首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北京气温日变化特征的城郊差异及其季节变化分析   总被引:9,自引:1,他引:8  
杨萍  肖子牛  刘伟东 《大气科学》2013,37(1):101-112
本文利用北京地区近4年67个自动气象站的逐小时气温观测资料,基于北京地区气温的日变化特征,通过分析日最高、最低气温出现时间的概率分布,研究了城区、郊区气温的日变化差异及季节特征.此外,进一步分析研究了不同单位时间间隔变温的日变化特征,及最大变温出现时间的概率分布情况.研究结果表明:平均而言,城区最高温度出现的时间偏晚,而最低温度出现的时间城区偏早于郊区,与郊区相比,北京城区站点温度的日变化特征更为一致,最高(低)温度出现的时间更加集中;温度日变化的特征随季节有明显的变化,最高温度出现时间在秋、冬两季最为集中,在春季和夏季较为分散;而最低温度出现时间在春、夏两季最为集中,在秋季和冬季最为分散.一天中正、负变温过程具有非对称特征,正变温是比较急剧的过程,负变温相对比较缓慢,北京城区站点的变温幅度小于郊区,春、秋和冬季变温幅度较大,夏季变温幅度最小.不同单位时间内变温速率的分析表明,最强的变温过程一般在3小时以内;最大变温出现时间的概率分布分析表明,最大正变温出现时间在冬季最为集中,夏季最为分散;而最大负变温在秋季最为集中,在春季最为分散.最高(低)温度、变温的城、郊特征差异主要是由于城市热容量比郊区大,且具有更多变化的复杂性而形成的.温度日变化的特征和其区域、季节差异性的揭示,不仅有助于更好地认识和理解区域气候特征和城市化对气温的影响,也可以为做好精细化的天气预报提供气候背景参考.  相似文献   

2.
The correction, validation and homogenisation of the long temperature series of Padova (1725–1998) are discussed. After a careful historical investigation made in order to discover the metadata concerning the series, i.e., instrument features, calibrating methodologies, operational procedures (i.e., exposure, timing and number of daily observations), instrument maintenance, relocations and instrument replacements, the series has been corrected for all the systematic errors derived from any change in the instruments or the operative methodology. Above all, correction focused on instrumental drift, scale expansion, building influence, relationship between indoor-outdoor measurements, minima and maxima evaluation from observations performed at different times, homogenisation for difference of level and change of site. Statistical tests applied to the data and the comparison with other known series has clarified some uncertainties about exposure and operational procedures that the historical analysis of metadata was unable to solve. Moreover, gaps have been filled after the comparison of the series with others of neighbouring sites. The critical work of debugging, correcting, validating and homogenising the series is essential for a correct interpretation of data, as in some cases the errors that have been corrected have been found to be greater than the climate signal. Especially in the early period, the algebraic sum of the corrections of the mean daily temperature exceeds 8 ° C, where monthly corrections can reach 6 ° C. After correction, validation and homogenisation, the linear trend of the Padova series is positive, +0.31 ° C/100 yr over the period1774–today. Looking at post-industrial warming, the temperature rise is+0.44 ° C in the last 130 years, which means +0.34 ° C/100 yr, not farfrom the above bulk average.  相似文献   

3.
Maximum Entropy Spectral Analysis of the annual mean surface temperature series for land masses and sea in the northern and southern hemispheres indicated long-term linear warming trends of (0.12 to 0.56) °C/century with superposed significant periods in the ranges T = 5–6 yr, 10–11 yr, 15 yr, 20 yr, 28–32 yr, and 55–80 yr. Extrapolation in future indicated for 2000–2030 a departure of (+0.4 °C) above the 1950–70 level. However, for the 1980s, the observed values are above the expected level, probably indicating large greenhouse effects due to human intervention. In that case, our predictions would be underestimates.  相似文献   

