首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Solar sails are a proposed form of spacecraft propulsion using large membrane mirrors to propel a satellite taking advantage of the solar radiation pressure. To model the dynamics of a solar sail we have considered the Earth–Sun Restricted Three Body Problem including the Solar radiation pressure (RTBPS). This model has a 2D surface of equilibrium points parametrised by the two angles that define the sail orientation. In this paper we study the non-linear dynamics close to an equilibrium point, with special interest in the bounded motion. We focus on the region of equilibria close to SL 1, a collinear equilibrium point that lies between the Earth and the Sun when the sail is perpendicular to the Sun–sail direction. For different fixed sail orientations we find families of planar, vertical and Halo-type orbits. We have also computed the centre manifold around different equilibria and used it to describe the quasi-periodic motion around them. We also show how the geometry of the phase space varies with the sail orientation. These kind of studies can be very useful for future mission applications.  相似文献   

2.
借助光压将探测器推向月球   总被引:2,自引:0,他引:2  
刘林 《天文学报》2001,42(1):70-74
若采用圆型限制性三体问题模型,从近地停泊轨道上发射一个月球探测器,其最小初始速度必须使相应的Jacobi常数C小于某一临界值C2。但这仅仅是探测器可能飞向月球的必要条件,而且这样飞向月球耗时过长。若采用Hohmann转移轨道,则需要获得较大的变轨冲量,能量消耗较大。如果需要仔细探测地月空间环境,而又不必很快地飞往月球,那么采用较大的太阳帆板,并使其法向有一特殊指向,可借助太阳光压加速引导探测器在不长的时间内飞向月球。利用相应的分析和计算,证实上述考虑是有效的,而且若使太阳帆板截面积大到一定程度(如果技术上能实现),则无需任何动力,也可借助光压将探测器推向月球,就像一条太空帆船(简称太空帆)。  相似文献   

3.
The solar radiation effects upon the orbital behaviour of an arbitrarily shaped spacecraft (or a solar sail in particular) in a general fixed orientation with respect to the local coordinate frame are investigated. Through introduction of a quasi-angle in the osculating plane, the motion of the orbital plane becomes uncoupled from the in-plane perturbations. Exact solutions in the form of conic sections and logarithmic spirals can readily be formulated for certain specific initial conditions. An effective out-of-plane spiral transfer trajectory is obtained by reversing the force component normal to the orbital plane at specified positions in the orbit. By choosing the appropriate control angles for the sail orientation, any point in space can be reached eventually. In the case of general initial conditions, the long-term orbital behaviour is assessed asymptotically by means of the two-variable expansion procedure. An implicit expression for the eccentricity is derived and explicit results are established by an iteration scheme. The other orbital elements can be expressed in terms of the eccentricity and their asymptotic series for near-circular initial orbits are also obtained. While equations for the higher-order contributions as well as the periodic parts of their solutions can be formulated readily, their secular terms are determined only for a circular initial orbit.  相似文献   

4.
Results of numerical simulations of 'local-optimal' (or 'instantaneously optimal') trajectories of a space probe with a flat solar sail which moves from the circular Earth orbit to near-Sun regions are presented. We examine planar (ecliptic) solar sail transfer with gravity-assist flybys of Earth, Venus and Mercury. Several complex control modes of the sail tilt orientation angle for near-Sun orbits and for some 'falling onto the Sun' trajectories are investigated. The numerical simulations are used to examine the flight duration of some sail missions and to investigate the evolution of osculating elliptical orbits.  相似文献   

