首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a method of estimating the abundance of short-period extra-solar planets based on the results of a photometric survey for planetary transits. We apply the method to a 21-night survey with the 2.5-m Isaac Newton Telescope of ∼32 000 stars in a ∼0.5 × 0.5 deg2 field including the open cluster NGC 7789. From the colour–magnitude diagram, we estimate the mass and radius of each star by comparison with the cluster main sequence. We search for injected synthetic transits throughout the light curve of each star in order to determine their recovery rate, and thus calculate the expected number of transit detections and false alarms in the survey. We take proper account of the photometric accuracy, time sampling of the observations and criteria (signal-to-noise ratio and number of transits) adopted for transit detection. Assuming that none of the transit candidates found in the survey will be confirmed as real planets, we place conservative upper limits on the abundance of planets as a function of planet radius, orbital period and spectral type.  相似文献   

2.
We study the problem of detecting, and inferring astrophysical information from, gravitational waves from a pulsating neutron star. We show that the fluid f and p modes, as well as the gravitational-wave w modes, may be detectable from sources in our own Galaxy, and investigate how accurately the frequencies and damping rates of these modes can be inferred from a noisy gravitational-wave data stream. Based on the conclusions of this discussion we propose a strategy for revealing the supranuclear equation of state using the neutron star fingerprints: the observed frequencies of an f and a p mode. We also discuss how well the source can be located in the sky using observations with several detectors.  相似文献   

3.
The detection of extrasolar planets by measuring a photometric drop in the stellar brightness due to a planetary transit can be statistically improved by observing eclipsing binary systems and photometrically improved by observing small component systems. In particular the system CM Draconis, with two dM4 components, would allow the detection of extrasolar planets in the size range of Earth-to-Neptune requiring a ground-based photometric precision of about 0.08% to 1.1% (photometric precision of about 0.3% is routinely achievable with 1-meter class telescopes at the magnitude of CM Draconis, 11.07 inR-filter). In addition, the transit of extrasolar planets in a binary star system provides a unique, quasi-periodic signal that can be cross-correlated with the observational data to detect sub-noise signals. We examine the importance of making such observations to an understanding of the formation and evolution of terrestrial-type planets in main-sequence star systems. Terrestrial planets could have formed with substancially shorter periods in this lower luminosity system, for example, and might be expected to have accreted essentially in the binary orbital plane (however, non-coplanar planets may also eventually be detectable due to precession). We also report on a network of medium-sized telescopes at varying longitudes that have been organized to provide such constraints on terrestrial-planet formation processes and discuss the extention of near-term observations to other possible binary systems, as well. Finally, we discuss a more speculative, future observation that could be performed on the CM Draconis system that would be of exobiological as well as astrophysical interest.  相似文献   

4.
In order to confront the Projective Unified Field Theory with physical experience it is appropriate to apply this theory also to astrophysical objects, for mathematical reasons in particular to a static spherically symmetric matter distribution as a rough model for a star (e.g. neutron star or another exotic compact object). The problem mentioned is treated here as far as possible analytically in order to prepare the basis for the numerical approach.  相似文献   

5.
Of the known transiting extrasolar planets, a few have been detected through photometric follow-up observations of radial velocity planets. Perhaps the best known of these is the transiting exoplanet HD 209458b. For hot Jupiters (periods less than ∼5 d), the a priori information that 10 per cent of these planets will transit their parent star due to the geometric transit probability leads to an estimate of the expected transit yields from radial velocity surveys. The radial velocity information can be used to construct an effective photometric follow-up strategy which will provide optimal detection of possible transits. Since the planet-harbouring stars are already known in this case, one is only limited by the photometric precision achievable by the chosen telescope/instrument. The radial velocity modelling code presented here automatically produces a transit ephemeris for each planet data set fitted by the program. Since the transit duration is brief compared with the fitted period, we calculate the maximum window for obtaining photometric transit observations after the radial velocity data have been obtained, generalizing for eccentric orbits. We discuss a typically employed survey strategy which may contribute to a possible radial velocity bias against detection of the very hot Jupiters which have dominated the transit discoveries. Finally, we describe how these methods can be applied to current and future radial velocity surveys.  相似文献   

6.
We find that in general relativity slow down of the pulsar rotation due to the magnetodipolar radiation is more faster for the strange star with comparison to that for the ordinary neutron star of the same mass. Comparison with astrophysical observations on pulsars spindown data may provide an evidence for the strange star existence and, thus, serve as a test for distinguishing it from the neutron star.  相似文献   

7.
It has been found that in general relativity slow down due to the energy losses through charged particles outflow in plasma magnetosphere strongly depends on star’s compactness parameter and is more faster for the neutron star with comparison to that for the strange star of the same mass. Comparison with astrophysical observations on pulsars spin down precise data may provide important information about star’s compactness parameter and consequently an evidence for the strange star existence and, thus, serve as a test for distinguishing it from the neutron star.  相似文献   

