首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
This study was targeted at evaluating the performance of six Regional Climate Models (RCMs) used in Coordinated Regional Climate Downscaling Experiment (CORDEX). The evaluation is on the bases of how well the RCMs simulate the seasonal mean climatology, interannual variability and annual cycles of rainfall, maximum and minimum temperature over two catchments in western Ethiopia during the period 1990–2008. Observed data obtained from the Ethiopian National Meteorological Agency was used for performance evaluation of the RCMs outputs. All Regional Climate Models (RCMs) have simulated seasonal mean annual cycles of precipitation with a significant bias shown on individual models; however, the ensemble mean exhibited better the magnitude and seasonal rainfall. Despite the highest biases of RCMs in the wet season, the annual cycle showed the prominent features of precipitation in the two catchments. In many aspects, CRCM5 and RACMO22 T simulate rainfall over most stations better than the other models. The highest biases are associated with the highest error in simulating maximum and minimum temperature with the highest biases in high elevation areas. The rainfall interannual variability is less evident in Finchaa with short rainy season experiencing a larger degree of interannual variability. The differences in performance of the Regional Climate Models in the two catchments show that all the available models are not equally good for particular locations and topographies. In this regard, the right regional climate models have to be used for any climate change impact study for local-scale climate projections.  相似文献   

2.
This study presents the evaluation of simulations from two new Canadian regional climate models (RCMs), CanRCM4 and CRCM5, with a focus on the models’ skill in simulating daily precipitation indices and the Standardized Precipitation Index (SPI). The evaluation was carried out over the past two decades using several sets of gridded observations that partially cover North America. The new Canadian RCMs were also compared with four reanalysis products and six other RCMs. The different configurations of the Canadian RCM simulations also permit evaluation of the impact of different spatial resolutions, atmospheric drivers, and nudging conditions. The results from the new Canadian models show some improvement in precipitation characteristics over the previous Canadian RCM (CRCM4), but these differ with the seasons. For winter, CanRCM4 and CRCM5 have better skill than most other models over all of North America. For the summer, CRCM5 0.44° performs best over the United States, while CRCM4 has the best skill over Canada. Good skill is exhibited by CanRCM4 and CRCM4 in simulating the 6-month SPI over the Prairies and the western US Corn Belt. In general, differences are small between runs with or without large-scale spectral nudging; differences are small when different boundary conditions are used.  相似文献   

3.
The fifth-generation Canadian Regional Climate Model (CRCM5) was used to dynamically downscale two Coupled Global Climate Model (CGCM) simulations of the transient climate change for the period 1950–2100, over North America, following the CORDEX protocol. The CRCM5 was driven by data from the CanESM2 and MPI-ESM-LR CGCM simulations, based on the historical (1850–2005) and future (2006–2100) RCP4.5 radiative forcing scenario. The results show that the CRCM5 simulations reproduce relatively well the current-climate North American regional climatic features, such as the temperature and precipitation multiannual means, annual cycles and temporal variability at daily scale. A cold bias was noted during the winter season over western and southern portions of the continent. CRCM5-simulated precipitation accumulations at daily temporal scale are much more realistic when compared with its driving CGCM simulations, especially in summer when small-scale driven convective precipitation has a large contribution over land. The CRCM5 climate projections imply a general warming over the continent in the 21st century, especially over the northern regions in winter. The winter warming is mostly contributed by the lower percentiles of daily temperatures, implying a reduction in the frequency and intensity of cold waves. A precipitation decrease is projected over Central America and an increase over the rest of the continent. For the average precipitation change in summer however there is little consensus between the simulations. Some of these differences can be attributed to the uncertainties in CGCM-projected changes in the position and strength of the Pacific Ocean subtropical high pressure.  相似文献   