5.
As the Sun evolves along the main sequence its luminosity will grow, leading to a steadily increasing solar flux at the Earth with corresponding catastrophic consequences for the biosphere. A novel means of avoiding this terminal route to human evolution has recently been proposed by Korycansky et al. which utilises a series of grazing fly-pasts of the Earth with a small solar system body to increase the orbit radius of the Earth over a timescale of order 109 years. This short paper will propose an alternative strategy which utilises a large reflective sail to generate a propulsive thrust due to solar radiation pressure. It will be shown that if the sail is configured to be in static equilibrium relative to the Earth, the centre-of-mass of the Earth-sail system slowly accelerates. This scheme offers some advantages in that the mass of the sail is four orders of magnitude less than the mass to be processed in the scheme of Korycanskyet al. for trajectory correction manoeuvres alone. In addition, the severe hazard posed by multiple grazing fly-pasts of the Earth by a small solar system body is avoided. Although offering significant advantages, any thoughts of engineering on an astronomical scale clearly requires a leap of the imagination and a ready use of liberal assumptions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
To propel a spacecraft in the direction leaving the Sun, a magnetic sail (MagSail) blocks the hypersonic solar wind plasma flow by an artificial magnetic field. In order to simulate the interaction between the solar wind and the artificially deployed magnetic field produced around a magnetic sail spacecraft, a laboratory simulator was designed and constructed inside a space chamber. As a solar wind simulator, a high-power magnetoplasmadynamic arcjet is operated in a quasisteady mode of 0.8 ms duration. It can generate a simulated solar wind that is a high-speed (above 20 km/s), high-density (1018 m−3) hydrogen plasma plume of ∼0.7 m in diameter. A small coil (2 cm in diameter), which is to simulate a magnetic sail spacecraft and can obtain 1.9-T magnetic field strength at its center, was immersed inside the simulated solar wind. Using these devices, the formation of a magnetic cavity (∼8 cm in radius) was observed around the coil, which indicates successful simulation of the plasma flow of a MagSail in the laboratory.  相似文献   

7.
Under the assumption of quasi-azimuthal symmetry the governing equations of a steady hydromagnetic flow in a thermally conductive flux tube possess six invariants. Four of them represent constancy of mass efflux, energy efflux, angular momentum efflux and magnetic flux. Based on the entropy equation we obtain useful approximation in explicit expressions for the two remaining invariants. One of them provides the constraint which determines the compatible heat flux to ensure a vanishing pressure at infinity. Thus, the admissible solution that represents a corotating solar wind stream in terms of specified interplanetary condition can be calculated by an algebraic method, without the necessity of numerical integration. A two-point relationship is then derived, which correlates the solar wind properties at two separated interplanetary sites measured at two properly separated instants. This relationship may be applied to observational data from space crafts and earth-bound satellites to discern the corotation feature in the solar wind.  相似文献   

8.
9.
Several methods of asteroid deflection have been proposed in literature and the gravitational tractor is a new method using gravitational coupling for near-Earth object orbit modification. One weak point of gravitational tractor is that the deflection capability is limited by the mass and propellant of the spacecraft. To enhance the deflection capability, formation flying solar sail gravitational tractor is proposed and its deflection capability is compared with that of a single solar sail gravitational tractor. The results show that the orbital deflection can be greatly increased by increasing the number of the sails. The formation flying solar sail gravitational tractor requires several sails to evolve on a small displaced orbit above the asteroid. Therefore, a proper control should be applied to guarantee that the gravitational tractor is stable and free of collisions. Two control strategies are investigated in this paper: a loose formation flying realized by a simple controller with only thrust modulation and a tight formation realized by the sliding-mode controller and equilibrium shaping method. The merits of the loose and tight formations are the simplicity and robustness of their controllers, respectively.  相似文献   

10.
The theory of optimal control is applied to obtain minimum-time trajectories for solar sail spacecraft for interplanetary missions. We consider the gravitational and solar radiation forces due to the Sun. The spacecraft is modelled as a flat sail of mass m and surface area A and is treated dynamically as a point mass. Coplanar circular orbits are assumed for the planets. We obtain optimal trajectories for several interrelated problem families and develop symmetry properties that can be used to simplify the solution-finding process. For the minimum-time planet rendezvous problem we identify different solution branches resulting in multiple solutions to the associated boundary value problem. We solve the optimal control problem via an indirect method using an efficient cascaded computational scheme. The global optimizer uses a technique called Adaptive Simulated Annealing. Newton and Quasi-Newton Methods perform the terminal fine tuning of the optimization parameters.  相似文献   

11.
In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth–Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the \(L_{1}\) and \(L_{2}\) points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.  相似文献   

