首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于地统计学的图像纹理在岩性分类中的应用   总被引:17,自引:3,他引:17  
纹理是遥感图像的重要特征,它揭示了图像中辐射亮度值空间变化的重要信息。本文运用地统计学中的对数变差函数计算图像纹理,并与图像的光谱信息结合,进行图像岩性分类,分析了不同大小窗口纹理信息对分类精度的影响。结果表明,运用地统计学原理进行图像分类,可大大提高图像的分类精度;采用较大窗口提取的纹理信息参与分类能使总体分类精度提高,但某些岩性类的分类精度有所下降,建议在实际应用中,根据具体情况选择窗口的大小。  相似文献   

2.
提出了利用主成分分析方法有效地复合纹理和结构信息,从Landsat7 ETM^*全色数据中直接提取区域尺度的城市建筑信息的新方法,并在此基础上评估了Landsat7 ETM^ 全色数据和SPOT全色数据在城市建筑信息提取上的相互替代性。  相似文献   

3.
This study was the first to use high-resolution IKONOS imagery to classify vegetation communities on sub-Antarctic Heard Island. We focused on the use of texture measures, in addition to standard multispectral information, to improve the classification of sub-Antarctic vegetation communities. Heard Island’s pristine and rapidly changing environment makes it a relevant and exciting location to study the regional effects of climate change. This study uses IKONOS imagery to provide automated, up-to-date, and non-invasive means to map vegetation as an important indicator for environmental change. Three classification techniques were compared: multispectral classification, texture based classification, and a combination of both. Texture features were calculated using the Grey Level Co-occurrence Matrix (GLCM). We investigated the effect of the texture window size on classification accuracy. The combined approach produced a higher accuracy than using multispectral bands alone. It was also found that the selection of GLCM texture features is critical. The highest accuracy (85%) was produced using all original spectral bands and three uncorrelated texture features. Incorporating texture improved classification accuracy by 6%.  相似文献   

4.
以内蒙古自治区伊金霍洛旗为研究区,利用Landsat TM影像,对干旱半干旱地区土地利用信息进行提取。在ENVI软件的支持下,分析了影像的光谱特征及NDVI,NDBI,NDWI特征变量,并运用灰度共生矩阵对影像进行纹理特征提取,得到熵纹理特征图像,确定各类地物的阈值,运用决策树分类法对影像进行分类。结果表明,结合光谱特征和纹理特征的决策树分类方法,提取干旱半干旱地区土地利用信息可行且准确性较高。  相似文献   

5.
针对高分辨率影像上日光温室的信息提取问题,该文提出了利用支持向量机、最近邻算法结合纹理特征在不同层上分别提取连片日光温室和独栋日光温室的方法。实验表明:纹理特征能提高分类精度,在大尺度的层上,分类精度提升幅度较大,但在小尺度的层上,分类精度提升幅度会比较小;并不是参与运算特征数越多,分类精度越高,多数情况下光谱+纹理组合的分类精度最高;提取连片日光温室的最优方案是支持向量机和光谱+形状+纹理(7像素×7像素),总精度为92.86%,Kappa系数为0.90,而提取独栋日光温室最优方案为SVM和光谱+纹理(11像素×11像素),总精度为88.39%,Kappa系数为0.86。  相似文献   

6.
 以胶州湾及周边海岸带为研究区,采用Landsat 7 ETM+数据,提出一种基于à trous小波变换的全色图像和多光谱图像融合改进算法。对全色图像和多光谱图像进行适当层数的小波分解,多光谱图像的低频部分采用全色图像和其低频分量的比来调制; 最高分解层外的其余分解层采用多光谱图像和全色图像在该层分解系数的加权和,加权系数由局部区域能量比来确定; 最高分解层则采用绝对值最大准则。实验表明,该方法得到的图像可提高空间分辨率,对多光谱图像的光谱信息扭曲也较小,为提高海岸带地物分类和信息提取精度奠定了基础。  相似文献   

