首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
基于控制尾流,阻止立管尾流漩涡脱落转换路径的涡激振动抑制机理,设计三角形尾翼、片状尾翼及交错尾翼等三种抑振装置。三种抑振装置分别安装于立管模型表面,立管模型采用外径为18 mm的透明有机玻璃管。通过在均匀流场中进行安装有该抑振装置的立管模型涡激振动试验,研究三种抑振装置对立管涡激振动的抑制效率,并通过与配重裸管的涡激振动数据对比,分析抑振装置对立管动力响应的影响规律。研究结果表明,三种抑振装置均取得了明显的抑振效果,与配重裸管相比,安装片状尾翼及交错尾翼的立管模型抑制效率可达90%以上,安装三角形尾翼后立管模型振动频率略有减小,而安装片状尾翼及交错尾翼的立管模型没有明显的主导频率。  相似文献   

2.
According to the characteristics of deepwater top tensioned risers, a simplified model is presented to predict the multi-modal response of vortex-induced vibration (VIV) in non-uniform flow based on energy equilibrium theory and the exporimental data from VIV self-excited and forced oscillations of rigid cylinders. The response amplitude of each mode is determined by a balance between the energy fed into the riser over the lock-in regions and the energy dissipated by the fluid damping over the remainders. Compared with the previous prediction models, this method can take fully account of the intrinsic nature of VIV for low mass ratio structures on lock-in regions, added mass and nonlinear fluid damping effect, etc. Moreover, it is the first time to propose the accurate calculating procedure for VIV amplitude correction factor by solving energy equilibrium equation and a closed form solution is presented for the case of a riser of uniform mass and cross-section oscillating in a uniform flow. The predicted values show a reasonable agreement with VIV experiments of riser models in stepped and sheared currents.  相似文献   

3.
Control rod is one of the common passive control methods to suppress the vortex-induced vibration (VIV) of cylindrical structures. In this paper, the experimental study is conducted to detailed understand the performance of multiple control rods in suppressing the cross-flow (CF) VIV for a long flexible cylinder. The influence of the spatial arrangement of 3 and 4 control rods on CF VIV response of the main cylinder is investigated in a towing tank. It is observed that the attack angle θ is a very significant parameter to affect the vibration response, dominant frequency and the VIV suppression efficiency of the main cylinder. Based on the suppression efficiencies analysis of VIV response in the present experimental investigation, the spatial arrangement of 3 control rods with θ = 40° and 4 control rods with θ = 30° is the best choice for suppressing the CF VIV response of the main flexible cylinder. Overall, the use of 4 control rods could reduce VIV more effectively than the application of 3 control rods.  相似文献   

4.
It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations (VIV) of cylinders. In this paper, a novel in-line (IL) and cross-flow (CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.  相似文献   

5.
The effects of different helical strake coverage on the vortex-induced vibration (VIV) of a model flexible riser were studied experimentally, with the aim of further improving the understanding of VIV responses. Uniform and linearly sheared currents were simulated to study response parameters such as non-dimensional displacement, fatigue damage, suppression efficiency, and the comprehensive evaluation is further studied. Test results of the bare model for a uniform current showed that the behavior of both the standing wave and traveling wave dominated VIV displacement. However, for a linearly sheared current, traveling wave behavior dominated VIV displacement in the high-velocity range. The results of the straked model tests indicated that the response was strongly dependent upon the amount of coverage of helical strakes. The flexible riser with 75% strake coverage gave the best comprehensive evaluation in a uniform current, and 50% strake coverage gave the best comprehensive evaluation in a linearly sheared current.  相似文献   

6.
尝试建立1种基于无单元法的涡激振动数值模拟算法,并给出适用于涡激振动分析的前处理自动布点方法.基于无单元法理论,使用动最小二乘法构造形函数,利用无单元伽辽金法,采用速度和压力分离模式,及手工布点和自动布点2种方法所得出的节点布置形式,对流场控制方程进行空间离散,模拟二维涡激振动的流场形态,并对VIV相关参数进行分析,计算不同节点布置情况下的升力系数(Cl)、曳力系数(Cd)及斯特罗哈数(St),并与物理模型实验结果进行对比.计算结果表明,无单元伽辽金法应用于立管VIV分析是可行的,且文中采用2种布点方法均能较好的模拟流场中泻涡脱落的形态,计算结果与传统方法和物理模型实验结果吻合良好.证明文中2种布点方法都能用于固定圆柱的二维VIV分析,但自动布点法能够更好地适用于复杂问题的计算及圆柱体在流场中的VIV动力响应分析.  相似文献   

