首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
~~Characteristics of the mantle source region of sodium lamprophyres and petrogenetic tectonic setting in northeastern Hunan,China~~  相似文献   

2.
The Oligocene alkaline basalts of Toveireh area (southwest of Jandaq, Central Iran) exhibit northwest–southeast to west–east exposure in northwest of the central‐east Iranian microcontinent (CEIM). These basalts are composed of olivine (Fo70–90), clinopyroxene (diopside, augite), plagioclase (labradorite), spinel, and titanomagnetite as primary minerals and serpentine and zeolite as secondary ones. They are enriched in alkalis, TiO2 and light rare earth elements (La/Yb = 9.64–12.68) and are characterized by enrichment in large ion lithophile elements (Cs, Rb, Ba) and high field strength elements (Nb, Ta). The geochemical features of the rocks suggest that the Toveireh alkaline basalts are derived from a moderate degree partial melting (10–20%) of a previously enriched garnet lherzolite of asthenospheric mantle. Subduction of the CEIM confining oceanic crust from the Triassic to Eocene is the reason of mantle enrichment. The studied basalts contain mafic‐ultramafic and aluminous granulitic xenoliths. The rock‐forming minerals of the mafic‐ultramafic xenoliths are Cr‐free/poor spinel, olivine, Al‐rich pyroxene, and feldspar. The aluminous granulitic xenoliths consist of an assemblage of hercynitic spinel + plagioclase (andesine–labradorite) ± corundum ± sillimanite. They show interstitial texture, which is consistent with granulite facies. They are enriched in high field strength elements (Ti, Nb and Ta), light rare earth elements (La/Yb = 37–193) and exhibit a positive Eu anomaly. These granulitic xenoliths may be Al‐saturated but Si‐undersaturated feldspar bearing restitic materials of the lower crust. The Oligocene Toveireh basaltic magma passed and entrained these xenoliths from the lower crust to the surface.  相似文献   

3.
Paleozoic lamprophyres exhibit good exposures in the western part of the Central–East Iranian microcontinent. These rocks crop out as volcanoes, dykes, and plugs. The constituent minerals are amphibole, clinopyroxene, plagioclase, K‐feldspar, olivine, Cr‐spinel, titanite, biotite, and ilmenite. The main textures in volcanic lamprophyres are porphyritic, trachytic, microlithic, and variolitic, whereas in dykes and plugs, intergranular texture is common. These lamprophyres are regionally metamorphosed in some areas. Petrographical and geochemical characteristics of the studied rocks suggest that they are classified as alkaline lamprophyres and camptonites. They are enriched in alkalis (Na2O + K2O), large ion lithophile elements, and light rare earth elements, and the features of trace element concentrations are similar to those of within‐plate basalts. This study suggests that the lamprophyres were derived from different degrees of partial melting of metasomatized amphibole‐bearing spinel lherzolite. Subduction of Paleo‐Tethys oceanic crust from the Early to late Paleozoic resulted in enrichment in fluids in the mantle, and lamprophyric magmatism occurred along the minor and major faults. This limited but typical lamprophyric magmatism in a broad area of Central Iran suggests that, in spite of the long length of the Paleozoic (~250 my), it was a relatively calm era from the viewpoint of magmatism in Central Iran.  相似文献   