8.
We develop a temporal simulation of the potentially detectable gravitational wave background from neutron star formation at cosmological distances. By using a recent model for the evolving star formation rate, we investigate the statistical distribution of gravitational wave amplitudes due to supernovae that result in neutron star formation in the Einstein–de Sitter cosmology. We find that the gravitational wave amplitude distribution in our frame is highly skewed, with skewness related to the distribution of sources, and that the potentially detectable gravitational wave strain is dominated by sources at a redshift of     . Time traces of the simulation, using selected waveforms, are presented graphically and are also made available as web-based audio files. The method developed can readily be extended to different cosmologies, as well as to incorporate other waveforms and source types. This type of simulation will be useful in testing and optimizing detection strategies for gravitational wave backgrounds due to various types of individually undetectable astrophysical sources.  相似文献   

9.
In smoothed particle hydrodynamics (SPH) codes with a large number of particles, star formation as well as gas and metal restitution from dying stars can be treated statistically. This approach allows one to include detailed chemical evolution and gas re-ejection with minor computational effort. Here we report on a new statistical algorithm for star formation and chemical evolution, especially conceived for SPH simulations with large numbers of particles, and for parallel SPH codes.
For the sake of illustration, we also present two astrophysical simulations obtained with this algorithm, implemented into the Tree-SPH code by Lia & Carraro .
In the first simulation, we follow the formation of an individual disc-like galaxy, predict the final structure and metallicity evolution, and test resolution effects. In the second simulation we simulate the formation and evolution of a cluster of galaxies, to demonstrate the capabilities of the algorithm in investigating the chemo-dynamical evolution of galaxies and of the intergalactic medium in a cosmological context.  相似文献   

10.
A low mass X-ray binary(LMXB) contains either a neutron star or a black hole accreting materials from its low mass companion star. It is one of the primary astrophysical sources for studying stellar-mass compact objects and accreting phenomena. As with other binary systems, the most important parameter of an LMXB is the orbital period, which allows us to learn about the nature of the binary system and constrain the properties of the system's components, including the compact object. As a result, measuring the orbital periods of LMXBs is essential for investigating these systems even though fewer than half of them have known orbital periods. This article introduces the different methods for measuring the orbital periods in the X-ray band and reviews their application to various types of LMXBs, such as eclipsing and dipping sources, as well as pulsar LMXBs.  相似文献   

11.
Studying relativistic compact objects is important in modern astrophysics to understand several astrophysical issues. It is therefore natural to ask for an internal structure and physical properties of specific classes of compact stars from astrophysical observations. We obtain a class of new relativistic solutions with anisotropic distribution of matter for compact stars. More specifically, stellar models, described by an anisotropic fluid, establishing a relation between metric potentials and generating a specific form of mass function, are explicitly constructed within the framework of General Relativity. New solutions can be used to model compact objects, which adequately describe compact strange star candidates like SMC X-1, Her X-1 and 4U 1538-52, with observational data taken from Gangopadhyay et al. (Mon. Not. R. Astron. Soc. 431:3216, 2013). As a possible astrophysical application the obtained solutions could explain the physics of selfgravitating objects, and might be useful for strong-field regimes where data are currently inadequate.  相似文献   

12.
We study the structure of electromagnetic field of slowly rotating magnetized star in a Randall-Sundrum II type braneworld. The star is modeled as a sphere consisting of perfect highly magnetized fluid with infinite conductivity and frozen-in dipolar magnetic field. Maxwell’s equations for the external magnetic field of the star in the braneworld are analytically solved in approximation of small distance from the surface of the star. We have also found numerical solution for the electric field outside the rotating magnetized neutron star in the braneworld in dependence on brane tension. The influence of brane tension on the electromagnetic energy losses of the rotating magnetized star is underlined. Obtained “brane” corrections are shown to be relevant and have non-negligible values. In comparison with astrophysical observations on pulsars spindown data they may provide an evidence for the brane tension and, thus, serve as a test for the braneworld model of the Universe.  相似文献   

13.
Selected examples of the use of observationally inferred molecular level populations and chemical compositions in the diagnosis of interstellar sources and processes important in them (and in other diffuse astrophysical sources) are given. The sources considered include the interclump medium of a giant molecular cloud, dark cores which are the progenitors of star formation, material responding to recent star formation and which may form further stars, and stellar ejecta (including those of supernovae) about to merge with the interstellar medium. The measurement of the microwave background, mixing of material between different nuclear burning zones in evolved stars and turbulent boundary layers (which are present in and influence the structures and evolution of all diffuse astrophysical sources) are treated.  相似文献   

