首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Khalkhab–Neshveh (KN) pluton is a part of Urumieh–Dokhtar Magmatic Arc and was intruded into a covering of basalt and andesite of Eocene to early Miocene age. It is a medium to high‐K, metaluminous and I‐type pluton ranging in composition from quartz monzogabbro, through quartz monzodiorite, granodiorite, and granite. The KN rocks show subtle differentiation trends strongly controlled by clinopyroxene, plagioclase, hornblende, apatite, and titanite, where most major elements (except K2O) are negatively correlated with SiO2; and Al2O3, Na2O, Sr, Eu, and Y define curvilinear trends. Considering three processes of magmatic differentiation including mixing and/or mingling between basaltic and dacitic magmas, gravitational fractional crystallization and in situ crystallization revealed that the latter is the most likely process for the evolution of KN magma. This is supported by the occurrence of all rock types at the same level, the lack of mafic enclaves in the granitoid rocks, the curvilinear trends of Na2O, Sr, and Eu, and the constant ratios of (87Sr/86Sr)i from quartz monzodiorite to granite (0.70475 and 0.70471, respectively). In situ crystallization took place via accumulation of plagioclase and clinopyroxene phenocrysts and concentration of these phases in the quartz monzogabbro and quartz monzodiorite at the margins of the intrusion at T ≥ 1050°C, and by filter pressing and fractionation of hornblende, plagioclase, and later biotite in the granitoids at T = ~880°C.  相似文献   

2.
Late Triassic A‐type granites are identified in this study in Sarudik, SW Sumatra. We present new data on zircon U–Pb geochronology, whole‐rock major and trace elements and Sr‐Nd‐Hf isotope geochemistry, aiming to study their petrogenesis and tectonic implications. LA‐ICP‐MS U–Pb dating of zircon separated from one biotite monzogranite sample yields a concordia age of 222.6 ±1.0 Ma, indicating a Late Triassic magmatic event. The studied granites are classified as weakly peralumious, high‐K calc‐alkaline granites. They exhibit high SiO2, K2O + Na2O, FeO/(FeO + MgO) and Ga/Al ratios and low Al2O3, CaO, MgO, P2O5 and TiO2 contents, with enrichment of Rb, Th and U and depletion of Ba, Sr, P and Eu, showing the features of A‐type granites. The granites have zircon εHf(t) values from ?4.6 to ?0.4 and whole‐rock εNd(t) values from ?5.51 to ?4.98, with Mesoproterozoic TDM2 ages (1278–1544 Ma) for both Hf and Nd isotopes. Geochemical and isotopic data suggest that the source of these A‐type granites is the Mesoproterozoic continental crust, without significant incorporation of mantle‐derived component, and their formation is controlled by subsequent fractional crystallization. The Sarudik A‐type granites are further assigned to A2‐type formed in post‐collisional environment. Combined with previous knowledge on the western SE Asia tectonic evolution, we conclude that the formation of the Late Triassic A‐type granites is related to the post‐collisional extension induced by the crustal thickening, gravitational collapse, and asthenosphere upwelling following the collision between the Sibumasu and the East Malaya Block.  相似文献   

