首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A unique dataset from paired low- and high-temperature vents at 9°50′N East Pacific Rise provides insight into the microbiological activity in low-temperature diffuse fluids. The stable carbon isotopic composition of CH4 and CO2 in 9°50′N hydrothermal fluids indicates microbial methane production, perhaps coupled with microbial methane consumption. Diffuse fluids are depleted in 13C by ∼10‰ in values of δ13C of CH4, and by ∼0.55‰ in values of δ13C of CO2, relative to the values of the high-temperature source fluid (δ13C of CH4 =−20.1 ± 1.2‰, δ13C of CO2 =−4.08 ± 0.15‰). Mixing of seawater or thermogenic sources cannot account for the depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature vents. The substrate utilization and 13C fractionation associated with the microbiological processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and CO2 concentrations and carbon isotopic compositions. A mass-isotope numerical box model of these paired vent systems is consistent with the hypothesis that microbial methane cycling is active at diffuse vents at 9°50′N. The detectable 13C modification of fluid geochemistry by microbial metabolisms may provide a useful tool for detecting active methanogenesis.  相似文献   

2.
The Western Slope of the Songliao Basin is rich in heavy oil resources (>70 × 108 bbl), around which there are shallow gas reservoirs (∼1.0 × 1012 m3). The gas is dominated by methane with a dryness over 0.99, and the non-hydrocarbon component being overwelmingly nitrogen. Carbon isotope composition of methane and its homologs is depleted in 13C, with δ13C1 values being in the range of −55‰ to −75‰, δ13C2 being in the range of −40‰ to −53‰ and δ13C3 being in the range of −30‰ to −42‰, respectively. These values differ significantly from those solution gases source in the Daqing oilfield. This study concludes that heavy oils along the Western Slope were derived from mature source rocks in the Qijia-Gulong Depression, that were biodegraded. The low reservoir temperature (30–50 °C) and low salinity of formation water with neutral to alkaline pH (NaHCO3) appeared ideal for microbial activity and thus biodegradation. Natural gas along the Western Slope appears mainly to have originated from biodegradation and the formation of heavy oil. This origin is suggested by the heavy δ13C of CO2 (−18.78‰ to 0.95‰) which suggests that the methane was produced via fermentation as the terminal decomposition stage of the oil.  相似文献   

3.
In this study, the geochemistry and origin of natural gas and formation waters in Devonian age organic-rich shales and reservoir sandstones across the northern Appalachian Basin margin (western New York, eastern Ohio, northwestern Pennsylvania, and eastern Kentucky) were investigated. Additional samples were collected from Mississippian Berea Sandstone, Silurian Medina Sandstone and Ordovician Trenton/Black River Group oil and gas wells for comparison. Dissolved gases in shallow groundwaters in Devonian organic-rich shales along Lake Erie contain detectable CH4 (0.01–50.55 mol%) with low δ13C–CH4 values (−74.68 to −57.86‰) and no higher chain hydrocarbons, characteristics typical of microbial gas. Nevertheless, these groundwaters have only moderate alkalinity (1.14–8.72 meq/kg) and relatively low δ13C values of dissolved inorganic C (DIC) (−24.8 to −0.6‰), suggesting that microbial methanogenesis is limited. The majority of natural gases in Devonian organic-rich shales and sandstones at depth (>168 m) in the northern Appalachian Basin have a low CH4 to ethane and propane ratios (3–35 mol%; C1/C2 + C3) and high δ13C and δD values of CH4 (−53.35 to −40.24‰, and −315.0 to −174.6‰, respectively), which increase in depth, reservoir age and thermal maturity; the molecular and isotopic signature of these gases show that CH4 was generated via thermogenic processes. Despite this, the geochemistry of co-produced brines shows evidence for microbial activity. High δ13C values of DIC (>+10‰), slightly elevated alkalinity (up to 12.01 meq/kg) and low SO4 values (<1 mmole/L) in select Devonian organic-rich shale and sandstone formation water samples suggest the presence of methanogenesis, while low δ13C–DIC values (<−22‰) and relatively high SO4 concentrations (up to 12.31 mmole/L) in many brine samples point to SO4 reduction, which likely limits microbial CH4 generation in the Appalachian Basin. Together the formation water and gas results suggest that the vast majority of CH4 in the Devonian organic-rich shales and sandstones across the northern Appalachian Basin margin is thermogenic in origin. Small accumulations of microbial CH4 are present at shallow depths along Lake Erie and in western NY.  相似文献   