4.
This study presents a combined weighting scheme which contains five attributes that reflect accuracy of climate data, i.e. short-term (daily), mid-term (annual), and long-term (decadal) timescales, as well as spatial pattern, and extreme values, as simulated from Regional Climate Models (RCMs) with respect to observed and regional reanalysis products. Southern areas of Quebec and Ontario provinces in Canada are used for the study area. Three series of simulation from two different versions of the Canadian RCM (CRCM4.1.1, and CRCM4.2.3) are employed over 23?years from 1979 to 2001, driven by both NCEP and ERA40 global reanalysis products. One series of regional reanalysis dataset (i.e. NARR) over North America is also used as reference for comparison and validation purpose, as well as gridded historical observed daily data of precipitation and temperatures, both series have been beforehand interpolated on the CRCM 45-km grid resolution. Monthly weighting factors are calculated and then combined into four seasons to reflect seasonal variability of climate data accuracy. In addition, this study generates weight averaged references (WARs) with different weighting factors and ensemble size as new reference climate data set. The simulation results indicate that the NARR is in general superior to the CRCM simulated precipitation values, but the CRCM4.1.1 provides the highest weighting factors during the winter season. For minimum and maximum temperature, both the CRCM4.1.1 and the NARR products provide the highest weighting factors, respectively. The NARR provides more accurate short- and mid-term climate data, but the two versions of the CRCM provide more precise long-term data, spatial pattern and extreme events. Or study confirms also that the global reanalysis data (i.e. NCEP vs. ERA40) used as boundary conditions in the CRCM runs has non-negligible effects on the accuracy of CRCM simulated precipitation and temperature values. In addition, this study demonstrates that the proposed weighting factors reflect well all five attributes and the performances of weighted averaged references are better than that of the best single model. This study also found that the improvement of WARs’ performance is due to the reliability (accuracy) of RCMs rather than the ensemble size.  相似文献   

5.
Deming Zhao 《Climate Dynamics》2013,40(7-8):1767-1787
Regional climate models (RCMs) can provide much more precise information on surface characteristics and mesoscale circulation than general circulation models. This potential for obtaining more detailed model results has motivated to a significant focus on RCMs development in East Asia. The Regional Integrated Environment Modeling System, version 2.0 (RIEMS2.0) has been developed from an earlier RCM, RIEMS1.0, at the Key Laboratory of Regional Climate-Environment for East Asia and Nanjing University. To test the ability of RIEMS2.0 to simulate long-term climate and climate changes in East Asia and to provide a basis for further development and applications, we compare simulated precipitation from 1979 to 2008 (simulation duration from 1 January 1978 to 31 December 2008) to observed meteorological data. The results show that RIEMS2.0 reproduces the spatial distribution of precipitation in East Asia but that the simulation overestimates precipitation. The simulated 30-year precipitation average is 26 % greater than the observed precipitation. Simulated upper and root soil water correlate well with remote sensing derived soil moisture. Annual and interannual variation in the average precipitation and their anomalies are both well reproduced by the model. A further analysis of three subregions representing different latitude ranges shows that there is good correlation and consistency between the simulated results and the observed data. Annual variation, interannual variation of average precipitation, and the anomalies in the three sub-regions are also well captured by the model. The model’s performance on atmospheric circulation and moisture transport simulations is discussed to explore the bias between the simulation and observations. In summary, RIEMS2.0 shows stability and does well in both simulating long-term climate and climate changes in East Asia and in describing subregional characteristics.  相似文献   

6.
Following the CORDEX experimental protocol, climate simulations and climate-change projections for Africa were made with the new fifth-generation Canadian Regional Climate Model (CRCM5). The model was driven by two Global Climate Models (GCMs), one developed by the Max-Planck-Institut für Meteorologie and the other by the Canadian Centre for Climate Modelling and Analysis, for the period 1950–2100 under the RCP4.5 emission scenario. The performance of the CRCM5 simulations for current climate is discussed first and compared also with a reanalysis-driven CRCM5 simulation. It is shown that errors in lateral boundary conditions and sea-surface temperature from the GCMs have deleterious consequences on the skill of the CRCM5 at reproducing specific regional climate features such as the West African Monsoon and the annual cycle of precipitation. For other aspects of the African climate however the regional model is able to add value compared to the simulations of the driving GCMs. Climate-change projections for periods until the end of this century are also analysed. All models project a warming throughout the twenty-first century, although the details of the climate changes differ notably between model projections, especially for precipitation changes. It is shown that the climate changes projected by CRCM5 often differ noticeably from those of the driving GCMs.  相似文献   

7.
We evaluate the capacity of a regional climate model to simulate the statistics of extreme events, and also examine the effect of differing horizontal resolution, at the scale of individual hydrological basins in the topographically complex province of British Columbia, Canada. Two climate simulations of western Canada (WCan) were conducted with the Canadian Regional Climate Model (version 4) at 15 (CRCM15) and 45?km (CRCM45) horizontal resolution driven at the lateral boundaries by global reanalysis over the period 1973–1995. The simulations were evaluated with ANUSPLIN, a daily observational gridded surface temperature and precipitation product and with meteorological data recorded at 28 stations within the upper Peace, Nechako, and upper Columbia River basins. In this work, we focus largely on a comparison of the skill of each model configuration in simulating the 90th percentile of daily precipitation (PR90). The companion paper describes the results for a wider range of temperature and precipitation extremes over the entire WCan domain.

