首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
中国坡缕石晶体化学研究   总被引:13,自引:2,他引:13  
郑自立  田煦 《矿物学报》1997,17(2):107-114
本研究通过对坡缕石化学成分分析数据的系统数理统计分析及结合透射电镜研究提出了Al2O3、Fe2O3、Mgo同SiO2一样为坡缕石的自身氧化物组分,而CaO、K2O、Na2O、TiO2等为主要以吸附态存在的非自身氧化物成分。相应的坡缕石晶体化学式为(Mg、Al、Fe、)5SiO20。(OH)2:·4(H2O)·nH2O(□—空位)。Ala3 、Fe3 、Mg2 异价类质同象置换的线性方程为Mg2 =4.978-1.519(Al3 +Fe3 )。穆斯堡尔谱、红外光谱及(020)面网晶格条纹象的分裂研究表明了阳离子占位形式:MIM2M3M3M1,其中边缘M1=(Fex3+)(Mg),中间M3=(A13 +Fe3+),M2=Al3 (缺Fe3 )或M2=(Fe3 +Al3 )或等于(Fe3 )和(□)。坡缕石的Mg2 -Al3 -Fe3 组分三角形图解揭示了:富Fe外生沉积成因为主的土状坡缕石和贫Fe富Al的热液交代蚀变充填作用为主的纤维状坡缕石的成分成因分类。  相似文献   

2.
概 述 绿泥石族矿物为2:1:1型(或2:2型)层状结构硅酸盐矿物,类质同象置换现象很普遍,层电荷不定,分类十分复杂。其结构由似云母层(2:1)和似水镁石层交替组成。按八面体阳离子充填情况分为二八面体型、三八面体型以及二八-三八面体型。按八面体中阳离子种类可形成不同类型的绿泥石种属。  相似文献   

3.
坡缕石[理想结构式Si8O20(Al2Mg2)(OH)2(OH2)4.4H2O],工业上常称为凹凸棒石,是一种含水的2∶1型链层状镁铝硅酸盐矿物。当坡缕石八面体中Mg2+/R3+(Al3++Fe3+)>1时,称为富镁坡缕石;反之,则称为贫镁坡缕石。坡缕石具有纳  相似文献   

4.
鲁安怀  陈光远 《地质论评》1995,41(3):272-276
通过详细研究世界范围内1842—1993年他人76个及作者42个含Cr的且与白云母同结构的云母化学成分资料,确立了自然产出的云母族矿物结构层内八面体中Cr~(3+)与Al~(3+)的完全类质同象关系。重新核查了云母族矿物分类,强调了按云母族矿物结构层内,八面体位置上所占据的阳离子类型,及其类质同象程度进行亚族划分的原则,将过去的二八面体型Al系列即白云母亚族,扩充为Cr—Al系列即铬铝云母亚族  相似文献   

5.
概述绿泥石族矿物为2∶1∶1型(或2∶2型)层状结构硅酸盐矿物,类质同象置换现象很普遍,层电荷不定,分类十分复杂。其结构由似云母层(2∶1)和似水镁石层交替组成。按八面体阳离子充填情况分为二八面体型、三八面体型以及二八-三八面体型。按八面体中阳离子种类可形成不同类型的绿泥石种属。一般认为膨胀绿泥石(Swelling Chlori-  相似文献   

6.
安徽官山两种坡缕石粘土的成分与红外吸收谱   总被引:9,自引:0,他引:9  
蔡元峰  薛纪越 《矿物学报》2001,21(3):323-329
本文采用多种成分分析手段对官山两种不同颜色坡缕石全粘土进行了研究。全粘土湿化学分析扣除SiO2含量计算得到的坡缕石阳离子数与电子探针获得的阳离子数一致。配位八面体阳离子计算表明,粉红色坡缕石为三八面体矿物,灰白色坡缕石是介于三八面体矿物和二八面体矿物间的中间类型。X射线粉末衍射的K值法对全粘土矿物定量分析有着较高的精度,同时用电子探针波谱可准确测定坡缕石粘土的成分。官山两种不同颜色含坡缕石的全粘土红外吸收谱能反映其中坡缕石的吸收谱特征。对X射线光电子能谱研究表明两种不同颜色的坡缕石中的铁主要是Fe^3 ,这与全岩湿化学分析的结果是一致的,同时也还可以作为电子探针成分分析的补充。  相似文献   