12.
We present a detailed investigation of the dramatic changes that occur in the \(\mathcal {L}_1\) halo family when radiation pressure is introduced into the Sun–Earth circular restricted three-body problem (CRTBP). This photo-gravitational CRTBP can be used to model the motion of a solar sail orientated perpendicular to the Sun-line. The problem is then parameterized by the sail lightness number, the ratio of solar radiation pressure acceleration to solar gravitational acceleration. Using boundary-value problem numerical continuation methods and the AUTO software package (Doedel et al. in Int J Bifurc Chaos 1:493–520, 1991) the families can be fully mapped out as the parameter \(\beta \) is increased. Interestingly, the emergence of a branch point in the retrograde satellite family around the Earth at \(\beta \approx 0.0387\) acts to split the halo family into two new families. As radiation pressure is further increased one of these new families subsequently merges with another non-planar family at \(\beta \approx 0.289\) , resulting in a third new family. The linear stability of the families changes rapidly at low values of \(\beta \) , with several small regions of neutral stability appearing and disappearing. By using existing methods within AUTO to continue branch points and period-doubling bifurcations, and deriving a new boundary-value problem formulation to continue the folds and Krein collisions, we track bifurcations and changes in the linear stability of the families in the parameter \(\beta \) and provide a comprehensive overview of the halo family in the presence of radiation pressure. The results demonstrate that even at small values of \(\beta \) there is significant difference to the classical CRTBP, providing opportunity for novel solar sail trajectories. Further, we also find that the branch points between families in the solar sail CRTBP provide a simple means of generating certain families in the classical case.  相似文献   

13.
The form of the solar radiation pressure on a heliocentric orbiting solar sail is obtained for a finite angular sized and limb darkened solar disk by the use of the radiation pressure tensor. It is found that the usual inverse square variation of the solar radiation pressure is modified by the finite angular size, and to a lesser extent by the solar limb darkening. The actual magnitude of the modification is in itself small, except at close heliocentric distances. However, its existence has implications for the dynamical stability of solar sails both in parked and circular orbital configurations and for the accuracy of trajectory calculations, particularly for sails in the inner solar system.  相似文献   

14.
Shymanchuk  D. V.  Shmyrov  A. S.  Shmyrov  V. A. 《Astronomy Letters》2021,47(10):710-719
Astronomy Letters - The controlled motion of a spacecraft with a solar sail in interplanetary space near the collinear libration points $$L_{1}$$ and $$L_{2}$$ of the Sun–Earth system is...  相似文献   

15.
Near Earth Asteroids have a possibility of impacting the Earth and always represent a threat. This paper proposes a way of changing the orbit of the asteroid to avoid an impact. A solar sail evolving in an H-reversal trajectory is utilized for asteroid deflection. Firstly, the dynamics of the solar sail and the characteristics of the H-reversal trajectory are analyzed. Then, the attitude of the solar sail is optimized to guide the sail to impact the target asteroid along an H-reversal trajectory. The impact...  相似文献   

16.
The perihelion advance of the orbit of Mercury has long been one of the observational cornerstones for testing General Relativity (G.R.).The main goal of this paper is to discuss how, presently, observational and theoretical constraints may challenge Einstein's theory of gravitation characterized by β=γ=1. To achieve this purpose, we will first recall the experimental constraints upon the Eddington-Robertson parameters γ,β and the observational bounds for the perihelion advance of Mercury, Δωobs. A second point will address the values given, up to now, to the solar quadrupole moment by several authors. Then, we will briefly comment why we use a recent theoretical determination of the solar quadrupole moment, J 2=(2.0 ± 0.4) 10-7, which takes into account both surfacic and internal differential rotation, in order to compute the solar contribution to Mercury's perihelion advance. Further on, combining bounds on γ and J 2 contributions, and taking into account the observational data range for Δωobs,we will be able to give a range of values for β. Alternatively, taking into account the observed value of Δωobs, one can deduce a dynamical estimation of J 2 in the setting of G.R. This point is important as it provides a solar model independent estimation that can be confronted with other determinations of J 2 based upon solar theory and solar observations (oscillation data, oblateness...). Finally, a glimpse at future satellite experiments will help us to understand how stronger constraints upon the parameter space (γω J 2) as well as a separation of the two contributions (from the quadrupole moment, J 2, or purely relativistic, 2α2+2αγ–β) might be expected in the future. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
This paper introduces a new approach to the study of artificial equilibrium points in the circular restricted three-body problem for propulsion systems with continuous and purely radial thrust. The propulsion system is described by means of a general mathematical model that encompasses the behavior of different systems like a solar sail, a magnetic sail and an electric sail. The proposed model is based on the choice of a coefficient related to the propulsion type and a performance parameter that quantifies the system technological complexity. The propulsion system is therefore referred to as generalized sail. The existence of artificial equilibrium points for a generalized sail is investigated. It is shown that three different families of equilibrium points exist, and their characteristic locus is described geometrically by varying the value of the performance parameter. The linear stability of the artificial points is also discussed.  相似文献   