4.
Daily maximum and minimum temperatures from 29 low-lying and mountain stations of 7 countries in Central Europe were analyzed. The analysis of the annual variation of diurnal temperature range helps to distinguish unique climatic characteristics of high and low altitude stations. A comparison of the time series of extreme daily temperatures as well as mean temperature shows a good agreement between the low-lying stations and the mountain stations. Many of the pronounced warm and cold periods are present in all time series and are therefore representative for the whole region. A linear trend analysis of the station data for the period 1901–1990 (19 stations) and 1951–1990 (all 29 stations) shows spatial patterns of similar changes in maximum and minimum daily temperatures and diurnal temperature range. Mountain stations show only small changes of the diurnal temperature range over the 1901–1990 period, whereas the low-lying stations in the western part of the Alps show a significant decrease of diurnal temperature range, caused by strong increase of the minimum temperature. For the shorter period 1951–1990, the diurnal temperature range decreases at the western low-lying stations, mainly in spring, whereas it remains roughly constant at the mountain stations. The decrease of diurnal temperature range is stronger in the western part than in the eastern part of the Alps.  相似文献   

5.
Summary Trends of monthly air temperature extremes were investigated in five meteorological stations of the Grand-Duchy of Luxembourg during the period 1949–1998. The application of an innovative homogenization method based on the concept of relative homogeneity to climatic time series allows identifying multiple break points, as well as correcting data series in an objective and robust statistical way. The rise of maximum temperature (Tmax) has occurred at a rate of 1.5 times that of the minimum temperature (Tmin) in winter (+1.4°C versus +0.9°C) and summer (+1.4°C versus +0.8°C). No trend in temperature extremes was found in autumn, while spring was affected by a small warming (+0.3°C) of Tmin and no change in Tmax resulting in a decrease of the diurnal temperature range (DTR) (–0.3°C). In spring, a strong positive linear relationship between Tmin warming and local terrain slope could be found. Comparison to new-gridded large-scale climatologies indicates generally close agreement to temperature trends during the 1949–1998 period, while a lower local warming was observed in summer during the post-1975 period following the changing-point year of atmospheric circulation over North-western Europe. This study shows that the question of data homogeneity is not trivial and should receive careful attention before quantifying historical temperature trends and identifying their spatial patterns at regional scale.  相似文献   

6.
The climatic effects of an elevated uniform global layer of purely absorbing smoke of absorption optical depth 0.2 have been simulated using a version of the 9-level spectral model of McAvaney et al. (1978). The model was run at rhomboidal wave number 21 with convective adjustment, prognostic precipitation and soil hydrology, but fixed zonally averaged climatological cloud and fixed sea surface temperature, for constant January and July conditions with and without smoke absorption. Results show a reduction in convective rainfall in the tropics and monsoonal regions of the order of 50%, with diurnal average soil surface coolings of several degrees C except in those locations where the reduction in soil moisture is sufficient to effectively stop evaporation at the surface. In that case, small increases in temperature may occur. Results over Australia are consistent with the zonal mean picture. Run in a diurnal cycle mode, the model shows that daily maximum temperatures are more strongly affected, with soil surface coolings of the order of 2°–3° C in summer (with some local warmings) and 4°–6° C in winter. Overninght minimum temperatures cool by only 1°–2° C in both summer and winter. Possible effects of a lowering of sea surface temperature, variations in cloud cover, neglect of scattering by smoke, and infrared absorption and emission by the smoke are discussed.  相似文献   

7.
Summary As revealed from the interannual variation of outgoing longwave radiation in the western Pacific, deep cumulus convection along the Meiyü-Baiu front and ITCZ is modulated by the anomalous summer circulation in the following manner: when the sea surface temperatures on the eastern tropical Pacific are anomalously warm (cold), cumulus convection is enhanced (suppressed) along the equator east of 150° E and along the Meiyü-Baiu front, but is suppressed (enhanced) along the equator west of 150° E and along a longitudinal zone (10° N–30° N) extending from the northern section of the South China Sea to the International Dateline. Since tropical deep cumulus convection exhibits a pronounced diurnal variation, the diurnal convection cycle in the western Pacific may undergo an interannual variation coherent with that of deep tropical cumulus convection. This inference is substantiated by our analysis of the diurnal convection cycle for 1980–1993 with 3-hour equivalent black-body temperature observed by the Japanese Geostationary Meteorological Satellite (GMS). As expected, the diurnal convection cycle in the western Pacific is subjected to an interannual variation in accordance with deep cumulus convection along the Meiyü-Baiu front and ITCZ. Except along the equator east of 150° E, the diurnal convection cycle does not exhibit a drastic interannual change in phase.  相似文献   