7.
作为华南大面积低温成矿域的重要组成部分,川滇黔铅锌矿集区是我国重要的铅锌银等资源基地之一,同时该矿集区也是Ge、Cd、Ga和In等稀散元素的超常富集区域。毛坪矿床是该矿集区内第二大铅锌矿床,累计探明铅锌金属储量超过3Mt(Pb+Zn平均品位≥18%),锗(Ge)保有储量182t。本文以新发现的Ⅵ矿带(铅锌金属已探明储量≥60万t,Pb+Zn平均品位≥20%)为研究对象,利用LA-ICPMS对主要矿石矿物闪锌矿和黄铁矿进行了微区原位微量元素组成和Mapping分析。研究结果显示Ⅵ矿带闪锌矿普遍富集Ge(最高580×10^(-6),均值81.1×10^(-6))、Cd(最高3486×10^(-6),均值1613×10^(-6))和Ga(最高190×10^(-6),均值44.4×10^(-6));黄铁矿普遍富集Mn、As、Pb、Cu、Ag和Sb。与Ⅰ和Ⅱ号矿带闪锌矿相比,Ⅵ号矿带闪锌矿更富集Ge和Ga。闪锌矿中Fe和Pb以类质同象为主,偶见黄铁矿和方铅矿显微包体;Cu、Ge、Ag和As赋存形式主要为类质同象,替代方式为Ge^(4+)+2(Cu+,Ag+,As+)↔3Zn^(2+);Cd以类质同象方式赋存为主,替代机制为Cd^(2+)↔Zn^(2+);Ga和In可能主要以类质同象方式存在。黄铁矿中Pb和Mn主要以方铅矿和碳酸盐矿物显微包体为主;Cu、As和Sb以类质同象形式存在于黄铁矿中;Ag和Zn可能以独立矿物形式赋存;Co和Ni以类质同象方式替代Fe进入黄铁矿晶格中,替代方式为Ni^(2+)+Co^(2+)↔2Fe^(2+)。毛坪矿床新发现Ⅵ矿带硫化物相比典型MVT矿床硫化物具有不同的In和Ge含量以及Cd/Fe比值,结合矿床地质特征和其他证据,表明毛坪矿床成因类型特殊,有别于经典MVT铅锌矿床,属于川滇黔型铅锌矿床。  相似文献   

8.
铜在坡缕石中的吸附位置和吸附机理研究   总被引:4,自引:0,他引:4  
蔡元峰  薛纪越 《地质论评》2006,52(1):107-112
对四个吸附铜的坡缕石的解吸附实验研究表明,被解吸附的铜来自于坡缕石的表面和纤维状晶体的网状空隙。吸附铜的坡缕石的X射线光电子能谱(XPS)上出现了932.5eV和933.7eV的光电子峰,表明坡缕石表面的铜以Cu^+和Cu^2+的形式存在;傅立叶变换红外吸收光谱(FTIR)上八面体离子的吸收峰出现规律性偏移,其中Mg3OH和Al2□OH吸收峰向高频方向移动了3~5cm^-1,部分铜离子进入到坡缕石的晶体结构的通道中;电子顺磁共振谱上(ESR)出现了g=2.34、2.12、2.08和2.05等4个信号:表明铜离子位于H^+难以到达的位置。吸附铜的坡缕石的矿物学研究及其解吸附实验的结果均表明铜在坡缕石中以3种形式存在:①以Cu^+和Cu^2+的形式吸附在坡缕石纤维的表面,与坡缕石表面的悬空氧成键;②以ECu(H2O)4]^2+的形式存在于坡缕石的晶体结构的微空腔中(通道);③以Cu^2+的形式存在于坡缕石晶体结构中的硅氧四面体六元环的底部或八面体位。  相似文献   