4.
The presence of modern methane seeps at Hydrate Ridge, offshore Oregon, provide an opportunity to study the influence of methane seeps on the ecology and geochemistry of living foraminifera. A series of cores were collected from the southern summit of Hydrate Ridge in 2002. Samples were preserved and stained to determine the δ13C composition of three species of live (stained) and dead benthic foraminifera: Uvigerina peregrina, Cibicidoides mckannai, and Globobulimina auriculata. Specimens were examined under light and Scanning Electron Microscopy (SEM) and exhibit no evidence of diagenesis or authigenic carbonate precipitation. Individual living foraminifera from seep sites recorded δ13C values from −0.4‰ to −21.2‰, indicating the isotopic influence of high methane concentrations. Average δ13C values (calculated from single specimens) range from −1.28 to −5.64‰ at seep sites, and −0.81 to −0.85‰ at a control (off seep) site.Two distinct seep environments, distinguished by the presence of microbial mats or clam fields, were studied to determine environmental influences on δ13C values. Individual foraminifera from microbial mat sites exhibited more depleted δ13C values than those from clam field sites. We interpret these differences as an effect of food source and/or symbiotic microbes on foraminiferal carbon isotopic values, acting to magnify the negative δ13C values recorded via the DIC pool. No statistical difference was found between δ13C values of live vs. dead specimens. This suggests that authigenic carbonate precipitation did not play a dominant role in the observed isotopic compositions. However, a few dead specimens with extremely negative δ13C composition (<-12‰) do indicate potential evidence for an authigenic influence on the recorded δ13C composition.  相似文献   

5.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

6.
Gas was sampled regionally, including by drilling into faults, in the South Kanto gas-field around Tokyo Bay, Japan. Gas samples were collected from cores in a gas sampling container immediately after drilling. A value of δ13C1 = −44.3‰ was obtained for gas in the container and δ13C1 = −36.3‰ for seeping gas in a fault zone. However, typical CH4 in this dissolved-in-water gas-field is mainly depleted in 13C, and δ13C1 values range from −66‰ to −68‰ owing to microbial degradation of organic material. 13C-rich CH4 is so far uncommon in the South Kanto gas-field. Seepages were observed from the surface along the north–south fault zone. The natural gas is stored below the sandstone layer by impermeable mudstone underlying the boundary at a depth of 30 m. Gas seepages were not observed below a depth of 40 m. Gas rises along the fault zone dissolved-in-groundwater up to the shallow region and then separates from the groundwater. 13C-rich CH4 (adsorbed CH4) was found to have desorbed from drilled mudstone core samples taken at depths of 1400–1900 m in the main gas-production strata. Similarly, 13C-rich CH4 was found in black shale overlying the oceanic crust forming part of a sedimentary accretionary prism underling the Tokyo region. It also appears in the spring-water of spa wells, originating at a depth of 1200–1500 m along a tectonic line. Methane generated by microbial degradation of organic material through CO2 reduction in the South Kanto gas-field mainly originates as biogenic gas mixed with a small amount of 13C-rich CH4, derived from thermogenic gas without oil components in strata. It is assumed that 12C-rich CH4 is easily detached from core or pore water through gas production, whereas 13C-rich CH4 is strongly adsorbed on the surfaces of particles. The 13C-rich CH4 rises along the major tectonic line or up the 50 m wide normal fault zone from relatively deep sources in the Kanto region.  相似文献   