7.
海洋监测拖曳系统中拖缆导流套设计   总被引:2,自引:0,他引:2  
拖缆导流套是提高海洋监测拖曳系统效能的有效手段之一.阐述了导流套的功能,分析了导流套的受力,以及拖缆导流套设计中要考虑的若干问题,并介绍了自行设计的导流套性能.  相似文献   

8.
A series of experimental tests of passive VIV suppression of an inclined flexible cylinder with round-sectioned helical strakes were carried out in a towing tank. During the tests, the cylinder models fitted with and without helical strakes were towed along the tank. The towing velocity ranged from 0.05 to 1.0 m/s with an interval of 0.05 m/s.Four different yaw angles(a=0°, 15°, 30° and 45°), defined as the angle between the axis of the cylinder and the plane orthogonal of the oncoming flow, were selected in the experiment. The main purpose of present experimental work is to further investigate the VIV suppression effectiveness of round-sectioned helical strakes on the inclined flexible cylinder. The VIV responses of the smooth cylinder and the cylinder with square-sectioned strakes under the same experimental condition were also presented for comparison. The experimental results indicated that the roundsectioned strake basically had a similar effect on VIV suppression compared with the square-sectioned one, and both can significantly reduce the VIV of the vertical cylinder which corresponded to the case of a=0°. But with the increase of yaw angle, the VIV suppression effectiveness of both round-and square-section strakes deteriorated dramatically, the staked cylinder even had a much stronger vibration than the smooth one did in the in-line(IL)direction.  相似文献   

9.
Vortex-induced vibration(VIV) for flexible cylinders under combined uniform and oscillatory flow is a challenging and practical issue in ocean engineering. In this paper, a time domain numerical model is adopted to investigate the characteristics of cross-flow VIV response and fatigue damage under different combined flow cases. Firstly, the adopted VIV model and fatigue analysis procedure are validated well against the published experimental results of a4-m cylinder model under pure oscillatory flows. Then, forty-five combined flow cases of the same cylinder model are designed to reveal the VIV response characteristics with different non-dimensional oscillation period T* and combined ratio r. The combined flow cases are classified into three categories to investigate the effect of r on cylinder's dynamic response, and the effect of T* is described under long and short period cases. Finally, fatigue analysis is carried out to investigate how the structural fatigue damage varies with the variations of r and T*. The captured characteristics of structural response and fatigue damage are explained through the VIV mechanism analysis.  相似文献   

10.
Gao  Yun  Yang  Bin  Zou  Li  Zong  Zhi  Zhang  Zhuang-zhuang 《中国海洋工程》2019,33(1):44-56
A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to linear and exponential shear flows. The coupling equations of a structural vibration model and wake oscillator model were solved using a standard central finite difference method of the second order. The VIV response characteristics including the structural displacement, structural frequency, structural wavenumber, standing wave behavior,travelling wave behavior, structural velocity, lift force coefficient and transferred energy from the fluid to the structure with different flow profiles were compared. The numerical results show that the VIV displacement is a combination of standing waves and travelling waves. For linear shear flow, standing waves and travelling waves dominate the VIV response within the low-velocity and high-velocity zones, respectively. The negative values of the transferred energy only occur within the low-velocity zone. However, for exponential shear flow, travelling waves dominate the VIV response and the negative energy occurs along the entire length of the cylinder.  相似文献   

11.
Utilization of measurements from on-board monitoring systems of marine vessels is a part of shipbuilding industry’s digitalization phase. The data collected can be used to verify and improve vessel’s power system design. Deployment of data-driven statistical models can enhance the knowledge about the power requirements. In this study, we describe a data-driven statistical model that can be used to study and analyze the power requirement of a vessel, which might help to understand the key factors that influence the power and to quantify their contribution. We propose a powerful tool namely, generalized additive model (GAM), which allows us to model nonlinearities. We build the GAM to see the relationship between power consumed and the key influential factors for a power system based on real data from a platform supply vessel (PSV) in a dynamic positioning (DP) mode with diesel-electric configuration. We also describe the importance of feature extraction based on Hilbert Transform to improve the model. In addition, we fit the linear regression (LR) model as a reference model. In the last phase we verify the results of GAM, LR with simulation model from ShipX to show that the data-driven model is within the boundaries of power requirement from simulations.  相似文献   