8.
Summary Wind direction variation in Lund, s. Sweden is investigated for the period 1740–1992. Around 1860 the initial bidirectional (W—E) continental flow pattern changed to a combined uni- (W) and bi-directional pattern, which has increased the maritimity; in recent decades, an exceptionally high W'ly influence is present. The process toward a higher degree of maritimity has not been a strictly linear one; the 1820's–1830's and the 1940's–1960's are exceptions from this generalization. Trends of declining N'ly and NE'ly winds are accompanied by increased frequencies of SE'ly and SW'ly winds. From the wind direction data, using multiple regression analysis, hindcasting models for temperature and zonality (zonality index P45°N-P65°N in the sector 5° E-40° E) are established for the time when such meteorological observations are unavailable (i.e. before 1860; temperature and before 1899; zonality). The accuracy of monthly zonality index estimations varies betweenR = 0.76–0.93; temperatureR = 0.35–0.80. Models for January temperature and zonality are the most reliable ones. Presence of a very low zonal index in January characterised the mid 18th century (average 4 hPa compared to the current value 10hPa) which resulted in colder winters, according to the January estimate, 1.5 °C colder than present.With 10 Figures  相似文献   

9.
本文利用四川138个气象站点1960~2010年的气温资料,分析了四川地区年均最高、最低气温及日较差的时空变化特征。结果表明:1960~2010年四川年均最高、最低气温在时间变化上呈非对称性升温,年均最高气温和最低气温的气候倾向率分别为0.131℃/10a和0.185℃/10a,后者增温幅度约为前者的1.4倍。年均最高、最低气温气候倾向率在空间分布上多数地区也呈非对称现象,年均最高、最低气温在西部高原地区升温较快,但最低气温的升温速率明显高于最高气温,这导致气温日较差在高原西部地区下降幅度较大。年均最高气温在1980年代最低,2000年代达到最高;年均最低气温在1960年代最低,2000年代最高;年均气温日较差在1960年代最大,1980年代最小。年均最高、最低气温分别在1996年和1993年发生转变,年均气温日较差分别在1973年和2005年发生了转变,年均最高、最低气温气候倾向率的不同及转变年的不一致导致气温日较差在转变年上的不一致。   相似文献   

10.
Summary ¶This study examines the spatial and quantitative influence of urban factors on the surface air temperature field of the medium-sized of Szeged, Hungary, using mobile measurements under different weather conditions in the periods of March 1999–February 2000 and April–October 2002. Efforts have been concentrated on the development of the urban heat island (UHI) in its peak development during the diurnal cycle. Tasks included: (1) determination of spatial distribution of mean maximum UHI intensity and some urban surface parameters (built-up and water surface ratios, sky view factor, building height) using the standard Kriging procedure, as well as (2) development of a statistical model in the so-called heating and non-heating seasons using the above mentioned parameters and their areal extensions. In both seasons the spatial distribution of the mean maximum UHI intensity fields had a concentric shape with some local irregularities. The intensity reaches more than 2.1°C (heating season) and 3.1°C (non-heating season) in the centre of the city. For both seasons statistical model equations were determined by means of stepwise multiple linear regression analysis. As the measured and calculated mean maximum UHI intensity patterns show, there is a clear connection between the spatial distribution of the urban thermal excess and the examined land-use parameters, so these parameters play an important role in the evolution of the strong UHI intensity field. From the above mentioned parameters the sky-view factor and the building height were the most determining factors which are in line with the urban surface energy balance. Therefore in the future, using our model it will be possible to predict mean maximum UHI intensity in other cities, which have land-use features similar to Szeged.Received September 26, 2002; revised February 25, 2003; accepted March 22, 2003 Published online July 30, 2003  相似文献   