7.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

8.
Vertical profiles of concentration and C-isotopic composition of dissolved methane and carbon dioxide were observed over 26 months in the catotelm of a deep (6.5 m) peat bog in Switzerland. The dissolved concentrations of these gases increase with depth while CO2 predominates over CH4 (CO2 ca. 5 times CH4). This pattern can be reproduced by a reaction-advection-ebullition model, where CO2 and CH4 are formed in a ratio of 1:1. The less soluble methane is preferentially lost via outgassing (bubbles). The isotopic fractionation between CO2 and CH4 also increases with depth, with αC values ranging from 1.045 to 1.075. The isotopic composition of the gases traces the passage of respiration-derived CO2 (from the near surface) through a shallow zone with methanogenesis of low isotopic fractionation (splitting of fermentation-derived acetate). This solution then moves through the catotelm, where methanogenesis occurs by CO2 reduction (large isotopic fractionation). In the upper part of the catotelm the C-13-depleted respiration-derived CO2 pool buffers the isotopic composition of CO2; the δ13C of CO2 increases only slowly. At the same time strongly depleted CH4 is formed as CO2 reduction consumes the depleted CO2. In the lower part of the catotelm, the respiration-derived CO2 and shallow CH4 become less important and CO2 reduction is the dominant source of CO2 and CH4. Now, the δ13C values of both gases increase until equilibrium is reached with respect to the isotopic composition of the substrate. Thus, the δ13C values of methane reach a minimum at intermediate depth, and the deep methane has δ13C values comparable to shallow methane. A simple mixing model for the isotopic evolution is suggested. Only minor changes of the observed patterns of methanogenesis (in terms of concentration and isotopic composition) occur over the seasons. The most pronounced of these is a slightly higher rate of acetate splitting in spring.  相似文献   

9.
Silica phytoliths, which are deposits of opal-A that precipitate in the intra- and intercellular spaces of plant tissues during transpiration, commonly contain small amounts of occluded organic matter. In this paper, we investigate whether the δ13C values of phytoliths from a C4 grass, Calamovilfa longifolia, vary in response to climatic variables that can affect the carbon-isotope composition of plant tissues. There is no significant correlation (r2 < 0.3) between climate variables and the δ13C values of C. longifolia tissues (average δ13Ctissue = −13.1 ± 0.6 ‰; n = 70) across the North American prairies. However, plant tissue δ13C values are lower for grasses collected in populated areas where the δ13C value of atmospheric CO2 is expected to be lower because of fossil fuel burning. Phytolith δ13C values are more variable (δ13C = −27.3 to −23.0‰; average = −25.1 ± 1.3‰; n = 34) and more sensitive to changes in aridity than whole tissue δ13C values. The strongest correlations are obtained between the δ13C values of stem or sheath phytoliths and humidity (r2 = 0.3), latitude (r2 = 0.4) and amount of precipitation (r2 = 0.5). However, use of these relationships is limited by the wide spread in δ13C values of phytoliths from different plant tissues at the same location. We have been unable to infer any relationship between δ13C values of phytoliths and expected variations in the δ13C values of atmospheric CO2. The C. longifolia phytoliths are depleted of 13C relative to tissue carbon by 10-14‰. This means that the phytoliths examined in this study have carbon isotopic compositions within the range reported previously for phytoliths from C3 plants. This observation may further limit the usefulness of soil-phytolith assemblage δ13C values for identifying shifts in grassland C3:C4 ratios.  相似文献   