Over all three watersheds, both simulations exhibit cold biases compared with observations, with the bias exacerbated at higher resolution. Although both simulations generally display wet biases in median precipitation, CRCM15 features a reduced bias in PR90 in all three basins in summer and throughout the year in the upper Columbia River basin. However, the higher resolution model is inferior to CRCM45 with respect to rarer heavy precipitation events and also displays high spatial variability and lower spatial correlations with ANUSPLIN compared with the coarser resolution model. A reduction in the range of PR90 biases over the upper Columbia basin is noted when the 15?km results are averaged to the 45?km grid. This improvement is partly attributable to the averaging of errors between different elevation data used in the gridded observations and CRCM, but the sensitivity of CRCM15 to resolved topography is also clear from spatial maps of seasonal extremes. At the station scale, modest but systematic reductions in the bias of PR90 relative to ANUSPLIN are again found when the CRCM15 results are averaged to the 45?km grid. Furthermore, the annual cycle of inter-station spatial variance in the upper Columbia River basin is well reproduced by CRCM15 but not by ANUSPLIN or CRCM45. The former result highlights the beneficial effect of spatial averaging of small-scale climate variability, whereas the latter is evidently a demonstration of the added value at high resolution vis-à-vis the improved simulation of precipitation at the resolution limit of the model.  相似文献   

8.
The 2m temperature (T2m) and precipitation from five regional climate models (RCMs), which participated in the ENSEMBLES project and were integrated at a 25-km horizontal resolution, are compared with observed climatological data from 13 stations located in the Croatian coastal zone. The twentieth century climate was simulated by forcing RCMs with identical boundary conditions from the ERA-40 reanalysis and the ECHAM5/MPI-OM global climate model (GCM); climate change in the twenty-first century is based on the A1B scenario and assessed from the GCM-forced RCMs’ integrations. When forced by ERA-40, most RCMs exhibit cold bias in winter which contributes to an overestimation of the T2m annual cycle amplitude and the errors in interannual variability are in all RCMs smaller than those in the climatological mean. All models underestimate observed warming trends in the period 1951–2010. The largest precipitation biases coincide with locations/seasons with small observed amounts but large precipitation amounts near high orography are relatively well reproduced. When forced by the same GCM all RCMs exhibit a warming in the cold half-year and a cooling (or weak warming) in the warm period, implying a strong impact of GCM boundary forcing. The future eastern Adriatic climate is characterised by a warming, up to +5 °C towards the end of the twenty-first century; for precipitation, no clear signal is evident in the first half of the twenty-first century, but a reduction in precipitation during summer prevails in the second half. It is argued that land-sea contrast and complex coastal configuration of the Croatian coast, i.e. multitude of island and well indented coastline, have a major impact on small-scale variability. Orography plays important role only at small number of coastal locations. We hypothesise that the parameterisations related to land surface processes and soil hydrology have relatively stronger impact on variability than orography at those locations that include a relatively large fraction of land (most coastal stations), but affecting less strongly locations at the Adriatic islands.  相似文献   

9.
Regional climate modelling represents an appealing approach to projecting Great Lakes water supplies under a changing climate. In this study, we investigate the response of the Great Lakes Basin to increasing greenhouse gas and aerosols emissions using an ensemble of sixteen climate change simulations generated by three different Regional Climate Models (RCMs): CRCM4, HadRM3 and WRFG. Annual and monthly means of simulated hydro-meteorological variables that affect Great Lakes levels are first compared to observation-based estimates. The climate change signal is then assessed by computing differences between simulated future (2041–2070) and present (1971–1999) climates. Finally, an analysis of the annual minima and maxima of the Net Basin Supply (NBS), derived from the simulated NBS components, is conducted using Generalized Extreme Value distribution. Results reveal notable model differences in simulated water budget components throughout the year, especially for the lake evaporation component. These differences are reflected in the resulting NBS. Although uncertainties in observation-based estimates are quite large, our analysis indicates that all three RCMs tend to underestimate NBS in late summer and fall, which is related to biases in simulated runoff, lake evaporation, and over-lake precipitation. The climate change signal derived from the total ensemble mean indicates no change in future mean annual NBS. However, our analysis suggests an amplification of the NBS annual cycle and an intensification of the annual NBS minima in future climate. This emphasizes the need for an adaptive management of water to minimize potential negative implications associated with more severe and frequent NBS minima.  相似文献   