3.
Zilong  Li  Yoshiaki  Tainosho  Jun-Ichi  Kimura  Kazuyuki  Shiraishi 《Island Arc》2005,14(4):636-652
Abstract The Mefjell plutonic complex consists of 500–550‐Ma Pan‐African plutonic rocks, which intrude into the Precambrian crystalline basement in the Sør Rondane Mountains, East Antarctica, and forms part of the Sør Rondane Suture Zone. The complex comprises syenitic and granitic (mostly monzogranitic) rocks, and is characterized by the presence of iron‐rich hydrous mafic minerals and primary ilmenite, both of which imply its formation at high temperature and under low oxygen fugacity conditions. The syenitic rocks are metaluminous, and are high in alkalis, K2O/Na2O, Al2O3, FeOt/(FeOt + MgO) (0.88–0.98), K/Rb (800–1000), Ga (18–28 p.p.m.), Zr (up to 2100 p.p.m.) and Ba. They also have a low Mg? (Mg/[Mg + Fe2+]), Rb, Sr, Nb, Y and F, low to moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios and positive Eu anomalies in their rare earth element (REE) patterns. The granitic rocks are metaluminous to peraluminous, and have a high Rb content, high Sr/Ba and LREE/HREE ratios, low K/Rb and negative Eu anomalies. Most of the syenitic and granitic rocks have Y/Nb ratios greater than 1.2, and are depleted in Nb, Ti and Sr on the primitive mantle‐normalized spider diagrams, indicating a crustal origin with subduction zone signatures. We interpret both the syenitic and granitic rocks to be derived from an iron‐rich lower crustal source by dehydration melting induced by the heat of mantle‐derived basaltic intrusion, after which they then underwent limited fractional crystallization. The Mefjell plutonic complex has a high Zr content and tectonic discrimination diagram signatures indicative of normal A‐type granitic rocks. Both rock suites may have been generated under the same postorogenic tectonic setting. The Mefjell syenitic rocks are chemically comparable to charnockites in the Gjelsvikjella and western Mühlig‐Hofmannfjella areas of East Antarctica, whereas the granitic rocks are comparable to aluminous A‐type granitic rocks in South India, which were emplaced during formation and evolution of the Gondwanaland supercontinent.  相似文献   

4.
The Queershan composite granitic pluton is located in the north of the late Paleozoic Yidun arc collision-orogenic belt, eastern Tibetan Plateau. The main rock types are coarse-grained porphyritic alkalic-monzonite granite with minor fine-grained porphyritic monzogranite and granodiorite distributed in the eastern and southwestern regions. Here we report their zircon U-Pb ages and geo- chemical data. The intrusive contact relations indicate that granodiorite was formed earlier than the alkalic-monzonite granite(105.9±1.3 Ma) and monzogranite(102.6±1.1 Ma). These suggest that the Queershan composite granitic pluton was formed through three-stage magmatic events. The alkalic-monzonite granite(105.9±1.3 Ma) and monzogranite(102.6±1.1 Ma) are characterized by high SiO2(73.5%–77.7%), K2O+Na2O(6.9%–8.5%), Ga/Al ratios(2.6–3.4) and low Al2O3(11.8%–14.5%), CaO(0.25%–1.5%), MgO(0.18%–0.69%), negative Ba, Sr and Eu anomalies, showing A-type granite affinities. The granodiorite exhibits lower SiO2, P2O5 and K2O+Na2O contents, but higher Al2O3, CaO and MgO contents than alkalic-monzonite granite and monzogranite, showing I-type granite affinity. 176Hf/177 Hf ratios of the alkalic-monzonite granite and the monzogranite are 0.282692–0.282749 and 0.282685–0.282765, respectively, and with similar ?Hf(t) values(?0.56 to 1.43 and ?0.87 to 1.90 respectively). They also present similar TDM2 model ages(1.04–1.22 and 1.07–1.2 Ga respectively), indicating they may be sourced from a similar rock source, mostly like Kangding Complex. The homogeneity of the Hf isotopic compositions and the absence of the MMEs demonstrate that little depleted mantle materials have contributed to the source. We propose that the Mesoproterozoic crust materials of the Yangtze Craton exist beneath the Yidun arc terrane and support it was a dismembered part of the Yangtze Craton. The A-type granites of Queershan composite granitic pluton are most probably related to the closure of the Bangong-Nujiang Tethys ocean.  相似文献   