14.
Most astrophysical accretion disks are likely to be warped.In X-ray binaries,the spin evolution of an accreting neutron star is critically dependent on the interaction between the neutron star magnetic field and the accretion disk.There have been extensive investigations on the accretion torque exerted by a coplanar disk that is magnetically threaded by the magnetic field lines from the neutron stars,but relevant works on warped/tilted accretion disks are still lacking.In this paper we develop a simplified twocomponent model,in which the disk is comprised of an inner coplanar part and an outer,tilted part.Based on standard assumption on the formation and evolution of the toroidal magnetic field component,we derive the dimensionless torque and show that a warped/titled disk is more likely to spin up the neutron star compared with a coplanar disk.We also discuss the possible influence of various initial parameters on the torque.  相似文献   

15.
A scale transformation is obtained which allows the Hertel and Thirring gravitational phase transition theory to be extended to more generalized astrophysical conditions. It is shown that by means of this transformation the formation of core-halo structures in late type stars can be explained. The effect of the physical conditions peculiar to this type of star are discussed.  相似文献   

16.
A trend of decreasing H emission over a period of thirty minutes is apparent in a series of spectra of X Persei taken on 31 December, 1987. This change appears to be astrophysical in origin and it indicates an anomalous state for X Persei that may be linked to its transition from a Be star to a normal B star, which occurred sometime between March 1988 and November 1990.  相似文献   

17.
Spruit has shown that an astrophysical dynamo can operate in the non-convective material of a differentially rotating star as a result of a particular instability in the magnetic field (the Tayler instability). By assuming that the dynamo operates in a state of marginal instability, Spruit has obtained formulae which predict the equilibrium strengths of azimuthal and radial field components in terms of local physical quantities. Here, we apply Spruit's formulae to our previously published models of rotating massive stars in order to estimate Tayler dynamo field strengths. There are no free parameters in Spruit's formulae. In our models of 10- and  50-M  stars on the zero-age main sequence, we find internal azimuthal fields of up to 1 MG, and internal radial components of a few kG. Evolved models contain weaker fields. In order to obtain estimates of the field strength at the stellar surface, we examine the conditions under which the Tayler dynamo fields are subject to magnetic buoyancy. We find that conditions for Tayler instability overlap with those for buoyancy at intermediate to high magnetic latitudes. This suggests that fields emerge at the surface of a massive star between magnetic latitudes of about 45° and the poles. We attempt to estimate the strength of the field which emerges at the surface of a massive star. Although these estimates are very rough, we find that the surface field strengths overlap with values which have been reported recently for line-of-sight fields in several O and B stars.  相似文献   

18.
In this paper we model the gravitational wave emission of a freely precessing neutron star. The aim is to estimate likely source strengths, as a guide for gravitational wave astronomers searching for such signals. We model the star as a partly elastic, partly fluid body with quadrupolar deformations of its moment of inertia tensor. The angular amplitude of the free precession is limited by the finite breaking strain of the star's crust. The effect of internal dissipation on the star is important, with the precession angle being rapidly damped in the case of a star with an oblate deformation. We then go on to study detailed scenarios where free precession is created and/or maintained by some astrophysical mechanism. We consider the effects of accretion torques, electromagnetic torques, glitches and stellar encounters. We find that the mechanisms considered are either too weak to lead to a signal detectable by an Advanced LIGO interferometer, or occur too infrequently to give a reasonable event rate. We therefore conclude that, using our stellar model at least, free precession is not a good candidate for detection by the forthcoming laser interferometers.  相似文献   

19.
The radiation fluxes inside molecular clouds owing to a neighboring class A star or to isotropic interstellar irradiation are calculated. Radiation within the interval 912 ? < λ < 2067 ? is found to penetrate deeply enough to ensure a radiation dose for water ice on the order of 100 eV/amu or more over the lifetime of the clouds, whether a star formation region is present or not. The possibility is discussed of using these results for an astrophysical interpretation of published data from laboratory experiments on irradiation of ices of the type H2O:CH3OH:NH3:CO. The resulting radiation-chemical transformation of complex organic materials may play an important role in the prebiological evolution of the dust component of molecular clouds. Translated from Astrofizika, Vol. 52, No. 2, pp. 311–324 (May 2009).  相似文献   

20.
Strong magnetic fields inhibit degeneracy in Fermi gases, that is, they postpone degeneracy to higher densities or lower temperatures. We derive this principle, virtually unknown in the physical and astrophysical literature, for the case of an ideal Dirac electron gas. Its possible importance in astrophysics is due to the fact that the equations of state of Fermi gases at given density and temperature can be qualitatively changed by this degeneracy-inhibition by strong fields. All astrophysical work with strong fields up to the present has used the field-free equations of state and the usual MHD approximation: permeability 1. Their interest was focussed on the effects of a strong Lorentz force term. We consider an application to hypothetical degenerate stellar objects with arbitrarily strong fields to see what effects the changed equations of state would lead to. One result is that the luminosity-temperature relation of the star is changed: the luminosity is reduced for given mass and interior temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号