10.
We evaluate the impact of exceptionally sparse plant cover (0-20%) and rainfall (2-114 mm/yr) on the stable carbon and oxygen composition of soil carbonate along elevation transects in what is among the driest places on the planet, the Atacama Desert in northern Chile. δ13C and δ18O values of carbonates from the Atacama are the highest of any desert in the world. δ13C (VPDB) values from soil carbonate range from −8.2‰ at the wettest sites to +7.9‰ at the driest. We measured plant composition and modeled respiration rates required to form these carbonate isotopic values using a modified version of the soil diffusion model of [Cerling (1984) Earth Planet. Sci. Lett.71, 229-240], in which we assumed an exponential form of the soil CO2 production function, and relatively shallow (20-30 cm) average production depths. Overall, we find that respiration rates are the main predictor of the δ13C value of soil carbonate in the Atacama, whereas the fraction C3 to C4 biomass at individual sites has a subordinate influence. The high average δ13C value (+4.1‰) of carbonate from the driest study sites indicates it formed—perhaps abiotically—in the presence of pure atmospheric CO218O (VPDB) values from soil carbonate range from −5.9‰ at the wettest sites to +7.3‰ at the driest and show much less regular variation with elevation change than δ13C values. δ18O values for soil carbonate predicted from local temperature and δ18O values of rainfall values suggest that extreme (>80% in some cases) soil dewatering by evaporation occurs at most sites prior to carbonate formation. The effects of evaporation compromise the use of δ18O values from ancient soil carbonate to reconstruct paleoelevation in such arid settings.  相似文献   

11.
Microorganisms are ubiquitous in deep subsurface environments, but their role in the global carbon cycle is not well-understood. The natural abundance δ13C and Δ14C values of microbial membrane phospholipid fatty acids (PLFAs) were measured and used to assess the carbon sources of bacteria in sedimentary and granitic groundwaters sampled from three boreholes in the vicinity of the Tono Uranium Mine, Gifu, Japan. Sample storage experiments were performed and drill waters analyzed to characterize potential sources of microbial contamination. The most abundant PLFA structures in all waters sampled were 16:0, 16:1ω7c, cy17:0, and 18:1ω7c. A PLFA biomarker for type II methanotrophs, 18:1ω8c, comprised 3% and 18% of total PLFAs in anoxic sedimentary and granitic waters, respectively, sampled from the KNA-6 borehole. The presence of this biomarker was unexpected given that type II methanotrophs are considered obligate aerobes. However, a bacterium that grows aerobically with CH4 as the sole energy source and which also produces 56% of its total PLFAs as 18:1ω8c was isolated from both waters, providing additional evidence for the presence of type II methanotrophs. The Δ14C values determined for type II methanotroph PLFAs in the sedimentary (−861‰) and granite (−867‰) waters were very similar to the Δ14C values of dissolved inorganic carbon (DIC) in each water (∼−850‰). This suggests that type II methanotrophs ultimately derive all their carbon from inorganic sources, whether directly from DIC and/or from CH4 produced by the reduction of DIC. In contrast, δ13C values of type II PLFAs in the sedimentary (−93‰) and granite (−60‰) waters indicate that these organisms use different carbon assimilation schemes in each environment despite very similar δ13CCH4 values (∼−95‰) for each water. The δ13CPLFA values (−28‰ to −45‰) of non-methanotrophic bacteria in the KNA-6 LTL water do not clearly distinguish between heterotrophic and autotrophic metabolisms, but Δ14CPLFA values indicate that >65% of total bacteria filtered from the KNA-6 LTL water are heterotrophs. Ancient Δ14C values (∼−1000‰) of some PLFAs suggest that many heterotrophs utilize ancient organic matter, perhaps from lignite seams within the sedimentary rocks. The more negative range of δ13CPLFA values determined for the KNA-6 granitic water (−42‰ to −66‰) are likely the result of a microbial ecosystem dominated by chemolithoautotrophy, perhaps fuelled by abiogenic H2. Results of sample storage experiments showed substantial shifts in microbial community composition and δ13CPLFA values (as much as 5‰) during 2-4 days of dark, refrigerated, aseptic storage. However, water samples collected and immediately filtered back in the lab from freshly drilled MSB-2 borehole appeared to maintain the same relative relationships between δ13CPLFA values for sedimentary and granitic host rocks as observed for samples directly filtered under artesian flow from the KNA-6 borehole of the Tono Uranium Mine.  相似文献   