5.
Han-Lin  Chen  Zi-Long  Li  Shu-Feng  Yang  Chuan-Wan  Dong  Wen-Jiao  Xiao  Yoshiaki  Tainosho 《Island Arc》2006,15(1):210-222
Abstract A mafic granulite body was newly discovered in the Altay Orogenic Belt, northwest China. The rocks comprise a suite of coarse‐grained and fine‐grained granulites. Orthopyroxenes (hypersthenes) in the rocks have high XMg and low Al2O3 contents, whereas clinopyroxenes have low TiO2 and Al2O3 contents. Amphiboles and biotites have a high Mg/(Mg + Fe2+) ratio and low contents of F and Cl. The peak metamorphic pressure–temperature (P–T) conditions are estimated as 750–780°C and 6–7 kbar, and retrograde P–T conditions are in the range of 590–620°C and 2.3–3.7 kbar, indicating significant decompression. Metamorphic reactions and P–T estimates define a clockwise P–T path. Geochemically, the rocks are high in Mg/(Mg + Fe) and Al2O3, depleted in U, Th, K and Rb, and characterized by light rare earth element enrichment and a weak positive Eu anomaly. The Altay mafic granulite shows depleted Nb, P and Ti contents in the mid‐oceanic ridge basalt normalized spider diagram. The geochemical characteristics suggest that the protolith of the Altay mafic granulite was calc‐alkaline basalt and andesite with an island‐arc affinity. The rock has a high 143Nd/144Nd ratio with ?Nd(0) > 0, indicating derivation from a mantle‐depleted source. In the present study, a two‐stage model for the evolution of the Altay mafic granulite is proposed: an early stage in which calc‐alkaline basalt and andesite with island‐arc affinity were subducted into a deeper level of the crust and subjected to granulite‐facies metamorphism generating the mafic granulite, followed by the later stage exhumation of the system into the upper crust by the late Paleozoic thrusting.  相似文献   

6.
The Jurassic Shir‐Kuh granitoid batholith in Central Iran intrudes Lower Jurassic sandstones and shales. The batholith consists of three main facies: (i) a granodioritic facies to the north; (ii) a monzogranitic facies spread throughout the batholith; and (iii) a leucogranitic facies along the northwestern margin. The granodiorites are composed mainly of plagioclase, quartz, K‐feldspar, biotite, and some muscovite, garnet, cordierite, ilmenite, zircon, apatite, and monazite. This facies contains variable amounts of restite minerals which are mainly defined by calcic plagioclase cores and small aggregates of biotite. The monzogranites, with mineral assemblages similar to those in the granodiorites, range from relatively mafic (cordierite‐bearing) to felsic (muscovite‐rich) rocks. The leucogranites, exposed as small stock and dykes, consist mainly of quartz, K‐feldspar, and sodic plagioclase. The batholith is peraluminous, calc‐alkaline, and typical of S‐type, as indicated by Na2O content (2.74%), molecular Al2O3/(CaO + Na2O + K2O) (A/CNK) ratio (1.17), K2O/Na2O ratio (1.39), and isotopic data ([87Sr/86Sr]i = 0.715). The rocks are characterized by enrichment in large ion lithophile elements such as Rb, Th and K and depletion in high field strength elements such as Nb and Ti. Chondrite‐normalized rare earth element (REE) patterns are characterized by light rare earth element (LREE) enrichment, with values of (La/Yb)N between 4.5 and 19.53, unfractionated heavy rare earth element (HREE) with values of (Gd/Yb)N between 0.98 and 2.88, and a distinct negative Eu. The parental magma of the Shir‐Kuh Granite was derived from a plagioclase‐rich metasedimentary source (local anatexis of metagreywacke) in the crust, with heat input from mantle melt components. The separation of restite crystals from the primary melt followed by the fractional crystallization appears to have been an effective differentiation process in the batholith.  相似文献   