11.
In this article we compile 108 national and international studies on global climate change, each projecting a quantitative impact on global surface-air temperature due to a doubling of the atmospheric CO2 concentration. These predictions, documented between 1980 and 1995, are based primarily on climate-modeling research, including radiative-convective, energy-balance, and general circulation models. Collectively over the past 15 years, the average (mean) temperature change projection due to doubled CO2 is +2.62°C, with a range of 0.16–8.7°C. General circulation models tend to estimate slightly higher values (2.98°C), compared with radiative-convective models (1.98°C) and energy-balance models (2.54°C). During the years 1980 through 1995, an increasing trend in predictions is noticed, although the mean temperature change prediction each year has remained fairly consistent near 2–3°C. These findings suggest that the estimated sensitivity of the climate system continues to remain comparable to the range calculated in earlier studies. However, tremendous advancements in the capacity of climate models continue to reveal important uncertainties in the dynamic nature of global atmospheric interactions. The predictions continue to validate the need for a global policy relating to human influence on global climate change.  相似文献   

12.
Summary Interest in the potential climatic consequences of the continued buildup of anthropo-generated greenhouse gases has led many scientists to conduct extensive climate change studies at the global, hemispheric, and regional scales. In this investigation, analyses are conducted on long-term historical climate records from the Arabian Peninsula region. Over the last 100 years, temperatures in the region increased linearly by 0.63 °C. However, virtually all of this warming occurred from 1911–1935, and over the most recent 50 years, the Arabian Peninsula region has cooled slightly. In addition, the satellite-based measurements of lower-tropospheric temperatures for the region do not show any statistically significant warming over the period 1979–1991. While many other areas of the world are showing a decrease in the diurnal temperature range, the Arabian Peninsula region reveals no evidence of a long-term change in this parameter. Precipitation records for the region show a slight, statistically insignificant decrease over the past 40 years. The results from this study should complement the mass of information that has resulted from similar regional climate studies conducted in the United States, Europe, and Australia.With 5 Figures  相似文献   

13.
The Beijing meteorological tower is located in an area of Beijing, China, which has developed from a suburban to an inner city setting over the past 30 years. The impacts of this urbanization process on both the vertical profile and diurnal cycles of air temperature are investigated using hourly data collected from a series of monitoring levels (up to 325 m high) on the Beijing meteorological tower since 1984. We find that the inter-decadal temperature has increased gradually, and that a more significant increase occurred during the 1980s and 1990s due to the effects of urbanization. A well-defined change in temperature stratification was also observed over this period. The height of the temperature inversion layer decreased from the 1980s to the 2000s. A well-defined nighttime temperature inversion developed below 50 m during the summer in the 1980s, but this near-surface inversion is not seen in data from the 1990s and 2000s. This change can be related to an increase in turbulent mixing caused by urban roughness and surface heat storage that disturbs the near-surface temperature inversion layer. In addition, the diurnal change in temperature in the city in summer shows a maximum increase from sunrise to the early afternoon, which is mainly caused by the nature variability and global warming in both the summer and winter. The urbanization mainly contributes to the temperature increase in the afternoon and nighttime. Moreover the urbanization dominates the increase in daily mean near-surface temperature.  相似文献   

14.
In this study, urban climate in Nanjing of eastern China is simulated using 1-km resolution Weather Research and Forecasting (WRF) model coupled with a single-layer Urban Canopy Model. Based on the 10-summer simulation results from 2000 to 2009 we find that the WRF model is capable of capturing the high-resolution features of urban climate over Nanjing area. Although WRF underestimates the total precipitation amount, the model performs well in simulating the surface air temperature, relative humidity, and precipitation frequency and inter-annual variability. We find that extremely hot events occur most frequently in urban area, with daily maximum (minimum) temperature exceeding 36°C (28°C) in around 40% (32%) of days. Urban Heat Island (UHI) effect at surface is more evident during nighttime than daytime, with 20% of cases the UHI intensity above 2.5°C at night. However, The UHI affects the vertical structure of Planet Boundary Layer (PBL) more deeply during daytime than nighttime. Net gain for latent heat and net radiation is larger over urban than rural surface during daytime. Correspondingly, net loss of sensible heat and ground heat are larger over urban surface resulting from warmer urban skin. Because of different diurnal characteristics of urban-rural differences in the latent heat, ground heat and other energy fluxes, the near surface UHI intensity exhibits a very complex diurnal feature. UHI effect is stronger in days with less cloud or lower wind speed. Model results reveal a larger precipitation frequency over urban area, mainly contributed by the light rain events (< 10 mm d?1). Consistent with satellite dataset, around 10?C20% more precipitation occurs in urban than rural area at afternoon induced by more unstable urban PBL, which induces a strong vertical atmospheric mixing and upward moisture transport. A significant enhancement of precipitation is found in the downwind region of urban in our simulations in the afternoon.  相似文献   

