首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
简要回顾利用"日地关系天文台"(Solar Terrestrial Relations Observatory,STEREO)卫星的立体观测资料在日冕物质抛射(Coronal Mass Ejection,CME)研究方面已取得的一些重要进展,主要包括(1)通过极紫外成像仪观测到的日冕极紫外暗化来更准确地估计CME质量,研究CME演化的结构特征;(2)利用STEREO卫星日冕仪的双角度观测,在CME立体传播特征方面取得的新进展;(3)STEREO卫星日球成像仪具有广阔的视场范围,可以跟踪研究CME从太阳表面爆发到形成行星际日冕物质抛射(Interplanetary CME,ICME),及其在内日球层和近地空间的演化特征以及运动特征等。同时,也介绍了利用三角测量技术测定CME特征物理量的新方法。  相似文献   

2.
The twin STEREO and the Wind spacecraft make remote multipoint measurements of interplanetary radio sources of solar origin from widely separated vantage points. One year after launch, the angular separation between the STEREO spacecraft reached 45°, which was ideal for locating solar type III radio sources in the heliosphere by three-spacecraft triangulation measurements from STEREO and Wind. These triangulated source locations enable intrinsic properties of the radio source, such as its beaming characteristics, to be deduced. We present the first three-point measurements of the beaming characteristics for two solar type III radio bursts that were simultaneously observed by the three spacecraft in December of 2007 and in January of 2008. These analyses suggest that individual type III bursts exhibit a wide beaming pattern that is approximately beamed along the direction tangent to the Parker spiral magnetic field line at the source location.  相似文献   

3.
目前观测得到的日冕物质抛射(coronal mass ejection,CME)只是其在天空平面的投影,其观测参量与真实参量之间存在一定的差异.而CME的速度是对其地磁效应有决定性影响的参量,因此对CME测量速度作投影效应改正是一个重要的研究课题.综述了近年来对CME测量速度进行投影效应改正的方法,并指出了这些投影效应改正方法中存在的一些问题和进一步的研究方向.  相似文献   

4.
A method for the full three-dimensional (3-D) reconstruction of the trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations Observatory (STEREO) data is presented. Four CMEs that were simultaneously observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and Behind STEREO satellites were analysed. These observations were used to derive CME trajectories in 3-D out to ~?15?R . The reconstructions using COR1/2 data support a radial propagation model. Assuming pseudo-radial propagation at large distances from the Sun (15?–?240?R ), the CME positions were extrapolated into the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in the different fields-of-view. It was found that CMEs slower than the solar wind were accelerated, while CMEs faster than the solar wind were decelerated, with both tending to the solar wind velocity.  相似文献   

5.
We study the association of solar flares with coronal mass ejections (CMEs) during the deep, extended solar minimum of 2007?–?2009, using extreme-ultraviolet (EUV) and white-light (coronagraph) images from the Solar Terrestrial Relations Observatory (STEREO). Although all of the fast (v>900 km?s?1), wide (θ>100°) CMEs are associated with a flare that is at least identified in GOES soft X-ray light curves, a majority of flares with relatively high X-ray intensity for the deep solar minimum (e.g. ?1×10?6 W?m?2 or C1) are not associated with CMEs. Intense flares tend to occur in active regions with a strong and complex photospheric magnetic field, but the active regions that produce CME-associated flares tend to be small, including those that have no sunspots and therefore no NOAA active-region numbers. Other factors on scales similar to and larger than active regions seem to exist that contribute to the association of flares with CMEs. We find the possible low coronal signatures of CMEs, namely eruptions, dimmings, EUV waves, and Type III bursts, in 91 %, 74 %, 57 %, and 74 %, respectively, of the 35 flares that we associate with CMEs. None of these observables can fully replace direct observations of CMEs by coronagraphs.  相似文献   

6.
Wiegelmann  T.  Inhester  B. 《Solar physics》2003,214(2):287-312
We undertake a first attempt towards a consistent reconstruction of the coronal magnetic field and the coronal density structure. We consider a stationary solar corona which has to obey the equations of magnetohydrostatics. We solve these equations with help of a newly developed optimization scheme. As a first step we illustrate how tomographic information can be included into the reconstruction of coronal magnetic fields. In a second step we use coronal magnetic field information to improve the tomographic inversion process. As input the scheme requires magnetic field measurements on the photosphere from vector-magnetographs and the line-of-sight integrated density distribution from coronagraphs. We test our codes with well-known analytic magnetohydrostatic equilibria and models. The program is planned for use within the STEREO mission.  相似文献   