7.
Forest cover plays a key role in climate change by influencing the carbon stocks, the hydrological cycle and the energy balance. Forest cover information can be determined from fine-resolution data, such as Landsat Enhanced Thematic Mapper Plus (ETM+). However, forest cover classification with fine-resolution data usually uses only one temporal data because successive data acquirement is difficult. It may achieve mis-classification result without involving vegetation growth information, because different vegetation types may have the similar spectral features in the fine-resolution data. To overcome these issues, a forest cover classification method using Landsat ETM+ data appending with time series Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data was proposed. The objective was to investigate the potential of temporal features extracted from coarse-resolution time series vegetation index data on improving the forest cover classification accuracy using fine-resolution remote sensing data. This method firstly fused Landsat ETM+ NDVI and MODIS NDVI data to obtain time series fine-resolution NDVI data, and then the temporal features were extracted from the fused NDVI data. Finally, temporal features combined with Landsat ETM+ spectral data was used to improve forest cover classification accuracy using supervised classifier. The study in North China region confirmed that time series NDVI features had significant effects on improving forest cover classification accuracy of fine resolution remote sensing data. The NDVI features extracted from time series fused NDVI data could improve the overall classification accuracy approximately 5% from 88.99% to 93.88% compared to only using single Landsat ETM+ data.  相似文献   

8.
提高TM图像的分类精度,是图像处理及应用领域中一个很重要的研究课题。本文在总结已有成果基础上,首先利用现有的统计分类技术,对待分类图像进行预分类,并检测出“不确定”像元。然后综合光谱、地理、土壤类型、早期判别结果、目视判读经验等各种知识和信息,充分发挥专家系统的推理判断能力,对“不确定”像元的类别作进一步判别,使得整幅图像的分类精度得到改善。并据此初步建立了一个土地利用的分类系统。试验证明,这种分类方法的精度比仅用单一多光谱信息的统计分类法(最大似然法)提高约8%。  相似文献   

9.
Mapping the surficial extent of oolitic iron ore deposits hosted in the Oligo–Miocene sedimentary rocks of the Ashumaysi Formation, western Saudi Arabia, was carried out using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data. Ore samples were collected from four various locations in the study area, and were studied in the laboratory using the GER 3700 Spectroradiometer (0.4–2.5 µm) and X-ray diffraction (XRD). Principal component analysis (PCA), minimum noise fraction (MNF), and minimum distance classification were used and assessed to map mineralization zones in the study area. Good correspondences were observed between the results obtained from the above mentioned techniques, spectral reflectance analyses, and XRD. The confusion matrix results revealed that mapping of iron ores using MNF is better and more accurate than using PCA. Good matching was also observed between the spectral reflectance curves of the collected samples and the corresponding pixels from Landsat 7 ETM+. The results demonstrated the usefulness of the image processing and interpretation of Landsat 7 ETM+ data for the detection and delineation iron ore deposits in arid and semi-arid areas.  相似文献   

10.
TerraSAR-X satellite acquires very high spatial resolution data with potential for detailed land cover mapping. A known problem with synthetic aperture radar (SAR) data is the lack of spectral information. Fusion of SAR and multispectral data provides opportunities for better image interpretation and information extraction. The aim of this study was to investigate the fusion between TerraSAR-X and Landsat ETM+ for protected area mapping using high pass filtering (HPF), principal component analysis with band substitution (PCA) and principal component with wavelet transform (WPCA). A total of thirteen land cover classes were identified for classification using a non-parametric C 4.5 decision tree classifier. Overall classification accuracies of 74.99%, 83.12% and 85.38% and kappa indices of 0.7220, 0.8100 and 0.8369 were obtained for HPF, PCA and WPCA fusion approaches respectively. These results indicate a high potential for a combined use of TerraSAR-X and Landsat ETM+ data for protected area mapping in Uganda.  相似文献   

11.
This study assesses the usefulness of Nigeriasat-1 satellite data for urban land cover analysis by comparing it with Landsat and SPOT data. The data-sets for Abuja were classified with pixel- and object-based methods. While the pixel-based method was classified with the spectral properties of the images, the object-based approach included an extra layer of land use cadastre data. The classification accuracy results for OBIA show that Landsat 7 ETM, Nigeriasat-1 SLIM and SPOT 5 HRG had overall accuracies of 92, 89 and 96%, respectively, while the classification accuracy for pixel-based classification were 88% for Landsat 7 ETM, 63% for Nigeriasat-1 SLIM and 89% for SPOT 5 HRG. The results indicate that given the right classification tools, the analysis of Nigeriasat-1 data can be compared with Landsat and SPOT data which are widely used for urban land use and land cover analysis.  相似文献   