15.
董丹宏  黄刚 《大气科学》2015,39(5):1011-1024
本文利用中国740个气象台站1963~2012年均一化逐日最高温度和最低温度资料,分析了中国地区最高、最低气温和日较差变化趋势的区域特征及其与海拔高度的关系。结果表明:近50年气温的变化趋势无论是年或季节变化,最低温度的增温幅度都高于最高温度,且其增温显著区域都对应我国高海拔地区。除了春季,其他季节最高、最低温度及日较差的升温幅度随着海拔高度的升高而增大,其中最高温度的变化趋势与海拔高度的相关性最好。同一海拔高度上,最高、最低温度在不同年代的增幅具有不一致性:20世纪80年代,二者变化幅度最小;20世纪90年代,二者增幅最大,尤以低海拔地区最为明显。2000 m以上高海拔地区:最高温度和最低温度的变化趋势在20世纪90年代以前变化较小,而在近十年增幅十分明显;日较差季节变化大:夏季减小,冬季增加。20世纪90年代以前,最高、最低温度随海拔高度变化不大,而近20年随海拔高度升高,最高、最低温度的变化趋势几乎都是先减小后增加。高海拔地区比低海拔地区对全球变化反应更明显。  相似文献   

16.
A previously developed plant species-climatic envelope model was evaluated further and used to predict effects of hypothesized climatic change on the potential distribution of 124 native woody plant species in Florida, U.S.A. Twelve scenarios were investigated. These included mean annual temperature increases of 1 °C or 2 °C, achieved either by equal 1 °C or 2 °C increases on a monthly basis throughout the year, or by disproportionately larger seasonal increases in winter and smaller ones in summer. The various temperature increases were then combined with each of several precipitation changes, ranging from +10% to –20%, to produce the final set of scenarios. More detailed analysis involving six of the scenarios and a subset of 28 representative, ecologically important species suggested that (1) large decreases in the Florida range of many temperate species would result if 1 °C warming occurs predominantly in winter or with a 20% decrease in annual precipitation, or (2) if 2 °C warming occurs, with or without decrease in annual precipitation, and regardless of whether there is a uniform monthly warming pattern or one that is higher in winter than in summer. Available information concerning other factors that might also affect climatic-change responses suggests that these large predicted impacts on temperate Florida species may be underestimates. Subtropical Florida species will tend to move north and inland with warming but extensive human assistance may be needed, if they are to realize their newly expanded, potential natural ranges.  相似文献   

17.
Using the southern limit of snowfall recorded in Chinese documents, chronologies of tree-ring width, and tree-ring stable oxygen isotope(δ~(18)O), the annual temperature anomaly in southern China during 1850–2009 is reconstructed using the method of signal decomposition and synthesis. The results show that the linear trend was 0.47℃(100 yr)~(-1)over 1871–2009,and the two most rapid warming intervals occurred in 1877–1938 and 1968–2007, at rates of 0.125℃(10 yr)~(-1)and 0.258℃(10 yr)~(-1), respectively. The decadal variation shows that the temperature in the moderate warm interval of the 1910s–1930s was notably lower than that of the 1980s–2000s, which suggests that the warming since the 1980s was unprecedented for the past 160 years, though a warming hiatus existed in the 2000s. Additionally, there was a rapid cooling starting from the 1860s,followed by a cold interval until the early 1890s, with the coldest years in 1892 and 1893. A slight temperature decline was also found from the 1940s to the late 1960s. This study provides an independent case to validate the global warming for the past 160 years and its hiatus recently, because the proxy data are not affected by urbanization.  相似文献   