4.
GHODRAT TORABI 《Island Arc》2012,21(3):215-229
Late Permian trondhjemites in the Anarak area occur as stocks and dykes, which cross cut the Anarak ophiolite and its overlying metasedimentary rocks, and are exposed along the northern Anarak east–west main faults. These leucocratic intrusive bodies have enclaves of all ophiolitic units and metamorphic rocks. They are composed of amphibole, plagioclase (oligoclase), quartz, zircon and muscovite. Secondary minerals are chlorite (pycnochlorite), epidote, albite, magnetite and calcite. Whole‐rock major‐ and trace‐element analyses reveal that they are characterized by high SiO 2 (67.8–71.0 wt%), Al 2 O 3 (14.9–17.1 wt%) and Na 2 O (5.3–8.6 wt%), low K 2 O (0.1–1.5 wt%; average: 0.8 wt%), low Rb/Sr ratio (0.01–0.40; average: 0.09), low Y (3–6 ppm), negative Ti, Nb and Ta anomalies, slightly negative or positive Eu anomaly, LREE enrichment and fractionated HREE. These rocks present 2 to 40 times enrichment in inclined chondrite‐normalized REE patterns. Geochemical characteristics of the Anarak trondhjemites all reflect melting of a mafic protolith at more than 10 kbar. The field evidence and whole‐rock chemistry reveal that these rocks have been crystallized from magmas derived from melting of subducted Anarak oceanic crust. This study reveals that melting of garnet amphibolite was an important element of continent formation in the study area.  相似文献   

5.
The Zargoli granite, which extends in a northeast–southwest direction, intrudes into the Eocene–Oligocene regional metamorphic flysch‐type sediments in the northwest of Zahedan. This pluton, based on modal and geochemical classification, is composed of biotite granite and biotite granodiorite, was contaminated by country rocks during its emplacement, and is slightly changed to more aluminous. The SiO2 content of these rocks range from 62.4 to 66 wt% with an alumina saturation index of Shand [molar Al2O3/(CaO + Na2O + K2O)] ~ 1.1. Most of its chemical variations could be explained by fractionation or heterogeneous distribution of biotite. The features of the rocks resemble those which are typical to post‐collisional granitoids. Chondrite‐normalized rare‐earth element patterns of these rocks are fractionated at (La/Lu)N = 2.25–11.82 with a pronounced negative Eu anomaly (Eu/Eu* = 3.25–5.26). Zircon saturation thermometry provides a good estimation of magma temperatures (767.4–789.3°C) for zircon crystallization. These characteristics together with the moderate Mg# [100Mg/(Mg + Fe)] values (44–55), Fe + Mg + Ti (millications) = 130–175, and Al–(Na + K + 2Ca) (millications) = 5–50 may suggest that these rocks have been derived from the dehydration partial melting of quartz–feldspathic meta‐igneous lower crust.  相似文献   

6.
A large number of Eocene-Oligocene alkaline/alkali-rich igneous rocks were developed in the Tuotuohe region of the Qinghai-Tibetan Plateau.In this study,we present zircon U-Pb ages,Hf isotope data,and major and trace element compositions of the Cenozoic alkaline rocks from the Tuotuohe region in order to constraint the petrogenesis and tectonic evolution history of Qiangtang Block.Zircon U-Pb ages were measured via LA-ICP-MS to be39.6,37.6 and 32.0 Ma.The 39.6 Ma trachyte was characterized by low SiO2 and high K2O and MgO contents.The 37.6 and 32.0 Ma orthophyres show enrichment in SiO2 and K2O,but deficient in MgO.All of the samples belong to the alkaline rocks.These rocks display enrichment in REE,LREE,and LILE,depletion in HFSE,and no obvious Eu anomalies.Geological and geochemical features suggest that there were two possible mechanisms for the origin of the alkaline rocks in the Tuotuohe region:(1)the removed mafic lower crust dropped into the asthenosphere,forming the mix magma(Nariniya trachyte);(2)the upwelling asthenosphere triggered the crustal melting(Nariniya and Zamaqu orthophyre).The Eocene-Oligocene alkaline rocks in the study and adjacent areas are likely to be the result of the same tectonic-magmatic event of deep lithospheric evolution that is the crustal material melting triggered by lithospheric delamination.This conclusion extends the influence scope of lithospheric delamination eastward to the Tuotuohe region(*92°E)from Banda Co(*82°E).  相似文献   