12.
This study examined the appropriateness of radar speckle reduction for deriving texture measures for land cover/use classifications. Radarsat-2 C-band quad-polarised data were obtained for Washington, DC, USA. Polarisation signatures were extracted for multiple image components, classified with a maximum-likelihood decision rule and thematic accuracies determined. Initial classifications using original and despeckled scenes showed despeckled radar to have better overall thematic accuracies. However, when variance texture measures were extracted for several window sizes from the original and despeckled imagery and classified, the accuracy for the radar data was decreased when despeckled prior to texture extraction. The highest classification accuracy obtained for the extracted variance texture measure from the original radar was 72%, which was reduced to 69% when this measure was extracted from a 5 × 5 despeckled image. These results suggest that it may be better to use despeckled radar as original data and extract texture measures from the original imagery.  相似文献   

13.
辅以纹理特征的高分辨率遥感影像分类   总被引:4,自引:2,他引:2  
为了提高对高分辨率影像的分类精度,通过灰度差矢量法快速提取纹理特征,利用BP神经网络并辅以纹理特征,对一幅江西某地0.2m分辨率的航空影像进行分类。结果显示,对比度纹理特征能较好地反映该影像的纹理信息;对光谱特征不典型、纹理特征明显的人工树林,分类精度可达到90%以上;增加纹理特征后,影像分类的总精度也由55%提高到94%。表明这种结合纹理特征和BP神经网络的分类方法,能提高对高分辨率影像分类的精度。  相似文献   

14.
Effective conservation and management of natural resources requires up-to-date information of the land cover (LC) types and their dynamics. Multi-resolution remote sensing (RS) data coupled with additional ancillary topographical layers (both remotely acquired or derived from ground measurements) with appropriate classification strategies would be more effective in capturing LC dynamics and changes associated with the natural resources. Ancillary information would make the decision boundaries between the LC classes more widely separable, enabling classification with higher accuracy compared to conventional methods of RS data classification. In this work, we ascertain the possibility of improvement in classification accuracy of RS data with the addition of ancillary and derived geographical layers such as vegetation indices, temperature, digital elevation model, aspect, slope and texture, implemented in three different terrains of varying topography—urbanised landscape (Greater Bangalore), forested landscape (Western Ghats) and rugged terrain (Western Himalaya). The study showed that use of additional spatial ancillary and derived information significantly improved the classification accuracy compared to the classification of only original spectral bands. The analysis revealed that in a highly urbanised area with less vegetation cover and contrasting features, inclusion of elevation and texture increased the overall accuracy of IKONOS data classification to 88.72% (3.5% improvement), and inclusion of temperature, NDVI, EVI, elevation, slope, aspect, Panchromatic band along with texture measures, significantly increased the overall accuracy of Landsat ETM+ data classification to 83.15% (7.6% improvement). In a forested landscape with moderate elevation, temperature was useful in improving the overall accuracy by 6.7 to 88.26%, and in a rugged terrain with temperate climate, temperature, EVI, elevation, slope, aspect and Panchromatic band significantly improved the classification accuracy to 89.97% (10.84% improvement) compared to the classification of only original spectral bands, suggesting selection of appropriate ancillary data depending on the terrain.  相似文献   

15.
Landsat7 ETM+影像的融合和自动分类研究   总被引:25,自引:0,他引:25  
徐涵秋 《遥感学报》2005,9(2):186-194
利用SFIM、MLT、HPF和修改的Brovey(MB)等遥感影像融合算法对Landsat 7 ETM 影像进行融合和自动分类研究,并就融合影像的光谱保真度、高频空间信息融人度和分类精度对这些方法进行评价。结果表明SFIM变换几乎完全保持了原始影像的光谱特点,并具有最高的平均分类精度;MB变换具有最高的高频空间信息融人度;MLT变换也具有较高的分类精度;只有HPF变换的各项指标都不突出。所有4种融合影像的分类精度都较原始影像的分类精度有明显的提高。这表明,源于同一传感器系统的不同分辨率影像的融合可以避免异源传感器融合影像所常见的各种参数、时相和配准误差,所以能够明显地提高影像的自动分类精度。  相似文献   