7.
Cheong-Bin  Kim  V. J. Rajesh    M. Santosh 《Island Arc》2008,17(1):26-40
Abstract Geochemical and Sr–Nd–Pb isotope characteristics, as well as K–Ar geochronology of a massive pitchstone (volcanic glass) stock erupted into Late Cretaceous lapilli tuff and rhyolite in the Gohado area, southwestern Okcheon Belt, South Korea, are reported. The pitchstones are highly evolved with SiO2 contents ranging from ~72 to 73 wt%, K2O/Na2O ratios of 1.04–1.23 and low MgO/FeOt values (0.17–0.20). The pitchstones are weakly peraluminous and the ASI (molar Al2O3/Na2O + K2O + CaO) values are significantly lower than 1.1. The pitchstones also display a general calc‐alkaline nature with significant alkali contents. The rare earth elements (REE) compositions show moderately fractionated nature with (La/Yb)N ranging from 11 to 16. Chondrite normalized REE patterns show relative enrichment of light REE over heavy REE and moderate Eu anomaly (Eu/Eu* ratio varies from 0.53 to 0.57). A distinct negative Nb anomaly is observed for all pitchstones on a primitive mantle normalized trace element diagram, typical of subduction‐related magmatism and crustal‐derived granites. All these features are characteristic of I‐type granites derived from a continental arc. The pitchstones have Zr contents of 98.5–103.5 ppm with zircon thermometry yielding temperatures of 749–755°C (mean 752°C). The K–Ar analyses of representative pitchstone samples yielded ages of 58.7 ± 2.3 and 62.4 ± 2.1 Ma with a mean age of 61 Ma. The rocks show nearly uniform initial 87Sr/86Sr isotopic ratios of 0.7104–0.7106 and identical 143Nd/144Nd initial ratio of 0.5120. The rocks display negative εNd (61 Ma) values of ?12. The depleted mantle model ages (TDM) range from 1.54 Ga to 1.57 Ga. The Pb isotope ratios are 206Pb/204Pb = 18.522–18.552, 207Pb/204Pb = 15.642–15.680 and 208Pb/204Pb = 38.794–38.923. These ratios suggest that the Gohado pitchstones were formed in a continental arc environment by partial melting of a 1.54 Ga to 1.57 Ga parental sources of lower crustal rocks probably of mafic or intermediate compositions.  相似文献   

8.
Abstract Triassic granitoids related to Palaeo- and Neo-Tethyan events occur widely in the metamorphic terranes largely affected by the Alpine orogeny. A first recorded unmetamorphosed plutonic body intruded into the Palaeotethyan mélange in western Turkey, called the Karaburun granodiorite, is composed of two small intrusive stocks that were emplaced between 240 and 220 Ma. It is compositionally diverse, ranging from granodiorite and tonalite to diorite. These rocks show heterogeneous compositions with 54 to 65 wt % SiO2 and are calc-alkaline in character. They are also subalkaline with molar ratios of Al2O3/(Na2O + K2O) from 0.74 to 1.00 and are metaluminous. Most samples are diopside-normative (0.36–8.64), with Na2O > K2O. Chondrite normalized rare earth element (REE) patterns show various degrees of light REE (LREE) enrichment, with La N = 57.79 to 99.59 and (La/Yb) N = 5.98–7.85 and Eu negative anomalies (Eu/Eu* = 0.62–0.86). These rocks have coherent patterns in ocean ridge granite (ORG) normalized trace-element plots, marked by variable enrichment in K, Rb, Ba, Th, Ce and depletion in Ta and Nb, similar to I-type granites from subduction zones. In primitive mantle-normalized multi element variation diagrams, the granodiorites show pronounced depletions in the high-field-strength elements (HFSE; Nb, Ta, Zr), Sr, P, and Ti. Trace-element modeling of the Karaburun granodiorite suggests an origin through partial melting of the subduction-modified mantle wedge with minor contribution of crustal components through a process of strong fractional crystallization (FC) combined with slight assimilation-fractional crystallization (AFC). Exposures of typical continental-arc granodiorites in the Karaburun Mélange support the validity of the subduction-accretion model that implies the presence of an active continental margin following closure of the Palaeotethyan Ocean during the Triassic.  相似文献   