7.
Zilong  Li  Yoshiaki  Tainosho  Jun-Ichi  Kimura  Kazuyuki  Shiraishi 《Island Arc》2005,14(4):636-652
Abstract The Mefjell plutonic complex consists of 500–550‐Ma Pan‐African plutonic rocks, which intrude into the Precambrian crystalline basement in the Sør Rondane Mountains, East Antarctica, and forms part of the Sør Rondane Suture Zone. The complex comprises syenitic and granitic (mostly monzogranitic) rocks, and is characterized by the presence of iron‐rich hydrous mafic minerals and primary ilmenite, both of which imply its formation at high temperature and under low oxygen fugacity conditions. The syenitic rocks are metaluminous, and are high in alkalis, K2O/Na2O, Al2O3, FeOt/(FeOt + MgO) (0.88–0.98), K/Rb (800–1000), Ga (18–28 p.p.m.), Zr (up to 2100 p.p.m.) and Ba. They also have a low Mg? (Mg/[Mg + Fe2+]), Rb, Sr, Nb, Y and F, low to moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios and positive Eu anomalies in their rare earth element (REE) patterns. The granitic rocks are metaluminous to peraluminous, and have a high Rb content, high Sr/Ba and LREE/HREE ratios, low K/Rb and negative Eu anomalies. Most of the syenitic and granitic rocks have Y/Nb ratios greater than 1.2, and are depleted in Nb, Ti and Sr on the primitive mantle‐normalized spider diagrams, indicating a crustal origin with subduction zone signatures. We interpret both the syenitic and granitic rocks to be derived from an iron‐rich lower crustal source by dehydration melting induced by the heat of mantle‐derived basaltic intrusion, after which they then underwent limited fractional crystallization. The Mefjell plutonic complex has a high Zr content and tectonic discrimination diagram signatures indicative of normal A‐type granitic rocks. Both rock suites may have been generated under the same postorogenic tectonic setting. The Mefjell syenitic rocks are chemically comparable to charnockites in the Gjelsvikjella and western Mühlig‐Hofmannfjella areas of East Antarctica, whereas the granitic rocks are comparable to aluminous A‐type granitic rocks in South India, which were emplaced during formation and evolution of the Gondwanaland supercontinent.  相似文献   

8.
Three carbonate ocelli-bearing lamprophyre dykes have been found in the Laowangzhai and Beiya gold orefields in the northern sector of the Ailaoshan gold deposit zone, Yunnan Province. Ocelli in the lamprophyre dykes are carbonates composed mainly of dolomite and calcite. Their trace elements, REE and C isotopic compositions are characteristic of carbonatite and the main mineral assemblages, major elements, trace elements and REE in the matrix are similar to those in the carbonate ocelli-barren lamprophyre dykes in the orefields, which are calc-alkaline lamprophyres that derived from the fertile mantle. The results indicate that the carbonate ocelli-bearing lamprophyre dykes in this area were produced at the time when the Himalayan lamprophyre magma evolved to a relatively late stage of silicate-carbonate liquid immiscibility. In the process of magmatic evolution there took place magmatic degassing with CO2 and H2O as the dominant released gases.  相似文献   

9.
Layered ultramafic-gabbro bodies occur widely in the Archaean of northwest Scotland. They were metamorphosed at granulite or high amphibolite facies and were tectonically thinned and broken up during deformation. They comprise repeated ultramafic-gabbro layers, locally with Ni-poor sulphide-rich tops, each rhythmic unit showing decreasing MgO, Ni and normative anorthite with stratigraphic height. Major, trace and rare earth element data are presented for the range of rock types. In ultramafic rocks, MgO varies from 22 to 37 wt.%, Ni from 1000 to 2500 ppm and TiO2 from 0.08 to 0.40 wt.%, while the MgO content of the gabbros ranges from 14 to 6 wt.%. The REE patterns are flat to LREE enriched with no significant Eu anomalies. In ultramafic rocks REE are from 4 to 10 times chondrite, and in the gabbros LREE range from 8 to 30 times chondrite and HREE from 6 to 15 times chondrite. Study of incompatible elements (Ti, Zr, Y) which are relatively immobile during metamorphism shows that neither garnet nor hornblende were involved in fractionation. Trace element modelling shows it is improbable that the ultramafic rocks represent primary MgO-rich liquids even though their incompatible element contents are quite high. The chemical trends are interpreted in terms of olivine and pyroxene settling from a tholeiitic high-Mg magma with 15–20 wt.% MgO derived by 30–40% partial melting of an undepleted mantle. The ultramafic rocks are the cumulates and the gabbros the derived liquids.  相似文献   