16.
Spectral mixture analysis is an algorithm that is developed to overcome the weakness in traditional land-use/land-cover (LULC) classification where each picture element (pixel) from remote sensing is assigned to one and only one LULC type. In reality, a remotely sensed signal from a pixel is often a spectral mixture from several LULC types. Spectral mixture analysis can derive subpixel proportions for the endmembers from remotely sensed data. However, one frequently faces the problem in determining the spectral signatures for the endmembers. This study provides a cross-sensor calibration algorithm that enables us to obtain the endmember signatures from an Ikonos multispectral image for spectral mixture analysis using Landsat ETM+ images. The calibration algorithm first converts the raw digital numbers from both sensors into at-satellite reflectance. Then, the Ikonos at-satellite reflectance image is degraded to match the spatial resolution of the Landsat ETM+ image. The histograms at the same spatial resolution from the two images are matched, and the signatures from the pure pixels in the Ikonos image are used as the endmember signatures. Validation of the spectral mixture analysis indicates that the simple algorithm works effectively. The algorithm is not limited to Ikonos and Landsat sensors. It is, in general, applicable to spectral mixture analysis where a high spatial resolution sensor and a low spatial resolution sensor with similar spectral resolutions are available as long as images collected by the two sensors are close in time over the same place.  相似文献   

17.
This paper describes a simple and adaptive methodology for large area forest/non-forest mapping using Landsat ETM+ imagery and CORINE Land Cover 2000. The methodology is based on scene-by-scene analysis and supervised classification. The fully automated processing chain consists of several phases, including image segmentation, clustering, adaptive spectral representativity analysis, training data extraction and nearest-neighbour classification. This method was used to produce a European forest/non-forest map through the processing of 415 Landsat ETM+ scenes. The resulting forest/non-forest map was validated with three independent data sets. The results show that the map’s overall point-level agreement with our validation data generally exceeds 80%, and approaches 90% in central European conditions. Comparison with country-level forest area statistics shows that in most cases the difference between the forest proportion of the derived map and that computed from the published forest area statistics is below 5%.  相似文献   

18.
利用面向对象的分类方法从IKONOS全色影像中提取河流和道路   总被引:24,自引:0,他引:24  
传统的基于像素的统计特征的分类方法在处理高分辨率影像的分类问题上遇到了很大的困难。本研究利用面向对象的影像分析方法对IKONOS全色影像进行了河流与道路的分类,包括利用影像对象的光谱特征的初次分类和利用子目标对象的线特征的二次分类两个过程;其中初次分类由于仅依据光谱信息,不能很好地将河流或道路与其他光谱特征相似的地物区分开,而通过引入子目标的形状特征进行二次分类,就可以准确地将河流与道路提取出来。试验结果表明,面向对象的分类方法能够满足高分辨率或纹理影像的分类需要,具有很大的应用潜力。  相似文献   

19.
结合纹理的SVM遥感影像分类研究   总被引:7,自引:0,他引:7  
陈波  张友静  陈亮 《测绘工程》2007,16(5):23-27
针对传统统计模式识别分类方法分类精度不高,分类时未加入像元灰度的空间分布和结构特征以及分类时样本不足等缺陷,采用一种结合纹理的支持向量机(SVM)遥感图像分类方法。该方法在对Landsat7 ETM遥感影像进行纹理特征提取的基础上,构建了结合纹理的SVM分类模型。以河南省汝阳县为试验区,利用此模型对该区域的土地利用类型进行分类研究,并将分类结果与最大似然法和单源数据(光谱)SVM分类结果进行定性和定量比较分析。研究结果表明:该方法能够有效地解决单数据源分类效果破碎、分类精度不高等问题;对高维输入向量具有较高的推广能力;总精度达到90%,比单源信息的SVM分类法提高了6%,而与最大似然法相比,总精度提高了近9%,取得了良好的效果。  相似文献   

20.
基于多源遥感数据的水体信息提取研究   总被引:1,自引:0,他引:1  
卫星遥感技术已被广泛应用到水体信息提取中,但目前基于遥感技术的水体信息提取多采用单一的遥感数据源,而没有充分利用多源数据的信息复合优势,因此,提取结果经常受天气气候或空间分辨率限制。本文研究了不同尺度、不同平台的多种遥感数据源的水体信息提取方法。首先,基于波谱间关系决策树分类算法对Landsat ETM+图像进行水体提取,利用其分辨率优势较准确地提取出水体范围;其次,在Radarsat SAR图像上利用阈值法粗提取水体信息后,结合DEM剔除阴影得到水体信息;最后,利用灾前Landsat ETM+图像水体信息提取结果和灾中Radarsat SAR图像水体信息提取结果,进行差值处理,得到洪水淹没范围。研究结果可以为洪水灾害监测与评估提供信息依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号