9.
川西微晶白云母的X射线粉晶衍射分析   总被引:10,自引:0,他引:10  
邓苗  汪灵  林金辉 《矿物学报》2006,26(2):131-136
川西微晶白云母是一种新型的非金属矿物资源,采用X射线粉晶衍射分析对川西微晶白云母的进行了深入研究,发现该矿床存在白云母-多硅白云母矿物组合。该矿物组合中的微晶白云母和多硅白云母结晶度高,多型为2M1,其含量分别为80%和20%左右;二者都属二八面体型白云母类矿物,但d060和b值偏大,微晶白云母的d060=0.1502 nm,b=0.9012 nm,多硅白云母的d060=0.1505 nm,b=0.9030 nm;微晶白云母矿铝含量较低、铁镁含量较高,其原因是白云母晶体铝氧八面体中的Al离子被Fe、Mg等离子所取代,这一矿物组合是通过矿物类质同象作用所形成一种多硅白云母系列矿物。  相似文献   

10.
闪锌矿中的Cd主要类质同象置换Fe而不是Zn   总被引:5,自引:1,他引:4  
闪锌矿是自然界广泛分布的金属矿物,经常含微量的Fe、Cd等杂质元素,并认为Cd和Fe以类质同象方式取代了Zn。但是作者注意到,闪锌矿中的Cd与Zn基本都呈正相关关系,而与Fe呈很好的负相关关系。依照类质同象的定义,类质同象替换的二个元素应该呈负相关关系。因此,我们认为闪锌矿中的Cd主要不是类质同象替换Zn,而是取代了Fe。闪锌矿中的铁主要是Fe2+。Fe2+与Cd2+地球化学性质相似,FeS与CdS的键长和晶格能相近,因此,Cd完全可以类质同象置换闪锌矿中的Fe2+。  相似文献   

11.
RS和GIS技术集成及其应用   总被引:13,自引:3,他引:10  
本文简要地介绍了RS(遥感图像处理系统)和GIS(地理信息系统)技术及其集成的基本概念和方法。讨论了RS和GIS技术及其集成的内在涵义、相互关系,认为RS是GIS重要的外部信息源,是其数据更新的重要手段,尤其对于全球性的 地理动力学分析,更必须有RS所提供的覆盖全球的动态数据与GIS的结合。反之,GIS则可以提供RS所需要的一些辅助数据,以提高RS图像的信息量和分辨率,同时,GIS可以将实地调查所  相似文献   

12.
在分析和总结前人对红藻石和蓝藻石研究成果基础上,结合岩石薄片显微镜下观察实例,发现在以往碳酸盐岩颗粒分类中没有红藻石和蓝藻石的合适位置。鉴于红藻石重要的成因意义和造礁作用,有必要明确红藻石的概念和归属。珊瑚藻本身极易钙化,经生物矿化作用最终保存下来的珊瑚藻屑一直放在生物碎屑中,而红藻石是由非固着的珊瑚藻构成的钙质独立结核,因此也可以被划分到生物碎屑中。蓝藻石作为蓝细菌钙化作用的产物,同时鉴于蓝藻石的广泛存在,把钙化蓝细菌形成的核形石命名为蓝藻石,这一重要概念从提出到现在一直被使用。然而蓝绿藻概念已变更为蓝细菌,蓝藻石的形成与藻类无关,显然将其称作蓝菌石更加确切。因此,应将红藻石和蓝藻石分别归为生物碎屑和核形石当中,并用新的术语蓝菌石替代蓝藻石。其意义在于使红藻石和蓝藻石的概念及归属更为规范,并为碳酸盐岩颗粒的深入研究提供有益线索。  相似文献   