10.
The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971–2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071–2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.  相似文献   

11.
Precipitation episodes in the form of freezing rain and ice pellets represent natural hazards affecting eastern Canada during the cold season. These types of precipitation mainly occur in the St. Lawrence River valley and the Atlantic provinces of Canada. This study aims to evaluate the ability of the fifth-generation Canadian Regional Climate Model (CRCM5), using a 0.11° horizontal grid mesh, to hindcast mixed precipitation when driven by reanalyses produced by the European Centre for Medium-range Weather Forecasts (ERA-Interim) for a 35-year period. In general, the CRCM5 simulation slightly overestimates the occurrence of freezing rain, but the geographical distribution is well reproduced. The duration of freezing rain events and accompanying surface winds in the Montréal region are reproduced by CRCM5. A case study is performed for an especially catastrophic freezing-rain event in January 1998; the model succeeds in simulating the intensity and duration of the episode, as well as the propitious meteorological environment. Overall, the model is also able to reproduce the climatology and a specific event of freezing rain and ice pellets.  相似文献   

12.
[Translated by the editorial staff] Simulating the precipitation regime of Northern Africa is challenging for regional climate models, particularly because of the strong spatial and temporal variability of rain events in the region. In this study we evaluate simulations conducted with two recent versions of regional climate models (RCM) developed in Canada: the CRCM5 and CanRCM4. Both are also used in the COordinated Regional Climate Downscaling EXperiment (CORDEX)-Africa. The assessment is based on the occurrence, duration, and intensity indices of daily precipitation in Maghreb during the fall and spring seasons from 1998 to 2008. We also examine the links between the North-Atlantic Oscillation (NAO) index, weather systems, and the precipitation regime over the region. During the rainy season (September to February), the CRCM5 reproduces the frequency and intensity of extreme precipitation adequately, as well as the occurrence of days with rain, while the CanRCM4 underestimates precipitation extremes. The study of links between weather systems and the precipitation regime shows that, along the Atlantic coast, precipitation (occurrence, intensity, and wet sequences) increases significantly with storm frequency in the fall. In winter, these links grow stronger going east, from the Atlantic coast to the Mediterranean coast. The negative phases of the NAO index are statistically associated with the increase in rain intensity, extremes, and accumulation along the Atlantic coast in the fall. However, the link weakens in winter over these regions and strengthens along the Mediterranean coast as the precipitation frequency rises during negative phases of the NAO. Both RCMs generally reproduce the links between the NAO and the precipitation regime well, regardless of location.  相似文献   

13.
We utilize a revised Thornthwaite climate classification system for model intercomparisons and to visualize future climate change. This classification system uses an improved moisture factor that accounts for both evapotranspiration and precipitation, a thermal index based on potential evapotranspiration, and even intervals between categories for ease of interpretation. The use of climate types is a robust way to assess a model’s ability to reproduce mutlivariate conditions. We compare output from multiple regional climate models (RCMs) participating in NARCCAP (North American Regional Climate Change Assessment Program) as well as their coarser driving general circulation models (GCMs). Overall, the RCM ensemble does a good job in reproducing the main features of U.S. climate types. The “added-value” gained by downscaling with RCMs is significant, particularly in topographic regions such as the west coast and Appalachian Mountains. Ensemble model output from the scenario simulations indicates a recession of cold climate zones across the eastern U.S. and northern tier of the country as well as in mountainous areas. Projections also indicate the development of a novel climate zone, the torrid climate, across southern portions of the country. In addition, the U.S. will become drier, particularly across the Midwest as the moisture boundary shifts eastward, and in the the Appalachian region. Climate types in the Pacific Northwest, however, will not change greatly. Finally, we demonstrate possible applications for the forecast climate types and associated output variables.  相似文献   