10.
Feng  Guo  Weiming  Fan  Yuejun  Wang  Chaowen  Li 《Island Arc》2005,14(2):69-90
Abstract Early Cretaceous high‐K calc‐alkaline volcanism occurring in the Laiyang Basin north of the Sulu high‐pressure to ultrahigh‐pressure (HP‐UHP) Metamorphic Belt, eastern China, comprises a wide spectrum of rock types, ranging from trachybasalts to trachydacites. The basaltic–andesitic rocks erupted at 107–105 Ma, spanning an SiO2 range of 50.1–59.6% and an MgO range of 2.6–7.2%, and are characterized by large ion lithophile element (LILE; e.g. Ba and K) and light rare earth element (LREE) enrichment, high field strength element (HFSE) depletion and highly radiogenic Sr but non‐radiogenic Nd isotopic compositions (87Sr/86Sr(i) = 0.70750–0.70931; ?Nd(t) = ?17.9 ? ?15.6). The geochemical similarities between these rocks and the earlier Sulu Belt lamprophyres suggest that both types of mafic rocks were derived from similar mantle sources with LILE and LREE enrichment. Thus, the Wulian–Qingdao–Yantai Fault that separates the two terranes at the surface should not be considered as a lithospheric boundary between the North China and Yangtze blocks. The felsic lavas erupted at 93–91 Ma, spanning an SiO2 range of 61.6–67.0% and an MgO range of 1.1–2.6%, and show a trace element geochemistry similar to the basaltic rocks, but with higher radiogenic Sr and even lower Nd isotopic compositions (87Sr/86Sr(i) = 0.70957–0.71109; ?Nd(t) = ?19.1 ? ?17.5), similar to I‐type granitoids in the Sulu Belt. A crustal origin was proposed to explain their compositions (which are comparable to those of experimental slab melts), the >10 Ma eruption interval and the compositional gaps in some elements (e.g. P, Ti and Sr) between them and the older basaltic–andesitic rocks. These melts were derived from predominant metaigneous protoliths containing mafic accumulative counterparts of the basaltic–andesitic and/or lamprophyric magmas. The extensive extrusion of Early Cretaceous high‐K calc‐alkaline rocks in the Laiyang Basin favored an extensional regime in response to the progressive attenuation of the thickened lithosphere and orogenic collapse, as reflected in the development of the basin from a foreland basin (before the end of the Jurassic period) to a fault basin (since the Early Cretaceous period).  相似文献   

11.
Geochemical and mineralogical characteristics of the Eocene volcanic succession in Tafresh area of the Urumieh–Dokhtar Magmatic Assemblage (UDMA) are unique in the 2000‐km‐length assemblage. Demonstrating rather steep rare earth element (REE) patterns and the widespread presence of amphibole (+biotite) phenocrysts are two distinct characters that dominate the Eocene volcanic succession of mainly andesitic composition. Coincidence of the geochemical and mineralogical characteristics of the whole volcanic succession with adakites, rather amphibole‐ (+biotite) rich dacitic (with 61–64 wt% SiO2) stocks and dykes, is considered as the key in unraveling the role of ‘slab‐derived melt contribution’ in petrogenesis of the volcanic succession. Slab‐derived melting has been an ongoing process that metasomatized some parts of the mantle wedge from which hybrid rocks (andesites) are derived. Basalts with distinct signatures of slab melt metasomatism are yet another support for the occurrence of slab melting. Interlayering of normal, island‐arc‐type calc‐alkaline volcanic rocks with the slab‐melt metasomatized basalts and hybrid andesites suggests that the slab melting has been motivated by the subduction. Formation of the Tafresh Caldera, the likely consequence of an explosive eruption, is compatible with the volatile‐bearing nature of the adakitic volcanism in the study area. It is indicated by the ubiquitous presence of the hydrous minerals. Beneath the Tafresh area, in Eocene time, the subducting slab seems to have reached a critical high depth that is enough for the development of amphibolite–eclogite. The slab deformation, motivated by the geometry of subduction and/or the underlying mantle's steeper geotherms, is suggested to have resulted in the slab melting that helped develop a rock assemblage unique to the UDMA.  相似文献   