13.
赵振华  严爽 《岩石学报》2019,35(1):31-68
单颗粒矿物微量元素激光原位定量分析测试数据的大量积累和研究,使矿物成为矿床地球化学研究和矿床勘查的重要示踪剂。本文重点选择磁铁矿、磷灰石、石榴子石、榍石、锆石、绿泥石和绿帘石等的原位分析研究所获得的认识,介绍单颗粒矿物成分组合及变化在矿床类型划分、成矿年龄测定、氧逸度、成矿过程与物质来源、找矿与勘探等方面的应用。不同矿床类型中普遍存在的矿物,如磁铁矿、磷灰石等的微量元素含量及组合差异,提供了矿床类型识别的标志。单颗粒矿物,特别是矿石矿物和密切共生矿物如锡石、铌钽铁矿、赤铁矿、石榴子石、方解石等的原位定年,使成矿年龄的直接准确测定成为现实。矿物中变价元素,如Fe、V、Mn、Ce、Eu含量和/或比值的变化,指示了成矿过程氧逸度及其变化特点。从矿物核部向震荡环带与边部的微量元素含量或同位素组成的变化,示踪了成矿过程中流体来源或性质的变化。斑岩和矽卡岩矿床中与成矿作用关系密切的蚀变矿物,如绿泥石、绿帘石的形成温度、特征微量元素比值,如Ti/Sr、Ti/Co、V/Ni、Mg/Sr等,与距矿床中心距离呈线性函数关系,可定量预测距矿床中心的距离,使以绿泥石、绿帘石为代表的找矿指示矿物研究迅速发展。  相似文献   

14.
为解决5000 m地质岩芯钻探基础准则与依据缺失问题,提高钻探装备的自动化、智能化水平,启动了5000 m智能地质钻探技术装备研发工作,通过钻机装备、钻探器具研制,钻探工艺技术研究并经试验示范验证,取得多项创新成果,形成了5000 m地质岩芯钻探技术体系。通过特深孔钻孔口径与管柱规格优化研究、钻杆规格设计、装备性能参数选配,形成了5000 m地质岩芯钻探技术规范体系;基于5000 m特深孔地质岩芯钻机、孔口自动化作业装置等关键设备研制,实现了绳索取芯钻进的孔口作业全流程自动化,形成了轻量化钻机孔口管柱柔顺控制技术;基于复杂地层孔内工况判别、钻进参数优化与轨迹优化控制等技术问题研究,形成了多源信息融合的地面与孔底一体化钻进过程智能控制技术;基于高性能薄壁绳索取芯钻杆和系列小口径高效钻具研制,形成了大深度绳索取芯系列钻杆钻具技术;研发了耐高温环保型冲洗液、生物破胶废浆处理技术、“广谱型”双浆堵漏技术,形成了绿色环保型冲洗液体系与护壁堵漏技术。  相似文献   

15.
自动化智能化地质岩芯钻探技术装备研发与应用   总被引:1,自引:0,他引:1       下载免费PDF全文
张金昌  尹浩  刘凡柏  黄洪波  梁健  王瑜  吴敏  陶士先 《地质论评》2022,68(2):2022030029-2022030029
为解决5000 m地质岩芯钻探基础准则与依据缺失问题,提高钻探装备的自动化、智能化水平,启动了5000 m智能地质钻探技术装备研发工作,通过钻机装备、钻探器具研制,钻探工艺技术研究并经试验示范验证,取得多项创新成果,形成了5000 m地质岩芯钻探技术体系。通过特深孔钻孔口径与管柱规格优化研究、钻杆规格设计、装备性能参数选配,形成了5000 m地质岩芯钻探技术规范体系;基于5000 m特深孔地质岩芯钻机、孔口自动化作业装置等关键设备研制,实现了绳索取芯钻进的孔口作业全流程自动化,形成了轻量化钻机孔口管柱柔顺控制技术;基于复杂地层孔内工况判别、钻进参数优化与轨迹优化控制等技术问题研究,形成了多源信息融合的地面与孔底一体化钻进过程智能控制技术;基于高性能薄壁绳索取芯钻杆和系列小口径高效钻具研制,形成了大深度绳索取芯系列钻杆钻具技术;研发了耐高温环保型冲洗液、生物破胶废浆处理技术、“广谱型”双浆堵漏技术,形成了绿色环保型冲洗液体系与护壁堵漏技术。  相似文献   