14.
The WAMME regional model intercomparison study   总被引:5,自引:3,他引:2  
Results from five regional climate models (RCMs) participating in the West African Monsoon Modeling and Evaluation (WAMME) initiative are analyzed. The RCMs were driven by boundary conditions from National Center for Environmental Prediction reanalysis II data sets and observed sea-surface temperatures (SST) over four May–October seasons, (2000 and 2003–2005). In addition, the simulations were repeated with two of the RCMs, except that lateral boundary conditions were derived from a continuous global climate model (GCM) simulation forced with observed SST data. RCM and GCM simulations of precipitation, surface air temperature and circulation are compared to each other and to observational evidence. Results demonstrate a range of RCM skill in representing the mean summer climate and the timing of monsoon onset. Four of the five models generate positive precipitation biases and all simulate negative surface air temperature biases over broad areas. RCM spatial patterns of June–September mean precipitation over the Sahel achieve spatial correlations with observational analyses of about 0.90, but within two areas south of 10°N the correlations average only about 0.44. The mean spatial correlation coefficient between RCM and observed surface air temperature over West Africa is 0.88. RCMs show a range of skill in simulating seasonal mean zonal wind and meridional moisture advection and two RCMs overestimate moisture convergence over West Africa. The 0.5° computing grid enables three RCMs to detect local minima related to high topography in seasonal mean meridional moisture advection. Sensitivity to lateral boundary conditions differs between the two RCMs for which this was assessed. The benefits of dynamic downscaling the GCM seasonal climate prediction are analyzed and discussed.  相似文献   

15.
Changes in climate are expected to lead to changes in the characteristics extreme rainfall frequency and intensity. In this study, we propose an integrated approach to explore potential changes in intensity-duration-frequency (IDF) relationships. The approach incorporates uncertainties due to both the short simulation periods of regional climate models (RCMs) and the differences in IDF curves derived from multiple RCMs in the North American Regional Climate Change Assessment Program (NARCCAP). The approach combines the likelihood of individual RCMs according to the goodness of fit between the extreme rainfall intensities from the RCMs’ historic runs and those from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) data set and Bayesian model averaging (BMA) to assess uncertainty in IDF predictions. We also partition overall uncertainties into within-model uncertainty and among-model uncertainty. Results illustrate that among-model uncertainty is the dominant source of the overall uncertainty in simulating extreme rainfall for multiple locations in the U.S., pointing to the difficulty of predicting future climate, especially extreme rainfall regimes. For all locations a more intense extreme rainfall occurs in future climate; however the rate of increase varies among locations.  相似文献   

16.
The projected climate change signals of a five-member high resolution ensemble, based on two global climate models (GCMs: ECHAM5 and CCCma3) and two regional climate models (RCMs: CLM and WRF) are analysed in this paper (Part II of a two part paper). In Part I the performance of the models for the control period are presented. The RCMs use a two nest procedure over Europe and Germany with a final spatial resolution of 7 km to downscale the GCM simulations for the present (1971–2000) and future A1B scenario (2021–2050) time periods. The ensemble was extended by earlier simulations with the RCM REMO (driven by ECHAM5, two realisations) at a slightly coarser resolution. The climate change signals are evaluated and tested for significance for mean values and the seasonal cycles of temperature and precipitation, as well as for the intensity distribution of precipitation and the numbers of dry days and dry periods. All GCMs project a significant warming over Europe on seasonal and annual scales and the projected warming of the GCMs is retained in both nests of the RCMs, however, with added small variations. The mean warming over Germany of all ensemble members for the fine nest is in the range of 0.8 and 1.3 K with an average of 1.1 K. For mean annual precipitation the climate change signal varies in the range of ?2 to 9 % over Germany within the ensemble. Changes in the number of wet days are projected in the range of ±4 % on the annual scale for the future time period. For the probability distribution of precipitation intensity, a decrease of lower intensities and an increase of moderate and higher intensities is projected by most ensemble members. For the mean values, the results indicate that the projected temperature change signal is caused mainly by the GCM and its initial condition (realisation), with little impact from the RCM. For precipitation, in addition, the RCM affects the climate change signal significantly.  相似文献   

17.
不同区域气候模式对中国地区温度和降水的长期模拟比较   总被引:19,自引:9,他引:19  
冯锦明  符淙斌 《大气科学》2007,31(5):805-814
利用亚洲区域模式比较计划RMIP第二阶段五个区域模式和一个变网格全球模式,对中国地区1988年12月~1998年11月十年模拟的平均温度和降水结果,分析比较了不同区域气候模式对中国地区温度和降水的模拟能力。研究结果表明:几乎所有模式都能模拟出中国地区多年平均温度和降水的基本空间分布形态,但模式模拟的温度普遍偏低,在大部分区域,大多数模式模拟的降水偏多,而且不同模式之间存在较大差别。模式能较好地反映出中国地区温度的年际变化,对夏季降水的年际变化模拟较差,对冬季模拟较好。  相似文献   