9.
Granulite facies metamorphism and crustal anatexis exist in the East Cathaysia Block, the exact timing of granulite facies partial melting and its link with orogenesis have not been well constrained. In this study, we carried out petrography, whole rock geochemistry, and zircon U–Pb dating, trace elements and Hf isotopes analyses on Dazhe gneissic granite and banded migmatite from the Badu Group in southwest Zhejiang province in the East Cathaysia Block. The melts were produced through the dehydration of biotite, such as biotite + quartz + plagioclase = orthopyroxene + K-feldspar + melt and biotite + quartz + plagioclase + sillimanite = garnet + K-feldspar + melt. Zircons from these rocks show clear core-rim structure and yield rim and core concordant ages at 233 Ma and 1.83 Ga, respectively. The zircon rims suggesting the melts and the cores are suggesting the protolith of Dazhe gneissic granite and banded migmatite were crystallized from an evolving magma. The zircon cores and rims have negative εHf(t) = −2.2 ~ −6.3 and εHf(t) = −22.8 ~ −32.4, and they give suggestion of the presence of Neoarchean components. Although the major-element compositions of the gneissic granite and banded migmatite are slightly different, the trace-element spider diagram and REE pattern show they are similar, and then we find that the protoliths are A-type granodiorite/diorite. Combined with the published data, we suggested that the Dazhe gneissic granite and banded migmatite were formed through granulite facies partial melting at 233 Ma, which was promoted by crustal shortening and thickening of the collision orogeny between East Cathaysia Block and an unknown terrane with a NNE trend structure line. The protoliths (granite or granodiorite) of Dazhe gneissic granite and banded migmatite crystallized at 1.83 Ga by reworking of the Neoarchean components of East Cathaysia Block. The Paleoproterozoic (1912–1819 Ma) collisional orogeny and the later intraplate rifting stage are corresponding to the aggregation and breakup of the Columbia supercontinent.  相似文献   

10.
Origin of Li-F-rich granite: Evidence from high P-T experiments   总被引:2,自引:0,他引:2  
In South China and some regions around the world, there is a special type of rocks. These rocks are usually ultra-acidic, peraluminous, rich in Na and volatile components, such as H2O, F, B and P, and with higher concentrations of lithophile rare metal elements, including Li, Rb, Cs, Be, Ta, Nb, Sn, W, etc. Rocks of this type are commonly called Li-F-rich, rare-metal bearing granitic rocks, or Li-F granites for short[1]. The economic importance and distinct forma-tion mechanism of Li-…  相似文献   

11.
The Tiefosi granitic pluton is located 5 km northwest of Xinyang City,northern Dabie Orogen,and was emplaced in the Proterozoic Qinling Group. SHRIMP zircon U-Pb dating suggests its crystallization at 436 ± 11 Ma. It is composed of monzogranite and syenogranite containing some amounts of muscovite and few mafic minerals. The rocks are characterized by high and restricted SiO2 content,low FeO,Fe2O3 and MgO contents,high K2O/Na2O ratio,and display high-K calc-alkaline and peraluminous (ACNK>1.1) characteristics. They are generally enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). They can be divided into three groups in light of rare earth elements (REE) and trace elements. Group I is moderate in ΣREE and characterized by the absence of Eu anom-aly,high (La/Yb)N ratio,and moderate Rb/Sr and Rb/Ba ratios. Group Ⅱ has moderately negative Eu anomaly,low (La/Yb)N ratio and high ΣREE contents,Rb/Sr and Rb/Ba ratios. Group Ⅲ displays positive Eu anomaly,moderate (La/Yb)N ratio,and low ΣREE,Rb/Sr and Rb/Ba ratios. The calculated εNd(440Ma) values of the rocks vary from 8.8 to 9.9 and Nd depleted mantle model ages are about 2.0 Ga,which resemble those of the paragneisses from the Qinling Group. The results indicate that the Tiefosi granite is crust-derived,syn-collisional S-type granite. Generation of Group I was related to low degree melting of the Qinling Group,while Group Ⅱ was formed by fractionational crystallization of plagioclase from Group I magmas,and Group Ⅲ resulted possibly from magma mingling with plagioclase cumulates. The Tiefosi granite was formed within crustal level related to the collision between the North China and South China blocks in the Early Paleozoic time.  相似文献   