12.
Around half of world’s endowment of in-place oil and bitumen experienced biodegradation, which is now believed to be largely an anaerobic methanogenic process. However, the distribution and scale of methanogenic biodegradation in the world’s petroleum accumulations and the significance of its terminal product, secondary microbial methane, in the global gas endowment and carbon cycle are largely unknown. Here, I present geological and geochemical criteria to recognize secondary microbial methane in conventional petroleum reservoirs. These include the presence of biodegraded oil (as pools, legs or shows) in the reservoir or down-dip, the relatively dry (methane dominated) gas containing methane with δ13C values between −55‰ and −35‰ and, most importantly, CO2 with δ13C > +2‰. Based on these criteria, the presence of secondary microbial methane is apparent in 22 basins, probable in 12 basins and possible in six basins worldwide. Reservoirs apparently containing secondary microbial methane are mostly Cenozoic and clastic and occur at depths of 37-1834 m below surface/mudline and temperatures of 12-71 °C. Using the current global endowment of in-place oil and bitumen and reasonable assumptions about conversion of oil into methane during biodegradation, I estimated that ∼65,500 tcf of secondary microbial methane could have been generated in existing worldwide accumulations of oil and bitumen through their geological history. From 1461-2760 tcf in-place (845-1644 tcf recoverable) of secondary microbial methane may be accumulated as free and oil-dissolved gas in petroleum reservoirs. I also updated the inventory of primary microbial methane and estimated that the global primary microbial gas endowment (free and oil-dissolved) is from 676-797 tcf in-place (407-589 tcf recoverable). Secondary microbial methane may account for ∼5-11% of the global conventional recoverable gas endowment and appears more abundant than primary microbial gas (∼3-4% of the global gas endowment). Most of the generated secondary microbial methane probably is aerobically and anaerobically oxidized to CO2 in the overburden above petroleum reservoirs. However, some secondary microbial methane may escape from shallow reservoirs into the atmosphere and affect present and past global climate.  相似文献   

13.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

14.
Diverse interpretations have been made of carbon isotope time series in speleothems, reflecting multiple potential controls. Here we study the dynamics of 13C and 12C cycling in a particularly well-constrained site to improve our understanding of processes affecting speleothem δ13C values. The small, tubular Grotta di Ernesto cave (NE Italy) hosts annually-laminated speleothem archives of climatic and environmental changes. Temperature, air pressure, pCO2, dissolved inorganic carbon (DIC) and their C isotopic compositions were monitored for up to five years in soil water and gas, cave dripwater and cave air. Mass-balance models were constructed for CO2 concentrations and tested against the carbon isotope data. Air advection forces winter pCO2 to drop in the cave air to ca. 500 ppm from a summer peak of ca. 1500 ppm, with a rate of air exchange between cave and free atmosphere of approximately 0.4 days. The process of cave ventilation forces degassing of CO2 from the dripwater, prior to any calcite precipitation onto the stalagmites. This phase of degassing causes kinetic isotope fractionation, i.e. 13C-enrichment of dripwater whose δ13CDIC values are already higher (by about 1‰) than those of soil water due to dissolution of the carbonate rock. A subsequent systematic shift to even higher δ13C values, from −11.5‰ in the cave drips to about −8‰ calculated for the solution film on top of stalagmites, is related to degassing on the stalagmite top and equilibration with the cave air. Mass-balance modelling of C fluxes reveals that a very small percentage of isotopically depleted cave air CO2 evolves from the first phase of dripwater degassing, and shifts the winter cave air composition toward slightly more depleted values than those calculated for equilibrium. The systematic 13C-enrichment from the soil to the stalagmites at Grotta di Ernesto is independent of drip rate, and forced by the difference in pCO2 between cave water and cave air. This implies that speleothem δ13C values may not be simply interpreted either in terms of hydrology or soil processes.  相似文献   