12.
Abstract Triassic granitoids related to Palaeo- and Neo-Tethyan events occur widely in the metamorphic terranes largely affected by the Alpine orogeny. A first recorded unmetamorphosed plutonic body intruded into the Palaeotethyan mélange in western Turkey, called the Karaburun granodiorite, is composed of two small intrusive stocks that were emplaced between 240 and 220 Ma. It is compositionally diverse, ranging from granodiorite and tonalite to diorite. These rocks show heterogeneous compositions with 54 to 65 wt % SiO2 and are calc-alkaline in character. They are also subalkaline with molar ratios of Al2O3/(Na2O + K2O) from 0.74 to 1.00 and are metaluminous. Most samples are diopside-normative (0.36–8.64), with Na2O > K2O. Chondrite normalized rare earth element (REE) patterns show various degrees of light REE (LREE) enrichment, with La N = 57.79 to 99.59 and (La/Yb) N = 5.98–7.85 and Eu negative anomalies (Eu/Eu* = 0.62–0.86). These rocks have coherent patterns in ocean ridge granite (ORG) normalized trace-element plots, marked by variable enrichment in K, Rb, Ba, Th, Ce and depletion in Ta and Nb, similar to I-type granites from subduction zones. In primitive mantle-normalized multi element variation diagrams, the granodiorites show pronounced depletions in the high-field-strength elements (HFSE; Nb, Ta, Zr), Sr, P, and Ti. Trace-element modeling of the Karaburun granodiorite suggests an origin through partial melting of the subduction-modified mantle wedge with minor contribution of crustal components through a process of strong fractional crystallization (FC) combined with slight assimilation-fractional crystallization (AFC). Exposures of typical continental-arc granodiorites in the Karaburun Mélange support the validity of the subduction-accretion model that implies the presence of an active continental margin following closure of the Palaeotethyan Ocean during the Triassic.  相似文献   

13.
Palau Islands, 7°30′N, are the only emergent feature on the more than 2500‐km‐long Kyushu–Palau Ridge. Small islands are mainly uplifted reef carbonate. Larger islands are volcanic with basalt to dacite and rare boninite. Polymict breccia is abundant: sills, flows, and dykes are common but pillows are rare. Palau Trench samples include all types found on the islands as well as high‐Mg basalt. Volcanism began in the late Eocene and ended by early Miocene. All igneous rocks comprise a low‐K primitive island arc‐tholeiite series. None are mid‐ocean ridge basalts. Rare earth elements and high field‐strength elements indicate a depleted mantle source. Elevated large ion lithophile elements and light rare earth elements indicate influx of ‘dehydration fluid’. Ce/Ce* and Eu/Eu* ratios show no evidence for recycling of arc‐derived clastics. Plate reconstructions and paleomagnetic data suggest that the arc probably formed on the trace of a transform fault that migrated northward and rotated clockwise up to 90°. Episodes of transtension caused upwelling of hot mantle into depleted mantle and sheared altered rocks of the transform. Episodes of transpression may have initiated subduction of old seafloor with a thin cover of pelagic sediments deposited far from terrigenous sediment sources.  相似文献   