18.
V. Gornitz  Nasa 《Climatic change》1985,7(3):285-325
The extent of albedo change resulting from anthropogenic modification of the vegetation cover over the last century has been investigated in West Africa. The climatic implications of these changes are briefly discussed.West Africa spans a suite of vegetation zones ranging latitudinally northward from tropical rainforest to desert scrub, and comprises environmental problems from extremely rapid deforestation of the tropical forests in Ivory Coast or Ghana to desertification in the Sahel.Historical vegetation changes have been digitized on a 1° × 1° grid map based on a literature survey of government censuses, forestry and agricultural reports, supplemented by atlases, and other historical, economic and geographic sources.The principal processes of land cover modification during the last century include clearing of the natural vegetation for agriculture, grazing, logging, and degradation of marginal semi-arid to arid ecosystems by excessive grazing or cultivation. Forestry surveys for West Africa suggest clearance of around 56% of the forest zone; estimated losses for Ivory Coast, Ghana, and Liberia range between 64% and 70%. Estimates of total land conversion range between 88 million ha, from the digitized land use map (Figure 4) to 122.8 million ha, from extrapolation of forestry data (Section 3.1).The change in albedo corresponding to the land use modification is relatively small, using conservative estimates for desertification amounting to an increase of around 0.4% regionally over 100 yr and 0.5% since agriculture began. Thus 4/5 of the total albedo may have occurred within the last century. Additional assumptions regarding desertification and a lower albedo value for tropical forest compensate for each other and do not significantly alter the result of the initial calculation. The maximum zones of increased albedo are concentrated in the forest zone (4°–8° N) and savanna-southern sahel (10°–12°) which correspond to zones of maximum agricultural and population growth. Between 13° N and 17° N, the albedo change is small or negative due to both less intensive land utilization and replacement of scattered vegetation on exposed sandy soil by lower albedo irrigated crops.These estimates may represent a lower limit, particularly if desertification is more extensive than initially assumed. Under an extreme assumption that the entire Sahel zone between 14°–20° N has been desertified, the regional mean albedo could increase by as much as 4%. This represents an upper limit to likely historical anthropogenic disturbances of the land surface.Although historical climate records show three major droughts during the 20th century (1910–1920, 1940's, 1969–1975, possibly continuing into the 1980's; Nicholson, 1980a; Hare, 1983), and stream flow fluctuations which correlate well with precipitation (Faure and Gac, 1981;Palutikof et al., 1981), these records do not appear to indicate a regional secular decrease in precipitation as suggested by several climate models. Evidence for apparent desiccation or desert creep (= desertification) may be attributed, in large part, to adverse changes in soil and stream hydrology caused by anthropogenic disruption of the vegetation cover.  相似文献   

19.
北京地区热岛效应及日较差特征   总被引:4,自引:3,他引:1  
通过对2007~2010年北京地区经质量控制后的123个自动气象站气温数据采用K均值聚类方法分类, 得到城区、郊区、西部和北部山区、西南和东北部山区4个温度分区, 分析了4个分区气温的年变化、日变化和日较差变化特征, 并对北京地区热岛效应的时间变化特征进行了细致分析。结果表明:聚类分析方法可对北京地区温度很好地进行分区, 分区结果与站点的地形和下垫面情况较为吻合;不同分区温度日较差在西部和北部山区最大, 在西南部和东北部山区次之, 郊区再次之, 在城区的日较差最小;在一年中, 各温度分区以2月、5月与10月日较差较大, 其中以5月的日较差为最大;北京地区热岛效应在冬季和夜间较强, 而3~8月热岛较弱, 在夏季的白天比其它季节白天强。  相似文献   

20.
Summary The diurnal variations of net radiation have been studied by analysing one year data measured at a tropical station, Osu (7.43° N, 4.58° E), in Nigeria. The maximum net daytime flux (which occurs around 14h local time) varies in the course of the year from 382.6±136.7Wm–2 in the wet season (April–October) to 480.3±61.8 Wm–2 in the dry season (November–March). The low values (and large fluctuations) of the hourly means recorded during the wet (monsoon) season are attributed to the important roles that the convective clouds and water vapour play in the atmospheric radiation budget, which is very pronounced in the tropical areas of West Africa.The daily amplitude of the net radiation is larger for the dry season (maximum in November) than it is for the wet season (minimum in July). A lag of about 2 hours is observed between the times when the maxima of the air temperature and the net radiation courses occur over the area.On leave from the Department of Physics, Obafemi Awolowo University, Ile-Ife, Nigeria.With 5 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号