15.
In the Czech-German border region of the Vogtland and NW Bohemia (western Eger rift, Central Europe), chemical and isotopic compositions (C, N, He, Ar) of free gas from a thermal water escape (fluorite mine, Schönbrunn), two mineral springs (“Eisenquelle,” Bad Brambach; “Sprudel III,” Bad Elster) and a mofette (Bublak) located along an ∼40-km long traverse are reported. The gases of Bublak and Bad Brambach are CO2-rich (>99 vol.%) and have δ13C values of −1.95 and −4.29‰, respectively. With distance from the center of CO2 degassing (Bublak) the δ13C values decrease, most likely due to physico-chemical fractionation of CO2 between gaseous and aqueous phases rather than to admixture of organic/biogenic CO2. The δ15N values range between −3.2 and −0.6‰, compared to an upper mantle value of −4.0 ± 1.0‰. The four locations are characterized by 3He/4He ratios decreasing from 5.9 Ra in the center (Bublak) to 0.8 Ra in the periphery (Schönbrunn) and give evidence for mixing of He from a deep-seated magmatic source with a crustal source. The location with the highest 3He/4He ratio (5.9 Ra) is accompanied by the highest 40Ar/36Ar (550). We argue that the nitrogen of the Bublak mofette gas is a mixture of predominantly atmospheric and mantle-derived components, whereas at the other three locations crustal nitrogen may also be present. The Bublak δ15N value of ≈−4.5 ± 1.0‰ represents the first free gas δ15N reference from the European subcontinental mantle (ESCM) and indicates that, in contrast to the 3He/4He ratios, the δ15N values are equal for ESCM and MORB, respectively.  相似文献   

16.
The Martian meteorite ALH84001 contains ∼1% by weight of carbonate formed by secondary processes on the Martian surface or in the shallow subsurface. The major form of this carbonate is chemically and isotopically zoned rosettes which have been well documented elsewhere. This study concentrates upon carbonate regions ∼200 μm across which possess previously unobserved magnesium rich inner cores, interpreted here as rosette fragments, surrounded by a later stage cement containing rare Ca-rich carbonates (up to Ca81Mg07Fe04Mn07) intimately associated with feldspar. High spatial resolution ion probe analyses of Ca-rich carbonate surrounding rosette fragments have δ18OV-SMOW values as low as −10. These values are not compatible with deposition from a global Martian atmosphere invoked to explain ALH84001 rosettes. The range of δ18O values are also incompatible with a fluid that has equilibrated with the Martian crust at high temperature or from remobilisation of carbonate of rosette isotopic composition. At Martian atmospheric temperatures, the small CO2(gas)-CO2(ice) fractionation makes meteoric CO2 an unlikely source for −10 carbonates. In contrast, closed system Rayleigh fractionation of H2O can generate δ18OH2O −30, as observed at high latitudes on Earth. We suggest that atmospheric transport and precipitation of H2O in a similar fashion to that on Earth provides a source of suitably 18O depleted water for generation of carbonate with δ18OV-SMOW = −10.  相似文献   

17.
Pollen grains from grasses using the C3 and C4 photosynthetic pathways have distinct ranges of δ13C values that may be used to estimate their relative abundance in paleorecords. We evaluated a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer (SWiM-IRMS) for δ13C analysis of individual grass-pollen grains. Pollen from four C3 and four C4 grass species was isolated through micromanipulation and analyzed as single grains suspended in water. A carbon yield greater than the 2σ range of the carbon content of blanks containing only water was used to distinguish samples containing pollen (“pollen present”) from those not containing pollen. This criterion resulted in the exclusion of ∼45% of the 946 samples applied to the wire. The average δ13C values (±1σ) of the remaining samples were −26.9‰ (±6.3‰) and −11.5‰ (±9.6‰) for C3 grasses and C4 grasses, respectively, after blank-correcting the δ13C data. These results suggest that the SWiM-IRMS system can be used to distinguish C3 from C4 grass pollen. The high variability in measured δ13C values is likely caused by a combination of factors. These include natural isotopic variability among individual pollen grains; the relatively poor precision that can be obtained when determining δ13C values of such small samples; and the uncertainty in the magnitude, isotopic composition, and stability of the analytical blank. Nonetheless, high percentages of individual pollen grains were correctly classified as being of either C3 or C4 origin. On average, 90% (range = 78-100%) of pollen grains from C3 grasses had δ13C values more negative than the cutoff threshold of −19.2‰; while 84% (range = 77-90%) of pollen grains from C4 grasses had δ13C values more positive than −19.2‰. Compared with analysis using an elemental analyzer interfaced with an IRMS (EA-IRMS), the number of pollen grains required for δ13C-based evaluation of C3/C4 grass composition is many times lower with the SWiM-IRMS. Additionally, δ13C data from the SWiM-IRMS does not need to be incorporated into a mixing model to derive estimates of the abundance of C3 and C4 grass pollen. Carbon-isotopic analysis of individual grass-pollen grains using the SWiM-IRMS system may help improve our understanding of the evolutionary and ecological significance of grass taxa in the paleorecord.  相似文献   