12.
Talat  Ahmad  Kabita C.  Longjam  Baishali  Fouzdar  Mike J.  Bickle  Hazel J.  Chapman 《Island Arc》2009,18(1):155-174
The Sakoli Mobile Belt comprises bimodal volcanic rocks that include metabasalt, rhyolite, tuffs, and epiclastic rocks with metapelites, quartzite, arkose, conglomerate, and banded iron formation (BIF). Mafic volcanic rocks are tholeiitic to quartz‐tholeiitic with normative quartz and hypersthene. SiO2 shows a large compositional gap between the basic and acidic volcanics, depicting their bimodal nature. Both the volcanics have distinct geochemical trends but display some similarity in terms of enriched light rare earth element–large ion lithophile element characteristics with positive anomalies for U, Pb, and Th and distinct negative anomalies for Nb, P, and Ti. These characteristics are typical of continental rift volcanism. Both the volcanic rocks show strong negative Sr and Eu anomalies indicating fractionation of plagioclases and K‐feldspars, respectively. The high Fe/Mg ratios for the basic rocks indicate their evolved nature. Whole rock Sm–Nd isochrons for the acidic volcanic rocks indicate an age of crystallization for these volcanic rocks at about 1675 ± 180 Ma (initial 143Nd/144Nd = 0.51017 ± 0.00017, mean square weighted deviate [MSWD] = 1.6). The εNdt (t = 2000 Ma) varies between ?0.19 and +2.22 for the basic volcanic rock and between ?2.85 and ?4.29 for the acidic volcanic rocks. Depleted mantle model ages vary from 2000 to 2275 Ma for the basic and from 2426 to 2777 Ma for the acidic volcanic rocks, respectively. These model ages indicate that protoliths for the acidic volcanic rocks probably had a much longer crustal residence time. Predominantly basaltic magma erupted during the deposition of the Dhabetekri Formation and part of it pooled at crustal or shallower subcrustal levels that probably triggered partial melting to generate the acidic magma. The influence of basic magma on the genesis of acidic magma is indicated by the higher Ni and Cr abundance at the observed silica levels of the acidic magma. A subsequent pulse of basic magma, which became crustally contaminated, erupted as minor component along with the dominantly acidic volcanics during the deposition of the Bhiwapur Formation.  相似文献   

13.
The Indosinian Orogeny plays a significant role in tectonic background and magmatic evolution in Indochina and surrounding regions. Being a part product of the Indosinian magmatism in northwest Vietnam during late Permian–middle Triassic period, Muong Luan granitoid pluton dominantly consists of granodiorite, less diorite and granite. This pluton is located in the Song Ma suture and assigned to the Dien Bien complex. Geochemically, the Muong Luan granitoid rocks are characterized by a wide range of SiO2 contents (59.9–75.1 wt%) and high K2O contents. They display typical features of I‐type granites. The presence of hornblende and no muscovite and cordierite in the rocks further supports for I‐type character of granitoids. The emplacement age of the Muong Luan pluton obtained by LA–ICP–MS U–Pb zircon is at 242–235 Ma, corresponding to Indosinian time. Zircon εHf values of –5.6 to –10.4, in combination with moderate Mg values of 34–45 suggested that the Muong Luan granitoid was derived from partial melting of mafic crustal source rocks, which are probably Paleoproterozoic in age as revealed by Hf model ages (TDM2 = 1624–1923 Ma).  相似文献   

14.
GHODRAT TORABI 《Island Arc》2012,21(3):215-229
Late Permian trondhjemites in the Anarak area occur as stocks and dykes, which cross cut the Anarak ophiolite and its overlying metasedimentary rocks, and are exposed along the northern Anarak east–west main faults. These leucocratic intrusive bodies have enclaves of all ophiolitic units and metamorphic rocks. They are composed of amphibole, plagioclase (oligoclase), quartz, zircon and muscovite. Secondary minerals are chlorite (pycnochlorite), epidote, albite, magnetite and calcite. Whole‐rock major‐ and trace‐element analyses reveal that they are characterized by high SiO 2 (67.8–71.0 wt%), Al 2 O 3 (14.9–17.1 wt%) and Na 2 O (5.3–8.6 wt%), low K 2 O (0.1–1.5 wt%; average: 0.8 wt%), low Rb/Sr ratio (0.01–0.40; average: 0.09), low Y (3–6 ppm), negative Ti, Nb and Ta anomalies, slightly negative or positive Eu anomaly, LREE enrichment and fractionated HREE. These rocks present 2 to 40 times enrichment in inclined chondrite‐normalized REE patterns. Geochemical characteristics of the Anarak trondhjemites all reflect melting of a mafic protolith at more than 10 kbar. The field evidence and whole‐rock chemistry reveal that these rocks have been crystallized from magmas derived from melting of subducted Anarak oceanic crust. This study reveals that melting of garnet amphibolite was an important element of continent formation in the study area.  相似文献   