18.
In this paper we analyze the dynamical behavior of large dust grains in the vicinity of a cometary nucleus. To this end we consider the gravitational field of the irregularly shaped body, as well as its electric and magnetic fields. Without considering the effect of gas friction and solar radiation, we find that there exist grains which are static relative to the cometary nucleus; the positions of these grains are the stable equilibria. There also exist grains in the stable periodic orbits close to the cometary nucleus. The grains in the stable equilibria or the stable periodic orbits won’t escape or impact on the surface of the cometary nucleus. The results are applicable for large charge dusts with small area-mass ratio which are near the cometary nucleus and far from the Solar. It is found that the resonant periodic orbit can be stable, and there exist stable non-resonant periodic orbits, stable resonant periodic orbits and unstable resonant periodic orbits in the potential field of cometary nuclei. The comet gravity force, solar gravity force, electric force, magnetic force, solar radiation pressure, as well as the gas drag force are all considered to analyze the order of magnitude of these forces acting on the grains with different parameters. Let the distance of the dust grain relative to the mass centre of the cometary nucleus, the charge and the mass of the dust grain vary, respectively, fix other parameters, we calculated the strengths of different forces. The motion of the dust grain depends on the area-mass ratio, the charge, and the distance relative to the comet’s mass center. For a large dust grain (> 1 mm) close to the cometary nucleus which has a small value of area-mass ratio, the comet gravity is the largest force acting on the dust grain. For a small dust grain (< 1 mm) close to the cometary nucleus with large value of area-mass ratio, both the solar radiation pressure and the comet gravity are two major forces. If the a small dust grain which is close to the cometary nucleus have the large value of charge, the magnetic force, the solar radiation pressure, and the electric force are all major forces. When the large dust grain is far away from the cometary nucleus, the solar gravity and solar radiation pressure are both major forces.  相似文献   

19.
The most pertinent effect of the currents in the coronal-interplanetary space is their alteration of the magnetic topology to form configurations of open field lines. The important currents seem to be those in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines in the coronal helmet-streamer structures. Thus, the coronal-interplanetary space may be regarded as being partitioned by current-sheets into several piecewise current-free regions. These current sheets overlie the photospheric neutral lines, where the vertical component of the magnetic field reverses its polarity on the solar surface. But, their locations and strengths are determined by force balance between the magnetic field and the gas pressure in the coronal-interplanetary space. Since the pressure depends on the flow velocity of the solar wind and the solar wind channels along magnetic flux tubes, there is a strong magnetohydrodynamic coupling between the magnetic field and the solar wind. The sheetcurrent approach presented in this paper seems to be a reasonable way to account for this complicated interaction.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
Asteroid body-fixed hovering using nonideal solar sails   总被引:1,自引:0,他引:1  
The problem of body-fixed hovering over an asteroid using a compact form of nonideal solar sails with a controllable area is investigated.Nonlinear dynamic equations describing the hovering problem are constructed for a spherically symmetric asteroid.Numerical solutions of the feasible region for body-fixed hovering are obtained.Different sail models,including the cases of ideal,optical,parametric and solar photon thrust,on the feasible region is studied through numerical simulations.The influence of the asteroid spinning rate and the sail area-to-mass ratio on the feasible region is discussed.The required orientations for the sail and their corresponding variable lightness numbers are given for different hovering radii to identify the feasible region of the body-fixed hovering.An attractive scenario for a mission is introduced to take advantage of solar sail hovering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号