12.
Previous steel catenary riser (SCR) models targeted for VIV prediction are truncated at touchdown point (TDP) where simple constrain and rotation stiffness are generally applied. In this study, a time domain approach accounting for the SCR–soil interaction is proposed to predict the cross-flow (CF) VIV induced fatigue damage of a SCR near TDP. The hydrodynamic force is simulated based on the forced vibration test data as a function of the non-dimensional amplitude and frequency, and an empirical damping model. When the non-dimensional frequency associated with the calculated frequency falls in the excitation region, the natural frequency closer to the frequency corresponding to the maximum excitation force is taken to be the dominant frequency, and applied to obtain the excitation force. The SCR–soil interaction model takes into account the trench shape, and the mobilization and release of the soil suction. Fatigue damage is linearly accumulated by using the rain-flow counting methodology. To validate the proposed models, simulation for a riser model test is carried out, and the envelopes of RMS displacement, curvature, and fatigue damage are compared. Further works focus on the sensitivity of VIV induced fatigue damage near TDP to the seabed parameters, such as mudline shear strength, shear strength gradient and soil suction, and some conclusions are obtained.  相似文献   

13.
海底管道悬跨管段在波流联合作用下非常容易发生疲劳破坏.文中通过多项Galerkin方法对海底管跨的涡激振动方程进行求解,获得管跨系统的时域非线性动力响应,分析疲劳裂纹扩展模型MeEvily模型中各个参数对管道疲劳寿命的影响,在此基础上提出管道疲劳寿命预报方法.  相似文献   

14.
This study proposed a method to obtain hydrodynamic forces and coefficients for a flexible riser undergoing the vortex-induced vibration (VIV), based on the measured strains collected from the scale-model testing with the Reynolds numbers ranging from 1.34E5 to 2.35E5. The riser is approximated as a tensioned spatial beam, and an inverse method based on the FEM of spatial beam is adopted for the calculation of hydrodynamic forces in the cross flow (CF) and inline (IL) directions. The drag coefficients and vortex-induced force coefficients are obtained through the Fourier Series Theory. Finally, the hydrodynamic characteristics of a flexible riser model undergoing the VIV in a uniform flow are carefully investigated. The results indicate that the VIV amplifies the drag coefficient, and the drag coefficient does not change with time when the CF VIV is stable. Only when the VIVs in the CF and IL directions are all steady vibrations, the vortex-induced force coefficients keep as a constant with time, and under “lock-in” condition, whether the added-mass coefficient changes with time or not, the oscillation frequency of the VIV keeps unchanged. It further shows that the CF excitation coefficients at high frequency are much smaller than those at the dominant frequency, while, the IL excitation coefficients are in the same range. The axial distributions of the excitation and damping region at the dominant frequency and high frequency are approximately consistent in the CF direction, while, in the IL direction, there exists a great difference.  相似文献   

15.
Experiments employing a low-mass-damping cylinder have been conducted to determine the vortex-induced vibration (VIV) response of four suppressors of the flexible-shroud family. The VIV suppressors were inspired in the concept of the Ventilated Trousers (VT), a flexible shroud composed of a flexible net fitted with three-dimensional bobbins. Reynolds number varied between 5 × 103 and 25 × 103, while reduced velocity varied from 2 to 26. The VIV dynamic response showed that the VT suppressed the peak amplitude of vibration down to 40% of that of a bare cylinder. Other flexible shrouds also achieved suppression, but not as efficiently. Drag was reduced during the VIV synchronization range, but remained above the value for a bare static cylinder thereafter. Spectral analysis of displacement and lift revealed that, depending on the geometry and distribution of the bobbins, the flexible shroud can develop an unstable behavior, capturing energy from the wake and sustaining vibrations for higher reduced velocities. PIV measurements of the wake revealed that the entrainment flow through the mesh is necessary to extend the vortex-formation length of the wake; this mechanism only occurs for the VT mesh.  相似文献   