7.
The space mission Solar TErrestrial RElations Observatory (STEREO) will provide images from two viewpoints. An important aim of the STEREO mission is to get a 3D view of the solar corona. We develop a program for the stereoscopic reconstruction of 3D coronal loops from images taken with the two STEREO spacecraft. A pure geometric triangulation of coronal features leads to ambiguities because the dilute plasma emissions complicates the association of features in image 1 with features in image 2. As a consequence of these problems, the stereoscopic reconstruction is not unique and multiple solutions occur. We demonstrate how these ambiguities can be resolved with the help of different coronal magnetic field models (potential, linear, and non-linear force-free fields). The idea is that, due to the high conductivity in the coronal plasma, the emitting plasma outlines the magnetic field lines. Consequently, the 3D coronal magnetic field provides a proxy for the stereoscopy, which allows to eliminate inconsistent configurations. The combination of stereoscopy and magnetic modelling is more powerful than one of these tools alone. We test our method with the help of a model active region and plan to apply it to the solar case as soon as STEREO data become available.  相似文献   

8.
We have estimated the speed and direction of propagation of a number of Coronal Mass Ejections (CMEs) using single-spacecraft data from the STEREO Heliospheric Imager (HI) wide-field cameras. In general, these values are in good agreement with those predicted by Thernisien, Vourlidas, and Howard in Solar Phys. 256, 111?–?130 (2009) using a forward modelling method to fit CMEs imaged by the STEREO COR2 coronagraphs. The directions of the CMEs predicted by both techniques are in good agreement despite the fact that many of the CMEs under study travel in directions that cause them to fade rapidly in the HI images. The velocities estimated from both techniques are in general agreement although there are some interesting differences that may provide evidence for the influence of the ambient solar wind on the speed of CMEs. The majority of CMEs with a velocity estimated to be below 400 km?s?1 in the COR2 field of view have higher estimated velocities in the HI field of view, while, conversely, those with COR2 velocities estimated to be above 400 km?s?1 have lower estimated HI velocities. We interpret this as evidence for the deceleration of fast CMEs and the acceleration of slower CMEs by interaction with the ambient solar wind beyond the COR2 field of view. We also show that the uncertainties in our derived parameters are influenced by the range of elongations over which each CME can be tracked. In order to reduce the uncertainty in the predicted arrival time of a CME at 1 Astronomical Unit (AU) to within six hours, the CME needs to be tracked out to at least 30 degrees elongation. This is in good agreement with predictions of the accuracy of our technique based on Monte Carlo simulations. Within the set of studied CMEs, there are two clear events that were predicted from the HI data to travel over another spacecraft; in-situ measurements at these other spacecraft confirm the accuracy of these predictions. The ability of the HI cameras to image Corotating Interaction Region (CIR)-entrained transients as well as CMEs can result in some ambiguity when trying to distinguishing individual signatures.  相似文献   

9.
We review recent progress on our understanding of radio emission from solar flares and coronal mass ejections (CMEs) with emphasis on those aspects of the subject that help us address questions about energy release and its properties, the configuration of flare?–?CME source regions, coronal shocks, particle acceleration and transport, and the origin of solar energetic particle (SEP) events. Radio emission from electron beams can provide information about the electron acceleration process, the location of injection of electrons in the corona, and the properties of the ambient coronal structures. Mildly relativistic electrons gyrating in the magnetic fields of flaring loops produce radio emission via the gyrosynchrotron mechanism, which provides constraints on the magnetic field and the properties of energetic electrons. CME detection at radio wavelengths tracks the eruption from its early phase and reveals the participation of a multitude of loops of widely differing scale. Both flares and CMEs can ignite shock waves and radio observations offer the most robust tool to study them. The incorporation of radio data into the study of SEP events reveals that a clear-cut distinction between flare-related and CME-related SEP events is difficult to establish.  相似文献   

10.
We identify 565 coronal mass ejections (CMEs) between January 2007 and December 2010 in observations from the twin STEREO/SECCHI/COR2 coronagraphs aboard the STEREO mission. Our list is in full agreement with the corresponding SOHO/LASCO CME Catalog ( http://cdaw.gsfc.nasa.gov/CME_list/ ) for events with angular widths of 45° and up. The monthly event rates behave similarly to sunspot rates showing a three- to fourfold rise between September 2009 and March 2010. We select 51 events with well-defined white-light structure and model them as three-dimensional (3D) flux ropes using a forward-modeling technique developed by Thernisien, Howard and Vourlidas (Astrophys. J. 652, 763??C?773, 2006). We derive their 3D properties and identify their source regions. We find that the majority of the CME flux ropes (82?%) lie within 30° of the solar equator. Also, 82?% of the events are displaced from their source region, to a lower latitude, by 25° or less. These findings provide strong support for the deflection of CMEs towards the solar equator reported in earlier observations, e.g. by Cremades and Bothmer (Astron. Astrophys. 422, 307??C?322, 2004).  相似文献   