16.
宋兵  蔡健 《岩土力学》2011,32(8):2313-2318
研究桩与岩石的侧摩阻力组成及影响因素,有助于准确地把握桩与岩石的侧摩阻力取值原则。在对桩与岩层的摩擦黏着机制分析的基础上,指出界面力与岩层抗剪力的区别,并提出岩层的极限侧摩阻力由界面强度及岩石强度两者较弱一方决定的观点。进行了中风化岩中4组混凝土短桩的抗压及抗拔极限摩阻力对比试验,获得了相应的极限侧摩阻力值以及抗拔与抗压极限侧摩阻力值的比值。抗拔时由于上部岩层对桩侧岩层的约束作用较弱,会使侧摩阻力相对抗压时有较大降低。通过有限元计算及其与试验值的比较分析,研究短桩与岩层的界面强度条件,发现岩层和混凝土灌注桩间的侧摩阻力中界面黏着力占很大比例。  相似文献   

17.
再论流体势及其与圈闭和油气藏关系   总被引:1,自引:0,他引:1  
在Hubbert(1953)关于流体势和圈闭的经典论文基础上,从流体势计算的基本原理出发,论证了气势与水势、油势计算表达式的具体形式是不同的,如等地温梯度的静水压力场中理想气体的势包含压力的对数函数与线性函数之和,而不只是包含压力的线性函数.表述了同一求势面所对应的测势面对于不同流体是不同的;指出了圈闭的溢出点通常是等势面与非渗透层面交线的切点;应用简洁的数学分析方法,推导了地下水三维流动情形下油(气)等势面某点切平面坡度与水头、渗滤速度关系的表达式,其中坡度绝对值与渗滤速度关系的表达式为:tanθ=√v2x v2y/|vf vz|,其中vf=K[ρw-p(p)]g/μ,式中:θ为切平面的倾角;vx、vy和vz分别为沿坐标轴ox、oy和oz方向的渗滤速度分量;K和μ分别为渗透率和水的动力黏度;ρw、ρ(p)分别为水和油(气)的密度.根据这些基础性的分析,对被广泛引用的Levorsen(1954)的背斜-水动力复合油藏中水头与油水界面产状的关系示意图进行了两点修改:将油水界面改为曲面、将油水界面处油藏的测势面改为高于油水界面处水的测势面的水平面;对向斜部位聚集油气的水动力条件进行了讨论,认为只有两(各)翼水流都向下流动且水流强度中等条件下才能在向斜部位聚集油气.  相似文献   

18.
Cumulate and Cumulative Granites and Associated Rocks   总被引:1,自引:0,他引:1  
Abstract. Processes that move crystals relative to melt, that is crystal fractionation, are of major importance in producing variations that are observed within cogenetic suites of granites. In low‐temperature granite suites, crystal fractionation initially involves the progressive separation of crystals residual from partial melting from that partial melt. Once separation of those crystals, or restite, has been completed, further fractionation may occur through the separation of crystals that had precipitated from the melt, the process known as fractional crystallization. High‐temperature granite magmas are largely or completely molten and elements such as Ca, Mg and Fe, and their associated minor elements, are in that case dissolved in the melt. Such magmas, particularly those that are more potassic and hence contain a higher fraction of low temperature melt, may evolve compositionally through fractional crystallization. Cumulate rocks result, comprising a framework of cumulus minerals with interstitial melt. In this process some of the melt is also displaced to form more felsic rocks. Such cumulate rocks may have distinctive chemical compositions, but that is often not the case. Distinctive features include SiC>2 contents near or below 50 % in rocks that are transitional in the field to more felsic granites, very high Cr and Ni, very low K, P, Ba, Rb and Zr, and anomalous abundances of the anorthite components Ca and Al. These rocks may also have positive Eu anomalies. Cumulate rocks do not necessarily have distinctive textures, at least as such features are understood at this time. Fractional crystallization can also involve the movement of precipitated crystals relative to melt. We refer to rocks as cumulative when formed from the fractions in which the abundance of crystals has increased. The production of cumulative granites typically occurs at more felsic melt compositions than is the case for cumulate granites, and this process may have its greatest significance in the fractional crystallization of the felsic haplogranites. Relative to felsic granites of broadly similar compositions lying on a liquid line of descent, cumulative granites contain more Ca, reflecting the addition from elsewhere of plagioclase crystals with solidus compositions. The abundances of Sr and Ba may be high to very high, and sometimes there are positive Eu anomalies. Cumulative I‐type granites may have low abundances of Y and the heavy REE, while the S‐type granites can be very distinctive with anomalously high abundances of Th and the heavy REE resulting from the concentrating of monazite. Generally, but not always, those who propose fractional crystallization as a mechanism for producing compositional variation within a suite of granites do not state whether the rocks in that particular case are thought to lie on a liquid line of descent or are cumulates/cumulative, although it is generally presumed that they were melts. Our experiences in eastern Australia have shown that the mechanism of fractional crystallization was quantitatively not as important during granite evolution as many workers would expect. However, there are some excellent examples of that process, most notably the Boggy Plain Supersuite. Overall in eastern Australia, varying degrees of separation of restite is a much more common mode of crystal fractionation, and that may also be seen to be the case for some other granite provinces if they are examined with that possibility in mind.  相似文献   