15.
分布于湖南东北部的石蛤蟆岩体侵位于新元古代地层中。由微细粒斑状黑云母花岗闪长岩和细粒斑状黑云母二长花岗岩等两期侵入体组成。通过锆石SHRIM PU--Pb法测得岩体侵位年龄为157土2Ma(2d),MSWD=0.98,成岩时代为晚侏罗世。SiO2=68.26%~68.53%,K2O/Na2O=1.37~1.59,岩石属镁质、准铝质-微过铝质、高钾钙碱性-钾玄岩系列;岩石明显富集大离子亲石元素,亏损高场强元素,Rb/Sr较低(0.40~0.56);乏REE较高(171.48~183.81),Eu为弱负异常(δEu=0.86~0.93),(La/Yb)N=27.11~45.87;具较高的eNd值(-5.11)和高T2DM(1.63Ga)。综合研究表明,石蛤蟆花岗岩为混合源高钾钙碱性花岗岩类(KCG),其花岗岩浆有大量幔源物质加入。讨论认为岩体形成于构造体制转换下的地球动力学背景,是造山晚期张弛作用下的产物。  相似文献   

16.
Granulite facies metamorphism of the igneous complex of South Harris has produced garnet-clinopyroxene-plagioclase assemblages from olivine-normative rocks and 2 pyroxene-plagioclase-quartz assemblages from quartz-normative rocks. The appearance of garnet can be considered in terms of two complex reactions:Olivine + plagioclase1 → (Ca, Mg, Fe) garnet + plagioclase2(olivine-normative) (A)Orthopyroxene + plagioclase1 → (Ca, Mg, Fe) garnet + plagioclase2 + quartz (quartz-normative) (B)For bulk compositions of the South Harris rocks the equilibrium pressure for reaction (A) has been exceeded whereas that for reaction (B) was not reached. Estimated physical conditions of metamorphism bracketed by these and other reactions are: 800–860°C and 10–13 kbar. These estimates, based on experimental data on simple systems combined with thermodynamic models of the solid solutions involved are in good agreement with extrapolated pressures for the experimentally determined appearance of garnet in basaltic compositions (Green and Ringwood, 1967). The latter give 9–12 kbar in the temperature range of interest. The calculations are also consistent with the occurrence of kyanite in associated metapelites and with the stability of spinel-lherzolite during the granulite metamorphism.  相似文献   

17.
The petrography and major and trace element concentrations of the sandstones from the Tumengela Formation in the Woruo Mountain area, North Qiangtang Basin, are studied to determine their provenance, intensity of weathering and tectonic setting. The detrital compositions of the Tumengela sandstone samples are dominated by quartz (58.0–70.1 %, average 64.7 %) and lithic fragments (21.8–35.9 %, average 27.3 %), but low in feldspar content (4.9–12.9 %, average 8.0 %). The sandstones can be classified as litharenite and feldspathic litharenite according to their detrital compositions, which is consistent with the geochemical data. The detrital modal compositions reflect that these sandstones are probably derived from a recycled orogenic source. The index of chemical variability (ICV) and SiO2/Al2O3 ratio values suggest that the compositional maturity and recycling were moderate. The weathering indices such as the chemical index of alteration (CIA), plagioclase index of alteration (PIA), chemical index of weathering (CIW), and Al2O3–(CaO* + Na2O)–K2O (A–CN–K) diagram indicate that the intensities of weathering in the source area were moderate. The Al2O3/TiO2, Th/Co, La/Sc, La/Co, Th/Sc, Cr/Th ratio values and the discriminant function of the Tumengela sandstones indicate that the sediments were mainly derived from felsic source rocks, while also mixed with intermediate source rocks. The comparison of rare earth element patterns and its Eu anomalies to the probable source rocks infer that the sandstones were derived from the combination of granite, rhyolite, dacite, and gneisses. The proximal central uplift belt was probably the primary provenance area as evidenced by the petrographical and geochemical features of the Tumengela sandstones. The multidimensional tectonic discrimination diagram based on major elements show a collision setting (80 %) combined with a rift setting (20 %) for the Tumengela sandstones, which is consistent with the general geology of the study areas.  相似文献   