11.
Bravo  S.  Blanco-Cano  X.  Nikiforova  E. 《Solar physics》1998,180(1-2):461-471
Coronal mass ejections (CMEs) are considered to be associated with large-scale, closed magnetic field structures in the corona. These structures change throughout the solar activity cycle following the evolution of the general solar magnetic field. To study the variation of CME characteristics with the evolution of coronal magnetic structures, we compute the 3-D coronal magnetic field at minimum and maximum of activity with a source-surface potential field model. In particular, we study the central latitude distribution of CMEs and the frequency of occurrence of the different CME types in these two periods. We find that most CMEs are indeed associated with large-scale, magnetically closed structures, and their latitudinal distribution follows the solar cycle latitudinal changes of the location of these structures. We also find that different CME types, which constitute different fractions of the total during the maximum and the minimum, are associated with different shapes and orientations of the closed structures at different times of the solar cycle.  相似文献   

12.
W.T. Thompson 《Icarus》2009,200(2):351-357
The bright Kreutz Comet C/2007 L3 (SOHO) entered the fields of view of the twin Solar Terrestrial Relations Observatory (STEREO) COR1 telescopes on 7–8 June 2007. The 12° separation between the two spacecraft at the time afforded the opportunity to derive the position of the comet's tail in three-dimensional space using direct triangulation. The track of the comet's orbit is compared against more traditional orbital calculations using observations from the STEREO COR2 telescopes, and from the Large Angle and Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory (SOHO). The shape of the comet's tail shows that it is composed of dust particles released when the comet was between 18 and 22 solar radii, with no significant dust production after that. The comet did not survive perihelion passage, but a rare faint remnant of the comet tail persisted for several hours after the break-up, and was seen by both the SOHO and STEREO coronagraphs to drift slowly away from the Sun. This tail remnant was found to be composed of particles far back from the head of the comet. The motion of the tail remnant shows a loss of angular momentum during the passage through the solar corona. Atmospheric drag is estimated to account for a significant fraction of this change in angular momentum, but indications are that other mechanisms may be required to completely account for the total amount of change.  相似文献   

13.
We are investigating the geometric and kinematic characteristics of interplanetary coronal mass ejections (ICMEs) using data obtained by the LASCO coronagraphs, the Solar Mass Ejection Imager (SMEI), and the SECCHI imaging experiments on the STEREO spacecraft. The early evolution of CMEs can be tracked by the LASCO C2 and C3 and SECCHI COR1 and COR2 coronagraphs, and the HI and SMEI instruments can track their ICME counterparts through the inner heliosphere. The HI fields of view (4?–?90°) overlap with the SMEI field of view (>?20° to all sky) and, thus, both instrument sets can observe the same ICME. In this paper we present results for ICMEs observed on 24?–?29 January 2007, when the STEREO spacecraft were still near Earth so that both the SMEI and STEREO views of large ICMEs in the inner heliosphere coincided. These results include measurements of the structural and kinematic evolution of two ICMEs and comparisons with drive/drag kinematic, 3D tomographic reconstruction, the HAFv2 kinematic, and the ENLIL MHD models. We find it encouraging that the four model runs generally were in agreement on both the kinematic evolution and appearance of the events. Because it is essential to understand the effects of projection across large distances, that are not generally crucial for events observed closer to the Sun, we discuss our analysis procedure in some detail.  相似文献   

14.
On 2012 July 11, two solar filaments were observed in the northeast of the solar disk and their eruptions due to the interaction between them are studied by using the data from the Solar Dynamics Observatory (SDO), Solar TErrestrial RElations Observatory (STEREO) and Global Oscillation Network Group (GONG). The eastern filament (F1) first erupted toward the northeast. During the eruption of F1, some plasma from F1 fell down and was injected to the North-East part of another filament (F2), and some plasma of F1 fell down to the northern region close to F2 and caused the plasma to brighten. Meanwhile, the North-East part of F2 first started to be active and rise, but did not erupt finally. Then the South-West part of F2 erupted successfully. Therefore, the F2’s eruption is a partial filament eruption. Two associated CMEs related to the eruptions were observed by STEREO/COR1. We find two possible reasons that lead to the instability and the eruption of F2. One main reason is that the magnetic loops overlying the two filaments were partially opened by the eruptive F1 and resulted in the instability of F2. The other is that the downflows from F1 might break the stability of F2.  相似文献   