18.
Abstract

The impacts of climate change on surface air temperature (SAT) and winds in the Gulf of St. Lawrence (GSL) are investigated by performing simulations from 1970 to 2099 with the Canadian Regional Climate Model (CRCM), driven by a five-member ensemble. Three members are from Canadian Global Climate Model (CGCM3) simulations following scenario A1B from the Intergovernmental Panel on Climate Change (IPCC); one member is from the Community Climate System Model, version 3 (CCSM3) simulation, also following the A1B scenario; and one member is from the CCSM4 (version 4) simulation following the Representative Concentration Pathway (RCP8.5) scenario. Compared with North America Regional Reanalysis (NARR) data, it is shown that CRCM can reproduce the observed SAT spatial patterns; for example, both CRCM simulations and NARR data show a warm SAT tongue along the eastern Gulf; CRCM simulations also capture the dominant northwesterly winds in January and the southwesterly winds in July. In terms of future climate scenarios, the spatial patterns of SAT show plausible seasonal variations. In January, the warming is 3°–3.5°C in the northern Gulf and 2.5°–3°C near Cabot Strait during 2040–2069, whereas the warming is more uniform during 2070–2099, with SAT increases of 4°–5°C. In summer, the warming gradually decreases from the western side of the GSL to the eastern side because of the different heat capacities between land and water. Moreover, the January winds increase by 0.2–0.4?m?s?1 during 2040–2069, related to weakening stability in the atmospheric planetary boundary layer. However, during 2070–2099, the winds decrease by 0.2–0.4?m?s?1 over the western Gulf, reflecting the northeastward shift in northwest Atlantic storm tracks. In July, enhanced baroclinicity along the east coast of North America dominates the wind changes, with increases of 0.2–0.4?m?s?1. On average, the variance for the SAT changes is about 10% of the SAT increase, and the variance for projected wind changes is the same magnitude as the projected changes, suggesting uncertainty in the latter.  相似文献   

19.
The role of temperature in drought projections over North America   总被引:1,自引:0,他引:1  
The effects of future temperature and hence evapotranspiration increases on drought risk over North America, based on ten current (1970–1999) and ten corresponding future (2040–2069) Regional Climate Model (RCM) simulations from the North American Regional Climate Change Assessment Program, are presented in this study. The ten pairs of simulations considered in this study are based on six RCMs and four driving Atmosphere Ocean Coupled Global Climate Models. The effects of temperature and evapotranspiration on drought risks are assessed by comparing characteristics of drought events identified on the basis of Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspration Index (SPEI). The former index uses only precipitation, while the latter uses the difference (DIF) between precipitation and potential evapotranspiration (PET) as input variables. As short- and long-term droughts impact various sectors differently, multi-scale (ranging from 1- to 12-month) drought events are considered. The projected increase in mean temperature by more than 2 °C in the future period compared to the current period for most parts of North America results in large increases in PET and decreases in DIF for the future period, especially for low latitude regions of North America. These changes result in large increases in future drought risks for most parts of the USA and southern Canada. Though similar results are obtained with SPI, the projected increases in the drought characteristics such as severity and duration and the spatial extent of regions susceptible to drought risks in the future are considerably larger in the case of SPEI-based analysis. Both approaches suggest that long-term and extreme drought events are affected more by the future increases in temperature and PET than short-term and moderate drought events, particularly over the high drought risk regions of North America.  相似文献   

20.
Sea-ice cover over the Hudson Bay (HB) exhibits large variability in the freeze-up season normally starting in November. Its influence on the climate over eastern Canada has been studied with the Canadian Regional Climate Model (CRCM) in three steps. First, a 30-year continuous simulation from 1970 to 1999 was performed as a control run to evaluate the simulated climate variability over eastern Canada, in particularly variability associated with the North Atlantic oscillation (NAO). Then, 50 additional 1 month experiments were performed with modified sea-surface conditions prescribed over the HB. These integrations allowed us to quantify the contribution of HB sea-ice anomalies versus large scale NAO atmospheric variability (as defined by prescribed lateral boundary conditions) in inducing climate variability over eastern Canada. Results show that the NAO is the dominant factor controlling climate variability over eastern Canada. The contribution of HB sea-ice anomalies is significant only in the immediate coastal region. Under the influence of different phases of NAO, HB sea-ice anomalies do co-vary with temperature and precipitation anomalies downstream of the HB over eastern Canada. The ultimate cause of this co-variability is NAO variability which forces variability in both HB sea-ice cover as well as temperature/precipitation over eastern Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号