18.
Major and trace elements have been determined in monzonoritic rocks (hypersthene-monzodiorite or jotunite) from two intrusions belonging to the South Rogaland anorthositic complex (Norway). The rare-earth abundance pattern reveals no Eu anomaly, or only a very small one. This fact together with field observations suggest that these rocks represent the parental magma of the anorthositic suite. High Ti and P abundances, low Si content, high Fe/Mg and K2O/SiO2 ratios are characteristics of the major element geochemistry. Absolute amounts of some trace elements abundances vary distinctly between the two intrusions. K/Rb ratios as high as 1700 are observed. Partial fusion of upper mantle kaersutite is proposed as a possible mechanism of magma generation. Partition coefficients between plagioclase phenocrysts and liquid are determined.  相似文献   

19.
The strongly peraluminous granites (SPGs) of Eastern Nanling Range (ENR) are a characteristic of all bearing highly aluminous minerals, such as muscovite±AI-rich biotite±tourmaline±garnet, and lack of cordierite. In respect of petrography, geochemistry, Nd isotope, and single grain zircon U-Pb dating, the representative granite bodies of them are studied. The research shows that these granites were emplaced in two stages, namely 228-225 Ma BP and J2-3 159-156 Ma BP, belonging to Indosinian and early Yanshanian periods, respectively, and they have low εNd(t) values (-10.6--11.1), high A/CNK, Rb/Sr ratios and tDM values (1887-1817 Ma), and REE's tetrad effect (TE1,3=1.13-1.34). In comparison with related geology, petrology and chronology of granites in adjacent regions, it is suggested that Indosinian SPGs of ENR formed in the circumstance of post-collisional extension 20 Ma after the major collision of Indosinian Movement (258-243 Ma BP) in Indo-China Peninsula, and early Yanshanian SPGs formed in the  相似文献   

20.
Ultrahigh‐temperature (UHT) granulite facies rocks from the Achankovil Shear Zone area and the southern domain of the Madurai Granulite Block in South India contain monazite useful for in situ microprobe U–Pb dating. The UHT rocks examined consist of garnet + cordierite (retrograde) + quartz + mesoperthite + biotite + plagioclase + Fe‐Ti oxides ± orthopyroxene ± sillimanite and accessory zircon and monazite. Sillimanite occurs only as inclusions in garnet. Microstructural observations suggest garnet, orthopyroxene, spinel and mesoperthite are products of peak metamorphism. Post‐peak formation of cordierite ± orthopyroxene ± quartz and cordierite + spinel + Fe‐Ti oxides assemblages is also observed. Geothermobarometry on orthopyroxene and garnet‐orthopyroxene bearing assemblages suggest peak UHT conditions of T = 940–1040°C and P = 8.5–9.5 kbar. This was followed by a retrograde stage of 3.5–4.5 kbar and 720 ± 60°C, estimated from garnet‐cordierite assemblages. A small population of rounded, probably detrital, monazites in these rocks yield ages from Meso‐ to Neoproterozoic indicating a heterogeneous source. The youngest associated spot ages are 660–600 Ma suggesting protolith deposition up to ca 600 Ma. In contrast, the vast majority of monazites that crystallized during the latest metamorphic event show late Neoproterozoic to Cambrian ages. Probability‐density plots of monazite age data show a ‘peak’ between 533 and 565 Ma, but this peak need not reflect a particular thermal event. Collating ages from homogenous metamorphic monazites associated with minerals stable at peak P‐T conditions suggests peak metamorphism in these rocks occurred at 580–600 Ma. Together with a re‐evaluation of available data from adjacent granulite blocks in southern India, these data suggest the main metamorphic event coinciding with the suturing of India with the Gondwana amalgam probably occurred 580–600 Ma. The 500–550 Ma ages commonly reported in previous studies might represent post‐peak thermal events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号