15.
In order to assess the reliability and consistency of white-light coronagraph measurements, we report on quantitative comparisons between polarized brightness [pB] and total brightness [B] images taken by the following white-light coronagraphs: LASCO-C2 on SOHO, SECCHI-COR1 and -COR2 on STEREO, and the ground-based MLSO-Mk4. The data for this comparison were taken on 16?April 2007, when both STEREO spacecraft were within 3.1° of Earth??s heliographic longitude, affording essentially the same view of the Sun for all of the instruments. Due to the difficulties of estimating stray-light backgrounds in COR1 and COR2, only Mk4 and C2 produce reliable coronal-hole values (but not at overlapping heights), and these cannot be validated without rocket flights or ground-based eclipse measurements. Generally, the agreement between all of the instruments?? pB values is within the uncertainties in bright streamer structures, implying that measurements of bright CMEs also should be trustworthy. Dominant sources of uncertainty and stray light are discussed, as is the design of future coronagraphs from the perspective of the experiences with these instruments.  相似文献   

16.
We present a review of the different aspects associated with the interaction of successive coronal mass ejections (CMEs) in the corona and inner heliosphere, focusing on the initiation of series of CMEs, their interaction in the heliosphere, the particle acceleration associated with successive CMEs, and the effect of compound events on Earth’s magnetosphere. The two main mechanisms resulting in the eruption of series of CMEs are sympathetic eruptions, when one eruption triggers another, and homologous eruptions, when a series of similar eruptions originates from one active region. CME?–?CME interaction may also be associated with two unrelated eruptions. The interaction of successive CMEs has been observed remotely in coronagraphs (with the Large Angle and Spectrometric Coronagraph Experiment – LASCO – since the early 2000s) and heliospheric imagers (since the late 2000s), and inferred from in situ measurements, starting with early measurements in the 1970s. The interaction of two or more CMEs is associated with complex phenomena, including magnetic reconnection, momentum exchange, the propagation of a fast magnetosonic shock through a magnetic ejecta, and changes in the CME expansion. The presence of a preceding CME a few hours before a fast eruption has been found to be connected with higher fluxes of solar energetic particles (SEPs), while CME?–?CME interaction occurring in the corona is often associated with unusual radio bursts, indicating electron acceleration. Higher suprathermal population, enhanced turbulence and wave activity, stronger shocks, and shock?–?shock or shock?–?CME interaction have been proposed as potential physical mechanisms to explain the observed associated SEP events. When measured in situ, CME?–?CME interaction may be associated with relatively well organized multiple-magnetic cloud events, instances of shocks propagating through a previous magnetic ejecta or more complex ejecta, when the characteristics of the individual eruptions cannot be easily distinguished. CME?–?CME interaction is associated with some of the most intense recorded geomagnetic storms. The compression of a CME by another and the propagation of a shock inside a magnetic ejecta can lead to extreme values of the southward magnetic field component, sometimes associated with high values of the dynamic pressure. This can result in intense geomagnetic storms, but can also trigger substorms and large earthward motions of the magnetopause, potentially associated with changes in the outer radiation belts. Future in situ measurements in the inner heliosphere by Solar Probe+ and Solar Orbiter may shed light on the evolution of CMEs as they interact, by providing opportunities for conjunction and evolutionary studies.  相似文献   

17.
Using in situ observations from the Advanced Composition Explorer (ACE), we have identified 70 Earth-affecting interplanetary coronal mass ejections (ICMEs) in Solar Cycle 24. Because of the unprecedented extent of heliospheric observations in Cycle 24 that has been achieved thanks to the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instruments onboard the Solar Terrestrial Relations Observatory (STEREO), we observe these events throughout the heliosphere from the Sun to the Earth, and we can relate these in situ signatures to remote sensing data. This allows us to completely track the event back to the source of the eruption in the low corona. We present a summary of the Earth-affecting CMEs in Solar Cycle 24 and a statistical study of the properties of these events including the source region. We examine the characteristics of CMEs that are more likely to be strongly geoeffective and examine the effect of the flare strength on in situ properties. We find that Earth-affecting CMEs in the first half of Cycle 24 are more likely to come from the northern hemisphere, but after April 2012, this reverses, and these events are more likely to originate in the southern hemisphere, following the observed magnetic asymmetry in the two hemispheres. We also find that as in past solar cycles, CMEs from the western hemisphere are more likely to reach Earth. We find that Cycle 24 lacks in events driving extreme geomagnetic storms compared to past solar cycles.  相似文献   