18.
Methane and CO2 emissions from the two most active mud volcanoes in central Japan, Murono and Kamou (Tokamachi City, Niigata Basin), were measured in from both craters or vents (macro-seepage) and invisible exhalation from the soil (mini- and microseepage). Molecular and isotopic compositions of the released gases were also determined. Gas is thermogenic (δ13CCH4 from −32.9‰ to −36.2‰), likely associated with oil, and enrichments of 13C in CO2 (δ13CCO2 up to +28.3‰) and propane (δ13CC3H8 up to −8.6‰) suggest subsurface petroleum biodegradation. Gas source and post-genetic alteration processes did not change from 2004 to 2010. Methane flux ranged within the orders of magnitude of 101-104 g m−2 d−1 in macro-seeps, and up to 446 g m−2 d−1 from diffuse seepage. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. Total CH4 emission from Murono and Kamou were estimated to be at least 20 and 3.7 ton a−1, respectively, of which more than half was from invisible seepage surrounding the mud volcano vents. At the macro-seeps, CO2 fluxes were directly proportional to CH4 fluxes, and the volumetric ratios between CH4 flux and CO2 flux were similar to the compositional CH4/CO2 volume ratio. Macro-seep flux data, in addition to those of other 13 mud volcanoes, supported the hypothesis that molecular fractionation (increase of the “Bernard ratio” C1/(C2 + C3)) is inversely proportional to gas migration fluxes. The CH4 “emission factor” (total measured output divided by investigated seepage area) was similar to that derived in other mud volcanoes of the same size and activity. The updated global “emission-factor” data-set, now including 27 mud volcanoes from different countries, suggests that previous estimates of global CH4 emission from mud volcanoes may be significantly underestimated.  相似文献   