14.
Subduction‐related volcanic rocks are widespread in the Central Pontides of Turkey, and represented by the Hamsaros volcanic succession in the Sinop area to the north. The volcanic rocks display high‐K calc‐alkaline, shoshonitic and ultra‐K affinities. 40Ar/39Ar age data indicate that the rocks occurred during the Late Cretaceous (ca 82 Ma), and the volcanic suites were coeval. Primitive mantle‐normalized trace element patterns of all the lavas are characterized by strong enrichments in large ion lithophile elements (LILE) (Rb, Ba, K, and Sr), Th, U, Pb, and light rare earth elements (LREE; La, Ce) and prominent negative Nb, Ta, and Ti anomalies, all typical of subduction‐related lavas. There is a systematic increase in the enrichment of incompatible trace elements from the high‐K calc‐alkaline lavas through the shoshonitic to the ultra‐K lavas. In addition, the shoshonitic and ultra‐K lavas have significantly higher 87Sr/86Sr (0.70666–0.70834) and lower 143Nd/144Nd (0.51227–0.51236) initial ratios than coexisting high‐K calc‐alkaline lavas (87Sr/86Sr 0.70576–0.70613, 143Nd/144Nd 0.51245–0.51253). Geochemical and isotopic data show that the shoshonitic and ultra‐K rocks cannot be derived from the high‐K calc‐alkaline suite by any shallow level differentiation process, and point to a derivation from distinct mantle sources. The shoshonitic and ultra‐K rocks were derived from metasomatic veins related to melting of recycled subducted sediments, but the high‐K calc‐alkaline rocks from a lithospheric source metasomatized by fluids from subduction zone.  相似文献   

15.
Whole‐rock geochemical and Sr–Nd isotopic data are presented for late Miocene volcanic rocks associated with the Chah Zard epithermal Au–Ag deposit in the Urumieh‐Dokhtar Magmatic Arc (UDMA), Iran, to investigate the magma source, petrogenesis and the geodynamic evolution of the study area. The Chah Zard andesitic to rhyolitic volcanic rocks are characterized by significant Large Ion Lithophile Element (LILE) and Light Rare Earth Element (LREE) enrichment coupled with High Field Strength Element (HFSE) depletion. Our geochemical data indicate an adakitic‐like signature for the volcanic rocks (e.g. SiO2 > 62 wt%, Al2O3 > 15 wt%, MgO < 1.5 wt%, Sr/Y > 70, La/Yb > 35, Yb < 1 ppm, and Y < 18 ppm, and no significant Eu anomalies), distinguishing them from the other volcanic rocks of the UDMA. The Chah Zard volcanic rocks have similar Sr and Nd isotopic compositions; the 87Sr/86Sr(i) ratios range from 0.704 902 to 0.705 093 and the εNd(i) values are from +2.33 to +2.70. However, the rhyolite porphyry represents the final stage of magmatism in the area and has a relatively high 87Sr/86Sr ratio (0.705 811). Our data suggest that the andesitic magmas are from a heterogeneous source and likely to result from partial melting of a metasomatized mantle wedge associated with a mixture of subducted oceanic crust and sediment. These melts subsequently underwent fractional crystallization along with minor amounts of crustal assimilation. Our study is consistent with the model that the volcanic host rocks to epithermal gold mineralization in the UDMA are genetically related to late Miocene Neo‐Tethyan slab break‐off beneath Central Iran.  相似文献   

16.

The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomalies. The enriched Rb, Th, U, K, negative HFS elements Nb, Ta, Ti and P, and Sr, Nd and Pb isotope geochemistry suggest that the volcanic rocks of Wuyu Group originated from the partial melting of lower crust of the Gangdese belt, with the involvement of the Tethyan oceanic crust. It implies that the north-subducted Tethys ocean crust have arrived to the lower crust of Gangdese belt and recycled in the Neogene magmatism.

