首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Five transects across the NW Iberian margin were studied in the framework of the EU-funded Ocean Margin EXchange II (OMEX II) project, to determine and establish recent sediment and organic carbon transport and accumulation processes and fluxes.On the Galician shelf and shelf edge, resuspension of sediments resulting in well-developed bottom nepheloid layers was observed at all stations, but transport of suspended sediment appears largely confined to the shelf. On the continental slope, only very dilute bottom nepheloid layers were present, and intermediate nepheloid layers were only occasionally seen. This suggests that cross-slope transfer of particles is limited by the prevailing northerly directed shelf and slope currents.Optical backscatter and ADCP current measurements by the BOBO lander, deployed at 2152 m depth on the Galician slope, indicated that particles in the bottom boundary layer were kept in suspension by tidal currents with highest speeds between 15–25 cm s−1. Net currents during the recording period August 6th–September 10th 1998, were initially directed along-slope toward the NNW, but later turned off-slope toward the SW.The separation of the water masses on the slope from the sediment-laden shelf water by the along-slope current regime is reflected in the recent sedimentary deposits of the Galician shelf and slope. Apart from compositional differences, shelf deposits differ from those on the slope by their higher flux of excess 210Pb (0.57–5.37 dpm cm−2y−1 versus 0.11–3.00 dpm cm−2y−1), a much higher sediment accumulation rate (315.6–2295.9 g m−2y−1 versus 10.9–124.7 g m−2y−1) and organic carbon burial rate (1.01–34.30 g m−2y−1 versus 0.01–0.69 g m−2y−1).In contrast to the observations on the Galician margin, pronounced nepheloid layers occurred in the Nazaré Canyon, which extended to considerably greater water depths. This indicates that significantly greater transport of fine-grained particles in both the INL and the BNL was occurring within the canyon, as reflected in the exceptionally high 210Pb excess flux (up to 34.09 dpm cm−2y−1), mass accumulation rates (maximum 9623.1 g m−2y−1) and carbon burial fluxes (up to 180.91 g m−2y−1) in the sediment. However, radioisotope fluxes in the lower canyon were only slightly higher than at comparable depths on the Galician margin. This suggests that transport and rapid accumulation is focused on the upper and middle part of the canyon, from where it is episodically released to the deep sea. Compared to the Galician margin, the Nazaré Canyon may be considered as an important organic carbon depocenter on short time-scales, and a major conduit for particulate matter transport to the deep sea on >100 y time-scales.  相似文献   

2.
Time-series measurements of temperature, salinity, suspended matter and beam attenuation coefficient () were measured at four hour intervals for about two days in June/ July 1982 in the middle shelf region and the coastal region of the southeastern Bering Sea. Current meters were also moored at the same locations.Depth-time distributions of indicated that profiles of suspended matter resulted from a combined process of resuspension of underlying sediments and sinking of suspended particles. Average-values for all measurements for particles revealed that the upward transport of particles due to resuspension formed a boundary layer, with a thickness apparently related to scalar speed. The average-profiles of the particle volume concentration were assumed to result from a balance between the sinking and diffusive flux of particles under a steady state, and the upward fluxes were calculated. Within the boundary layer, values of the upward fluxes of particulate organic matter linearly decreased with the logarithm of distance from the bottom. Fluxes of organic carbon at the upper edge of the boundary layer were 0.375 gC·m–2·day–1 in the middle shelf region (18 m above the bottom, bottom depth=78m) and 0.484gC·m–2·day–1 in the coastal region (25 m above the bottom, bottom depth=33m), and fluxes of nitrogen in both regions were 0.067 gN·m–2·day–1. The flux of organic carbon obtained in the middle shelf region (18 m above the bottom) agreed approximately with the flux (0.416 gC·m–2·day–1) calculated by substituting primary production data into the empirical equation of Suess (1980).  相似文献   