19.
Graphite in deep crustal enderbitic (orthopyroxene + garnet + plagioclase + quartz) granulites (740°C, 8.9 kb) of Nilgiri hills, southern India were investigated for their spectroscopic and isotopic characteristics. Four types of graphite crystals were identified. The first type (GrI), which is interstitial to other mineral grains, can be grouped into two subtypes, GrIA and GrIB. GrIA is either irregular in shape or deformed, and rough textured with average δ13C values of −12.7 ± 0.4‰ (n = 3). A later generation of interstitial graphite (GrIB) shows polygonal crystal shapes and highly reflecting smooth surface features. These graphite grains are more common and have δ13C values of −11.9 ± 0.3‰ (n = 14). Both subtypes show well-defined Raman shifts suggesting a highly crystalline nature. Cores of interstitial graphite grains have, on average, lower δ13C values by ∼0.5‰ compared to that of the rim. The second type of graphite (GrII) occurs as solid inclusions in silicate minerals, commonly forming regular hexagonal crystals with a slightly disordered structure. The third type of graphite (GrIII) is associated with solid inclusions (up to 100 μm) that have decrepitation halos of numerous small (<15 μm) satellite fluid inclusions of pure CO2 with varying density (1.105 to 0.75 g/cm3). The fourth type of graphite (GrIV) is found as daughter crystals within primary type CO2-fluid inclusions in garnet and quartz. These fluid inclusions have a range of densities (1.05 to 0.90 g/cm3), but in general are significantly less dense than graphite-free primary, pure CO2 fluid inclusions (1.12 g/cm3). Raman spectral characteristics of graphite inside fluid inclusions suggest graphite crystallization at low temperature (∼ 500°C). The precipitation of graphite probably occurred during the isobaric cooling of CO2-rich peak metamorphic fluid as a result of oxyexsolution of oxide phases. The oxyexsolution process is evidenced by the magnetite-ilmenite granular exsolution textures and the systematic presence of numerous micron-sized rutile and other oxide inclusions in association with fluid inclusions within garnet, plagioclase, and quartz.The carbon isotope compositions of coexisting CO2 (in fluid inclusions) and graphite show a fractionation (α2CO−gr) of ∼6‰ in garnet, consistent with the existing theoretical estimates of α2CO−gr at 800°C. A subsequent generation of CO2 inclusions trapped in matrix quartz and quartz segregation have higher δ13C values, −4‰ and −2.9‰ respectively. Graphite in quartz segregations also has higher δ13C values (−9.8‰) than those in enderbite (−12.7‰). Micro-graphite crystals included in garnet, quartz (enderbite), and quartz (segregation) have average δ13C values of −11.1, −10.4, and −8.7‰ respectively, indicating progressive enrichment in 13C with a decrease in temperature of recrystallization of respective minerals. This progressive enrichment is also observed in carbon isotope compositions of fluid inclusion CO2, suggesting isotopic equilibrium during graphite precipitation from CO2 fluids. Thus, the carbon isotope record preserved in these rocks by the interstitial graphite, CO2 fluid in enderbite, graphite microcrystals, graphite in quartz segregation, and CO2 fluid in quartz segregation, suggests a temperature-controlled isotopic evolution. This evolution is in accordance with a closed system Rayleigh-type graphite precipitation process which progressively enriched residual CO2 in 13C.  相似文献   

20.
In this study, compositions and δ13C and δ2H isotopic values of hydrocarbon gases from 5 mines in the Witwatersrand basin, South Africa, support the widespread occurrence of microbially produced methane in millions of years-old fissure waters. The presence of microbial methane is, to a large extent, controlled by the geologic formations in which the gases are found. Samples from the Witwatersand Supergroup have the largest microbial component based on δ13C and δ2H signatures and CH4/C2+ values. Based on mixing between a microbial CH4 component and a more 13C-enriched and 2H-depleted C2+-rich end member, conservative estimates of the % contribution of microbial CH4 to the gas samples range from >90% microbial CH4 at Beatrix, Masimong, and Merriespruit, to between 5 and 80% microbial CH4 at Evander, and <18% microbial CH4 at Kloof. The Witwatersrand basin’s history of thermal alteration of organic-rich ancient sedimentary units suggests a thermogenic origin for this 13C-enriched end member. Alternatively, the potential for an abiogenic origin similar to hydrocarbon gases produced by water-rock interaction at other Precambrian Shield mines is discussed. Microbial methane is predominantly found in paleo-meteoric fissure waters with δ18O and δ2H values that fall on the meteoric waterline, and have temperatures between 30 to 40°C. In contrast, fissure waters with a larger component of nonmicrobial hydrocarbon gases show a trend towards more enriched δ18O and δ2H values that fall well above the meteoric waterline, and temperatures of 45 to 60°C. The enrichment in 18O and 2H in these samples, and their high salinity, are similar to the isotopic and compositional characteristics of saline groundwaters and brines produced by water-rock interaction at Precambrian Shield sites elsewhere. The reported 100 Ma ages of fissure waters from the Witwatersrand and Ventersdorp formations suggest that these microbial hydrocarbon gases are the product of in situ methanogenic communities in the deep subsurface of the Witswaterand basin. Small subunit ribosomal RNA genes were amplified using archaeal-specific primer sets from DNA extracts derived from several of these waters. Fissure waters with a high proportion of microbial methane also contained sequences resembling those of known methanogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号