反映流纹构造特征;最大磁化率轴方向屡示本区火山岩流体构造为NW-SE向。矿化蚀变岩和矿石的磁各向异性度P值明显  相似文献   

11.
Abstract

The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82·10?5 S.I. and 28 to 75·10?5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6 %, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry. © Elsevier, Paris  相似文献   

12.
《Geodinamica Acta》1998,11(6):271-283
The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82 · 10−5 S.I. and 28 to 75 · 10−5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6%, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry.  相似文献   

13.
The easternmost part of the Neoproterozoic Araçuaí belt comprises an anatectic domain that involves anatexites (the Carlos Chagas unit), leucogranites and migmatitic granulites that display a well-developed fabric. Microstructural observations support that the deformation occurred in the magmatic to submagmatic state. Structural mapping integrating field and anisotropy of magnetic susceptibility (AMS) revealed a complex, 3D structure. The northern domain displays gently dipping foliations bearing a NW-trending lineation, southward, the lineation trend progressively rotates to EW then SW and the foliation is gently folded. The eastern domain displays E–W and NE–SW trending foliations with moderate to steeply dips bearing a dominantly NS trending lineation. Magnetic mineralogy investigation suggests biotite as the main carrier of the magnetic susceptibility in the anatexites and ferromagnetic minerals in the granulites. Crystallographic preferred orientation (CPO) measurements using the electron backscatter diffraction (EBSD) technique suggest that the magnetic fabric comes from the crystalline anisotropy of biotite and feldspar grains, especially. The delineation of several structural domains with contrasted flow fabric suggests a 3D flow field involving westward thrusting orthogonal to the belt, northwestward orogen-oblique escape tectonics and NS orogen-parallel flow. This complex deformation pattern may be due to interplay of collision-driven and gravity-driven deformations.  相似文献   

14.
The anisotropy of magnetic susceptibility is a well-known geological proxy in revealing the directional tectonic and sedimentological features of rocks, although it can be ambiguous in situations where these two factors co-occur. This paper demonstrates the usefulness of the anisotropy of magnetic susceptibility in determining palaeotransport directions in turbiditic rocks that underwent subsequent thrusting and folding. This study demonstrates that the magnetic lineation is largely unsuitable as a palaeocurrent direction proxy, and suggests that the imbrication of magnetic foliation is better in such cases. Moreover, the anisotropy of magnetic susceptibility results were analyzed in reference to a joint and fold study within the framework of the regional structural geology. Magnetic fabric investigations were conducted in the eastern part of the Outer Western Carpathians (south-east Poland). During the study, a total of 191 oriented palaeomagnetic samples were collected from three outcrops (Nasiczne, Dwernik and Hoczew) in the Krosno Beds, Silesian Unit. For the purpose of sedimentological analysis, 121 m of turbidite successions were documented and 126 directional sedimentary structures were measured. The magnetic anisotropy of sandstones revealed typical sedimentary fabrics, often overprinted by variably intense tectonic deformation. Oblate susceptibility ellipsoids from Nasiczne showed tilt coherent with the palaeoflow direction, whereas the rocks from Dwernik and Hoczew contained triaxial magnetic fabric developed during compressional palaeostress. This paper suggests that medium-grained and coarse-grained sandstones, preferably with high mica content, are the most suitable for palaeotransport reconstructions among the studied lithologies.  相似文献   

15.
The Ibituruna quartz-syenite was emplaced as a sill in the Ribeira-Araçuaí Neoproterozoic belt (Southeastern Brazil) during the last stages of the Gondwana supercontinent amalgamation. We have measured the Anisotropy of Magnetic Susceptibility (AMS) in samples from the Ibituruna sill to unravel its magnetic fabric that is regarded as a proxy for its magmatic fabric. A large magnetic anisotropy, dominantly due to magnetite, and a consistent magnetic fabric have been determined over the entire Ibituruna massif. The magmatic foliation and lineation are strikingly parallel to the solid-state mylonitic foliation and lineation measured in the country-rock. Altogether, these observations suggest that the Ibituruna sill was emplaced during the high temperature (~ 750 °C) regional deformation and was deformed before full solidification coherently with its country-rock. Unexpectedly, geochronological data suggest a rather different conclusion. LA-ICP-MS and SHRIMP ages of zircons from the Ibituruna quartz-syenite are in the range 530–535 Ma and LA-ICP-MS ages of zircons and monazites from synkinematic leucocratic veins in the country-rocks suggest a crystallization at ~ 570–580 Ma, i.e., an HT deformation > 35My older than the emplacement of the Ibituruna quartz-syenite. Conclusions from the structural and the geochronological studies are therefore conflicting. A possible explanation arises from 40Ar–39Ar thermochronology. We have dated amphiboles from the quartz-syenite, and amphiboles and biotites from the country-rock. Together with the ages of monazites and zircons in the country-rock, 40Ar–39Ar mineral ages suggest a very low cooling rate: < 3 °C/My between 570 and ~ 500 Ma and ~ 5 °C/My between 500 and 460 Ma. Assuming a protracted regional deformation consistent over tens of My, under such stable thermal conditions the fabric and microstructure of deformed rocks may remain almost unchanged even if they underwent and recorded strain pulses separated by long periods of time. This may be a characteristic of slow cooling “hot orogens” that rocks deformed at significantly different periods during the orogeny, but under roughly unchanged temperature conditions, may display almost indiscernible microstructure and fabric.  相似文献   