19.
中国东部在晚中生代时(晚侏罗世-旱白垩世)有广泛的中酸性岩浆活动,按照花岗岩的地球化学特征,大致可以划分为东北、华北和华南3个岩区。本文研究表明,按照Sr和Yb的含量,大致可以将花岗岩分为5类.即:高Sr低Yb型(Sr〉400μg/g,Yb〈2μg/g)、低Sr低Yb(Sr〈400μg/g,Yb〈2μ/g)、低Sr高Yb(Sr〈400μg/g,Yb〉2μg/g)、高Sr高Yb型(Sr〉400μg/g,Yb〉2μg/g)以及非常低Sr高Yb型(Sr〈100μg/g,Yb=2—18μg/g)花岗岩。东北和华南以发育低Sr高Yb花岗岩为主,有少量高Sr低Yb和非常低Sr高Yb类型的花岗岩分布;而华北则以高Sr低Yb型花岗岩(埃达克岩)最发育,低Sr高Yb、低Sr低Yb型和非常低Sr高Yb型花岗岩有少量分布。本文着重探讨了华北和华南花岗岩的特征,认为华北和华南花岗岩地球化学的区别可能主要与花岗岩源区成分和深度有关,且主要受源区深度的控制。如果花岗岩熔融的源区残留相由榴辉岩组成(石榴石+辉石+金红石+/一角闪石),则花岗岩明显亏损HREE、Nb、Ta和Ti,而富集Sr和Al,无明显的负铕异常,属于高Sr低Yb(埃达克岩)类型;如果源区深度浅,由斜长角闪岩或麻粒岩组成(斜长石+辉石+角闪石),则花岗岩相对贫Sr富Yb。作者认为,华北和华南花岗岩地球化学特征上的上述差异,表明在晚中生代时(晚侏罗世.早白垩世)。华北和华南的地壳厚度不同:华北较厚,华南较薄;华北经历了下地壳拆沉而华南无;华北和华南的下地壳成分不同,华北较基性的下地壳拆沉后,留下的地壳平均成分与华南比偏中性。  相似文献   

20.
Etch and intracutaneous landforms and their implications   总被引:1,自引:0,他引:1  

Many landforms, major and minor, and including plains of various types, inselbergs, boulders, flared slopes, Rillen and rock basins, are initiated beneath the land surface, at the weathering front. They have evolved in various lithological settings. Most are formed by differential moisture attack, either controlled, or strongly influenced, by bedrock structure. Such forms of subsurface derivation may be differentiated into etch or subcutaneous features that were initiated at the base of the regolith, and intracutaneous forms that had their origin within the weathering zone. Although the agent or agents responsible for eroding the regolith and exposing the bedrock forms have varied in space and time, the similarity of etch and intracutaneous forms is such that their basic morphology persists regardless of the climatic regime in which they now occur. As the regolith is widely developed on the land surface, the forms initiated beneath and within it cannot be taken as climatic indicators. Indeed, like structural forms, these convergent forms represent a varied but significant azonal element in the physiographic landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号