16.
In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn.  相似文献   

17.
海洋立管是深海油气开发中用于连接海底井口和水面浮体的唯一通道。立管在洋流作用下极易发生涡激振动(vortex-induced vibration,简称VIV),发展快速经验性涡激振动时域预报方法对立管的安全设计具有重要意义。通过柔性立管模型试验,结合载荷重构方法和最小二乘法,识别建立了能量竞争载荷模型下的经验水动力载荷系数模型。应用识别建立的经验水动力载荷系数模型,发展形成了海洋立管顺流向及横流向双向涡激振动时域预报方法。将预报结果与试验结果对比,结果表明:基于能量竞争载荷模型的海洋立管双向涡激振动预报方法能够有效预报海洋立管涡激振动主导模态、主导频率、流向平均位移响应和涡激振动位移响应等力学行为特性。研究成果对发展更为有效的涡激振动预报手段具有有益参考。  相似文献   

18.
Over the past decade there has been a rapid growth of interest in wave propagation through ice covers. This paper summarizes the author’s observation of the modeling efforts on this topic. Models can be theory-based, data-driven, or a combination of the two. A pure data-driven model relies on a large amount of observations and is only becoming available recently. Theory-based models on the other hand have a long history. They are always a simplified version of the reality. As our knowledge grows, theories become more complicated. A theory for waves-in-ice that captures all possible processes does not exist. However, when integrated with observation through calibration, these combined theory + data-based models may be used with some confidence. In this paper, different models, their basic concepts, their calibration and validation are discussed. The present theory-based models do not have the correct spectral attenuation trend as observed from field or laboratory experiments. Hence, through calibration they may fit different parts of the wave spectra but not all. Pure data-driven models can reproduce the correct trend, but its dependability outside the situation where the data are collected is uncertain. In addition to offering tools to forecast waves-in-ice, these model building and validating efforts point to missing mechanisms that should be carefully studied. Despite the many challenges towards building a satisfactory general waves-in-ice model, significant progress has been made for models that work reasonably well in the marginal ice zone. We anticipate much more data will become available in the coming years to help us improve the existing models.  相似文献   

19.
Marine risers are susceptible to sustained vortex-induced vibration (VIV) because of their slenderness and light damping. Commonly used tools for analyzing VIV and the associated fatigue damage are based on the finite element method and rely on simplifying assumptions on the riser's physical model, the flow conditions, and characteristics of the response. In order to assess the influence of VIV and to ensure the integrity of the riser, field monitoring campaigns are often undertaken wherein data loggers such as strain sensors and/or accelerometers are installed on such risers. Given the recorded riser's dynamic response, empirical techniques can be used in VIV-related fatigue estimation. These empirical techniques make direct use of the measurements and are intrinsically dependent on the actual current profiles. Damage estimation can be undertaken for the different current profiles encountered and can account explicitly even for complex riser response characteristics. With a significant amount of data, “short-term” fatigue damage probability distributions, conditional on current, can be established. If the relative frequency of different current types is known from a separate metocean study, the short-term fatigue damage distributions can be combined with the current distributions to yield an integrated “long-term” fatigue damage model, which then can be used to predict the long-term cumulative fatigue damage for the instrumented riser. Non-parametric statistical techniques (that do not assume a specific function for the underlying distribution as parametric techniques do) are employed to describe the short-term fatigue damage data. In this study, data from the Norwegian Deepwater Programme (NDP) model riser experiments are used to demonstrate the effectiveness of empirical procedures and non-parametric statistics applied to field measurements to predict long-term fatigue damage, life, and probability of fatigue failure.  相似文献   

20.
The vortex-induced vibration (VIV) of flexible long riser with combined in-line and cross-flow motion has been studied using a wake oscillator in this paper. The analytical solution of mean top tension of long flexible riser is evaluated and compared with experimental results, and good agreement is observed to verify its validity. Then the nonlinear coupled dynamics of the in-line and cross-flow VIV of a long tension-dominated riser were analyzed through wake oscillator model with the consideration of variation of the mean top tension. The in-line and cross-flow resonant frequencies, lift and drag coefficients, dominant mode numbers, amplitudes and instantaneous deflections are reported and compared with experimental results, and excellent agreements are observed. The comparison of mode numbers between the calculation with and without consideration of variation of mean top tension shows that the proposed analytical solution of the mean top tension can produce a better prediction of multi-mode VIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号