16.
The origin of dome-and-keel structural geometries in Archean granite–greenstone terrains appears to lack any modern analogues and is still poorly understood. The formation of these geometries is investigated using structural and anisotropy of magnetic susceptibility (AMS) data for the Chinamora batholith in Zimbabwe. The roughly circular-shaped batholith is surrounded by ca. 2.72–2.64 Ga greenstones. The batholith granitoid suites have been divided on the basis of their ages and fabric relationships into four distinct units: (i) banded basement gneisses; (ii) granodioritic gneisses; (iii) equigranular granites; and (iv) central porphyritic granites. In the gneissic granites a partial girdle (N–S) of poles to the magnetic foliation is developed that has been folded around a consistent, flat lying magnetic lineation plunging at shallow angles to the E or W. In the equigranular granites, the magnetic lineation generally plunges to the NW. The magnetic foliation has a variable strike, no clear trends can be distinguished. The AMS measurements of the porphyritic granite revealed a NW–SE striking foliation and showed subhorizontal magnetic lineations. The magnetic foliation is subparallel to the macroscopic foliation. Wall rocks are moderately inclined and show radial or concentric lineations, triaxial strain ellipsoids and kinematics that demonstrate off-the-dome sliding and coeval pluton expansion. The results of the observations do not point to a single emplacement process. Neither the observed structural data nor the magnetic fabric support a model envisaging spherically ‘ballooning’. It is argued that pluton diapirism played a major part in the formation of the fabrics in the gneisses, whereas the fabrics in the porphyritic granites reflect emplacement as laccolith-like sheets.  相似文献   

17.
Anisotropy of magnetic susceptibility (AMS) and paleomagnetic methods have been applied on the middle Miocene–Pleistocene sedimentary sequence in the Boso and Miura Peninsulas of central Japan in order to identify the invisible regional deformation sense as well as the intensity of deformation of sediments. The southern sequences of the two peninsulas were subjected to syn-sedimentary deformation of folding and faulting generated in compressional tectonics. A previous result of the AMS experiment on the sequences shows a development of a strong magnetic lineation. Thus, it is conceivable that the lineation had to be generated during the process of deformation, and in a direction perpendicular to the shortening. However, the orientation of the magnetic lineations is inconsistent among the different tectonic domains in the southern sequence. The paleomagnetic declination in each domain reveals a clockwise rotation in various degrees. Reconstructed directions of the magnetic lineations show a consistent pattern in the east–west direction, suggesting that the sedimentary sequence was subjected to a north-southward compression. In contrast, the compressive direction of the sediment cover on the Pliocene–Pleistocene sequence reveals a northwest direction. Our results suggest that the Philippine Sea Plate had been subducting northward during the middle Miocene–Pliocene, and changed its direction during the Pliocene.  相似文献   

18.
鲁西地区韧性剪切带岩石磁组构分析及其构造意义   总被引:1,自引:1,他引:0  
岩石磁组构分析可用来研究岩石的组构特征及构造变形。鲁西地区韧性剪切带岩石磁组构具有磁各异性度P和磁百分率各向异性值H高、磁化率量值椭球呈压扁状、磁面理发育而磁线理不发育的特点。区内韧性剪切带变形强烈,以压扁作用为主,最大主压应力方向近NE和S-N向,以右旋运动为主。韧性剪切带形成以后,区内主要经历了热蚀变和脆性变形,韧性变形很弱  相似文献   

19.
Evaluating magnetic lineations (AMS) in deformed rocks   总被引:3,自引:0,他引:3  
Magnetic lineation in rocks is given by a cluster of the principal axes of maximum susceptibility (Kmax) of the Anisotropy of Magnetic Susceptibility (AMS) tensor. In deformed rocks, magnetic lineations are generally considered to be the result of either bedding and cleavage intersection or they parallel the tectonic extension direction in high strain zones. Our AMS determinations, based on a variety of samples that were taken from mudstones, slates and schists from the Pyrenees and Appalachians, show that strain is not the only factor controlling the development of magnetic lineation. We find that the development and extent to which the magnetic lineation parallels the tectonic extension direction depends on both the original AMS tensor, which in turn depends on the lithology, and the deformation intensity. Rocks having a weak pre-deformational fabric will develop magnetic lineations that more readily will track the tectonic extension.  相似文献   

20.
To investigate the role of bedding in the evolution of meso- and microstructural fabrics in fault zones, detailed microscopic, mineralogical, and geochemical analyses were conducted on bedding-oblique and bedding-parallel faults that cut a folded Neogene siliceous mudstone that contains opal-CT, smectite, and illite. An analysis of asymmetric structures in the fault gouges indicates that the secondary fractures associated with each fault exhibit contrasting characteristics: those of the bedding-oblique fault are R1 shears, whereas those of the bedding-parallel fault are reactivated S foliation. The bedding-oblique fault shows the pervasive development of S foliation, lacks opal-CT, and has low SiO2/TiO2 ratios only in gouge, whereas the bedding-parallel fault exhibits these characteristics in both gouge and wall rocks. The development of S foliation and the lack of silica can result from local ductile deformation involving the sliding of phyllosilicates, coupled with pressure solution of opal-CT. Although such deformation can occur in gouge, the above results indicate that it may occur preferentially along bedding planes, preceding the formation of a gouge/slip surface. Thus, in sedimentary rocks that contain phyllosilicates and soluble minerals, bedding can influence the rheological evolution of meso- and microstructural fabrics in fault zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号