18.
We investigate the initiation and formation of Coronal Mass Ejections (CMEs) via a detailed two-viewpoint analysis of low corona observations of a relatively fast CME acquired by the SECCHI instruments aboard the STEREO mission. The event which occurred on 2 January 2008, was chosen because of several unique characteristics. It shows upward motions for at least four hours before the flare peak. Its speed and acceleration profiles exhibit a number of inflections which seem to have a direct counterpart in the GOES light curves. We detect and measure, in 3D, loops that collapse toward the erupting channel while the CME is increasing in size and accelerates. We suggest that these collapsing loops are our first evidence of magnetic evacuation behind the forming CME flux rope. We report the detection of a hot structure which becomes the core of the white light CME. We observe and measure unidirectional flows along the erupting filament channel which may be associated with the eruption process. Finally, we compare these observations to the predictions from the standard flare-CME model and find a very satisfactory agreement. We conclude that the standard flare-CME concept is a reliable representation of the initial stages of CMEs and that multi-viewpoint, high cadence EUV observations can be extremely useful in understanding the formation of CMEs.  相似文献   

19.
C. Jacobs  S. Poedts 《Solar physics》2012,280(2):389-405
Large-scale solar eruptions, known as coronal mass ejections (CMEs), are regarded as the main drivers of space weather. The exact trigger mechanism of these violent events is still not completely clear; however, the solar magnetic field indisputably plays a crucial role in the onset of CMEs. The strength and morphology of the solar magnetic field are expected to have a decisive effect on CME properties, such as size and speed. This study aims to investigate the evolution of a magnetic configuration when driven by the emergence of new magnetic flux in order to get a better insight into the onset of CMEs and their magnetic structure. The three-dimensional, time-dependent equations for ideal magnetohydrodynamics are numerically solved on a spherical mesh. New flux emergence in a bipolar active region causes destabilisation of the initial stationary structure, finally resulting in an eruption. The initial magnetic topology is suitable for the ??breakout?? CME scenario to work. Although no magnetic flux rope structure is present in the initial condition, highly twisted magnetic field lines are formed during the evolution of the system as a result of internal reconnection due to the interaction of the active region magnetic field with the ambient field. The magnetic energy built up in the system and the final speed of the CME depend on the strength of the overlying magnetic field, the flux emergence rate, and the total amount of emerged flux. The interaction with the global coronal field makes the eruption a large-scale event, involving distant parts of the solar surface.  相似文献   

20.
Li  Y.  Luhmann  J. G.  Lynch  B. J.  Kilpua  E. K. J. 《Solar physics》2011,270(1):331-346
Coronal mass ejections (CMEs) carry magnetic structure from the low corona into the heliosphere. The interplanetary CMEs (ICMEs) that exhibit the topology of helical magnetic fluxropes are traditionally called magnetic clouds (MCs). MC fluxropes with axis of low (high) inclination with respect to the ecliptic plane have been referred to as bipolar (unipolar) MCs. The poloidal field of bipolar MCs has a solar cycle dependence. We report a cyclic reversal of the poloidal field of low inclination MC fluxropes during 1976 to 2009. The MC poloidal field cyclic reversal on the same time scale of the solar magnetic cycle is evident over three sunspot cycles. Approximately 48% of ICMEs are MCs, and 40% of IMCs are bipolar MCs during solar cycle 23. The speed of the bipolar MCs has essentially the same distribution as all ICMEs, which implies that they are not from any special type of CMEs in terms of the solar origin. Although CME fluxropes may undergo a number of complications during the eruption and propagation, a significant group of MCs retains sufficient similarity to the source region magnetic field to posses the same cyclic periodicity in polarity reversal. The poloidal field of bipolar MCs gives the out-of-ecliptic-plane field or B z component in the IMF time series. MCs with southward B z field are particularly effective in causing geomagnetic disturbances. During the solar minima, the B z field IMF sequence within MCs at the leading portion of a bipolar MC is the same with the solar global dipole field. Our finding shows that MCs preferentially remove the like polarity of the solar dipole field, and it supports the participation of CMEs in the solar magnetic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号