3.
Stable carbon and nitrogen isotopic composition of zooplankton, suspended particulate organic matter (SPOM), and sinking particles collected using sediment traps were measured for samples obtained from the southeastern Bering Sea middle and outer shelf during 1997–1999. The quantity of material collected by the middle shelf sediment trap was greater in both spring and late summer and fall than in early and mid-summer. The δ15N of SPOM, sinking material and zooplankton showed greater inter-annual variability at the middle shelf site (M2) than at the outer shelf site (M3). Zooplankton and sinking organic matter collected by M2 sediment traps became more depleted in 15N from 1997 through 1999, associated with a change from unusually warm to unusually cold conditions. Suspended and sinking organic matter and zooplankton collected from M3 decreased only slightly in δ15N from 1998 to 1999. SPOM, zooplankton, and sediment trap samples collected at M2 were usually enriched in δ15N and δ13C over those from M3. However, in 1999 sediment trap samples from the middle shelf were enriched in 13C over M3 material, but the δ15N of samples from the two sites was similar. The geographic pattern could be explained greater productivity over the middle shelf, associated with either isotopically heavy nitrogen being regenerated from sediments, or with utilization of a greater fraction of the available inorganic nitrogen pool during most years.  相似文献   

4.
Lagrangian experiments with short-term, drifting sediment traps were conducted during a cruise on RRS Charles Darwin to the NW coast of Spain to study the vertical flux and composition of settling biogenic matter. The cruise was split into two legs corresponding to (i) a period of increased production following an upwelling event on the continental shelf (3–10 August 1998) and (ii) an evolution of a cold water filament originating from the upwelled water off the shelf (14–19 August). The export of particulate organic carbon (POC) from the upper layer (0–60m) on the shelf was 90–240mgC.m−2.d−1 and off the shelf was 60–180mgC.m−2.d−1. Off shelf the POC flux at 200m was 50–60mg.m−2.d−1. A modest sedimentation of diatoms (15–30mgC.m−2.d−1) after the upwelling was associated with increased vertical flux of chlorophyll a (1.8–2.1mg.m−2.d−1) and a decrease of the POC:PON molar ratio of the settled material from 9 to 6.4. Most of the pico-, nano-, and microplankton in the settled material were flagellates; diatoms were significant during the on shelf and dinoflagellates during the off shelf leg. Off shelf, the exponential attenuation of POC flux indicated a strong retention capacity of the plankton community between 40 and 75m. POC:PON ratio of the settled particulate matter decreased with depth and the relative portion of flagellates increased, suggesting a novel, flagellate and aggregate mediated particulate flux in these waters. Export of POC from the euphotic layer comprised 14–26% of the integrated primary production per day during the on shelf leg and 25–42% during the off shelf leg, which characterises the importance of sedimentation in the organic carbon budget of these waters.  相似文献   

5.
Megafauna biomass and feeding guilds were studied on the NW Iberian upwelling Continental Margin in order to determine the presence of enriched zones pointing to enhanced particle input. We compare these findings with similar data obtained from a transect across the Celtic Continental Margin that represents a regime without coastal upwelling. Additionally sediment concentrations of phytopigments (chlorophyll-a, phaeophorbides) representing recent inputs of algal production and of nucleic acids (DNA, RNA) are used as proxies for microbial biomass, to assess if there was a relation between these parameters and the megafauna distribution. The sediment on the upper slope (<1600 m) of the Iberian Margin was found to be inhabited by filter-feeding megafauna (26–73% of total invertebrate density, and 1–35% of biomass), and contained relatively low levels of phytopigments (3–6 ng/cm3 chlorophyll-a) and nucleic acids (12–16 μg−1 DNA, 1.5–3.5 μg−1 RNA). In contrast, on the upper slope of the Celtic Margin the dominant component of the megafauna were deposit-feeders (57–92% of total invertebrate density, and 23–90% of biomass) and the sediments contained higher concentrations of phytopigments and nucleic acid. These observations, supplemented by video records revealing the presence of current ripples on the Iberian upper slope, show that these upper slope regions are non-depositional, high energy environments. Conditions at the lower slope and the abyssal plain on the Iberian transect were more quiescent with large deposit-feeding holothurians dominating the megafauna (72–94% of invertebrate biomass), and with relatively high sediment concentrations of phytopigments (7–9 ng/cm3 chlorophyll-a, 157–170 ng/cm3 phaeophorbides) and nucleic acids (21–38 μg−1 DNA, 2.4–5.5 μg−1 RNA). On the basis of our data we argue that the benthic food for the deepest stations on the Iberian transect does not consist of shelf derived organic matter. More likely, fast sinking offshore blooms, possibly associated with filaments of upwelling water, form the major contribution to the annual food supply of the deep living megafauna.  相似文献   