  相似文献   

17.
In this paper mafic sills and dykes found in Palaeogenic sedimentary rocks of the South Rhodope Massif (Greece) are studied. Their mineralogy is represented mainly by plagioclases (An45-An88), amphiboles (Mg-hornblende, Mg-hastingsite) and clinopyroxenes of salitic compositions with subordinate biotite. Chemistry and corresponding discriminant diagrams (Ti-Zr-Y, Ti-Zr-Sr) and discriminant functions (F1-F2 from pyroxene) classify them as basalts and basaltic andesites of the high-K calc-alkaline rocks series. According to their geochemical and petrological features an orogenic nature results for the rocks in study. REE abundances show an enrichement of LREE and a moderate fractionation in HREE patterns. The above together with the non significant europium anomalies (Eu/Eu*=0,92–0,85) and the relatively high contents of K, Ba and Sr in these rocks indicate a magma genesis by partial melting of an upper mantle source already enriched in LILE. A K-Ar determination on hornblende phenocrysts gave a Lower Oligocene age (33,5±1.2 m.y.) which is in accordance with the age of the andesitic lavas extended to the northwest of the studied area.  相似文献   

18.
The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomalies. The enriched Rb, Th, U, K, negative HFS elements Nb, Ta, Ti and P, and Sr, Nd and Pb isotope geochemistry suggest that the volcanic rocks of Wuyu Group originated from the partial melting of lower crust of the Gangdese belt, with the involvement of the Tethyan oceanic crust. It implies that the north-subducted Tethys ocean crust have arrived to the lower crust of Gangdese belt and recycled in the Neogene magmatism.  相似文献   

19.
Quan-Ru  Geng  Zhi-Ming  Sun  Gui-Tang  Pan  Di-Cheng  Zhu  Li-Quan  Wang 《Island Arc》2009,18(3):467-487
The well‐studied Mesozoic and Cenozoic volcanic rocks of the Gangdise Terrane, southern Tibet, are widely interpreted to have resulted from subduction of the Neotethys; however, Late Paleozoic volcanic rocks and their tectonic setting remain poorly studied. Based on new geological data, we carried out stratigraphical and geochemical analyses of Permian volcano‐stratigraphic sequences within an east–west‐trending, fault‐bounded zone of uplift in the central Gangdise Terrane. Sedimentary rocks in this area consist of platform carbonates and terrigenous clastic rocks that represent widespread shallow‐marine sedimentary basins developed around northern Gondwana. A regression or tectonic uplift event is recorded in Permian sedimentary rocks that show the local development of fluvial environments. The sedimentary succession contains evidence of two volcanic stages: a period of basaltic extrusions and younger explosive felsic magmatism. The first volcanic stage is Early and Middle Permian in age. Tholeiitic basaltic lavas are exposed around Maizhokunggar (Tangjia) and Lhunzhub in central Gangdise. The Lower Permian basalts are relatively enriched in MgO (4.58–12.19%), whereas the Middle Permian basalts are characterized by high Al2O3 contents (11.75–21.22%). Rocks of both ages are enriched in large‐ion lithophile elements (LILE) and light rare earth elements (LREE), and show pronounced negative Nb and Ta anomalies. Total REE contents and light (LREE)/heavy (HREE) ratios increased from the Early to Middle Permian. Observed variations in initial Sr, Nd, and Pb isotopes (87Sr/86Sri = 0.7013–0.7066, 207Pb/204Pbi = 15.53–15.63, and 208Pb/204Pbi = 38.04–38.64 for a given 206Pb/204Pbi; εNd = +0.69 to ?11.55) can be explained by crustal interaction with mantle sources, as is characteristic of metasomatism by slab‐derived fluids or assimilation and fractional crystallization (AFC) processes during magmatic evolution. The observed geochemical signatures, coupled with stratigraphic constraints, support the hypothesis that an initial arc formed during the Permian due to southward subduction of the Paleotethys, predating the well‐known Mesozoic arc preserved in the Gangdise Terrane.  相似文献   

20.
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K2O and Al2O3/(CaO + K2O + Na2O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号