6.
An array of sediment traps was deployed for the analysis of the pattern of particulate organic carbon (POC) supply to the sea bottom in April, May and July 1988 at the mouth of Otsuchi Bay (about 80 m depth), Northeastern Japan.On the basis of a simple two-component mixing model using stable carbon isotope ratios, the POC flux was separated into marine planktonic and terrestrial components. Both the planktonic and terrestrial POC fluxes had maximum values at 30 m above the sea bottom throughout the three experiments. The planktonic POC flux showed a significant decrease with depth between 30 m and 10 m or 5 m above the bottom. Vertical supply of the planktonic POC and supply of the resuspended planktonic POC were estimated on the basis of regression lines between water depth and the planktonic POC flux in the depth range where the flux decreases with depth.Vertical supply of the planktonic POC and supply of the resuspended planktonic POC to the sea bottom were largest in May (52.1 mgC m–2 d–1 and 19.5 mgC m–2 d–1 at 5 m above the sea bottom), and horizontal supplies of the terrestrial POC were almost constant (31.9±3.5 mgC m–2 d–1 at 5 m above the bottom) throughout the three experiments.  相似文献   

7.
To quantify recent sediment accumulation, carbon fluxes and cycling, three N.W. European Continental Margin transects on Goban Spur and Meriadzek Terrace were extensively studied by repeated box- and multicore sampling of bottom sediments. The recent sediment distribution and characteristics appear directly related to the near-bed hydrodynamic regime on the margin, which at the upper slope break on the Goban Spur results in along-slope and periodic off-slope directed transport of particles, possibly by entrainment of particles in a detached bottom or intermediate nepheloid layer. From the shelf to the abyssal plain the surface sediments on the Goban Spur change from terrigenous sandy shelf sediments into clayey silts. 210Pb activity decreases exponentially down core, reaching a stable background value at 10 cm (shallower stations) to 5 cm (deeper stations) sediment depth. 210Pb profiles of repeatedly sampled stations indicate negligible annual variability of mixing and flux. The 210Pbxs flux to the sediment shows a decreasing trend with increasing water depth. Below about 2000 m the average 210Pbxs flux is about 0.3 dpm cm−2 y−1, a third of the fluxes measured on the shelf and upper slope stations. Sediment mixing rates (Db) correlate with macro- and meiofaunal density changes and are within the normal oceanic ranges. Lower mixing rates on the lower slope likely reflect lower organic carbon fluxes there. Mass accumulation rates on Meriadzek Terrace are at maximum 80 g m−2 y−1, almost twice as high as at Goban Spur stations of comparable depth. A minimum accumulation rate of 16.6 g m−2 y−1 is found at the Goban Spur upper slope break. Organic carbon burial rates are low compared to other margins and range from a lowest value of 0.05 g m−2 y−1 at the upper slope break to 0.11 g m−2 y−1 downslope. A maximum organic carbon burial rate of 0.41 g m−2 y−1 is found on Meriadzek Terrace. Carbonate burial rates increase along the northern transect from the shelf (13 g m−2 y−1) via a low (9.3 g m−2 y−1) on the upper slope break to the deep sea (30.7 g m−2 y−1). Carbonate burial is highest on Meriadzek Terrace (44.5 g m−2 y−1). The N.W. European Margin at Goban Spur and Meriadzek Terrace cannot be considered a major carbon depocenter.  相似文献   

8.
The Northwest Atlantic margin is characterized by high biological productivity in shelf and slope surface waters. In addition to carbon supply to underlying sediments, the persistent, intermediate depth nepheloid layers emanating from the continental shelves, and bottom nepheloid layers maintained by strong bottom currents associated with the southward flowing Deep Western Boundary Current (DWBC), provide conduits for export of organic carbon over the margin and/or to the interior ocean. As a part of a project to understand dynamics of particulate organic carbon (POC) cycling in this region, we examined the bulk and molecular properties of time-series sediment trap samples obtained at 968 m, 1976 m, and 2938 m depths from a bottom-tethered mooring on the New England slope (water depth, 2988 m). Frequent occurrences of higher fluxes in deep relative to shallower sediment traps and low Δ14C values of sinking POC together provide strong evidence for significant lateral transport of aged organic matter over the margin. Comparison of biogeochemical properties such as aluminum concentration and flux, and iron concentration between samples intercepted at different depths shows that particles collected by the deepest trap had more complex sources than the shallower ones. These data also suggest that at least two modes of lateral transport exist over the New England margin. Based on radiocarbon mass balance, about 30% (±10%) of sinking POC in all sediment traps is estimated to be derived from lateral transport of resuspended sediment. A strong correlation between Δ14C values and aluminum concentrations suggests that the aged organic matter is associated with lithogenic particles. Our results suggest that lateral transport of organic matter, particularly that resulting from sediment resuspension, should be considered in addition to vertical supply of organic matter derived from primary production, in order to understand carbon cycling and export over continental margins.  相似文献   

9.
The uptake of atmospheric carbon dioxide in the water transported over the Bering–Chukchi shelves has been assessed from the change in carbon-related chemical constituents. The calculated uptake of atmospheric CO2 from the time that the water enters the Bering Sea shelf until it reaches the northern Chukchi Sea shelf slope (1 year) was estimated to be 86±22 g C m−2 in the upper 100 m. Combining the average uptake per m3 with a volume flow of 0.83×106 m3 s−1 through the Bering Strait yields a flux of 22×1012 g C year−1. We have also estimated the relative contribution from cooling, biology, freshening, CaCO3 dissolution, and denitrification for the modification of the seawater pCO2 over the shelf. The latter three had negligible impact on pCO2 compared to biology and cooling. Biology was found to be almost twice as important as cooling for lowering the pCO2 in the water on the Bering–Chukchi shelves. Those results were compared with earlier surveys made in the Barents Sea, where the uptake of atmospheric CO2 was about half that estimated in the Bering–Chukchi Seas. Cooling and biology were of nearly equal significance in the Barents Sea in driving the flux of CO2 into the ocean. The differences between the two regions are discussed. The loss of inorganic carbon due to primary production was estimated from the change in phosphate concentration in the water column. A larger loss of nitrate relative to phosphate compared to the classical ΔN/ΔP ratio of 16 was found. This excess loss was about 30% of the initial nitrate concentration and could possibly be explained by denitrification in the sediment of the Bering and Chukchi Seas.  相似文献   

10.
Cylindrical sediment traps were deployed at various depths in the anoxic water of Framvaren for two periods of one year (1981–1982 and 1983–1984). The traps were emptied three times during 1981–1982 and five times during 1983–1984. The vertical fluxes of total suspended material, organic carbon and nitrogen were calculated on a daily and annual basis. The average annual sediment flux 20 m above the bottom was approximately 60 g m−2 y−1 and the flux of organic carbon was 20 g m−2 y−1. On the basis of an average C/N ratio of 8 and a constant carbon flux below a depth of 20 m, it is concluded that little mineralization of the organic matter takes place in the anoxic water column. Assuming a primary production of the order to 50–100 g m−2 y−1, 22–24% of that reaches the anoxic water masses. Further breakdown of organic matter takes place in the surface sediments.  相似文献   

11.
Analyses of two years (1992 and 1993) of high-resolution sea surface temperature satellite images of the southern Mid Atlantic Bight (MAB), showed that unusually extensive overhang of shelf water occurs episodically, and coherently over along shelf distances of several 100 km. These episodes are dubbed overrunning of the Slope Sea by shelf water. The overrunning volume has a “face” and a “back” (southern and northern limit). It transports substantial quantities of shelf water southward, and does not retreat onto the shelf, but eventually joins the western edge of the Gulf Stream in the vicinity of Chesapeake Bay. The combined analyses of satellite imagery and various in situ data further demonstrated that the shelf waters overrunning the Slope Sea were not mere surface features but reached depths between 40 and 60 m. Results confirm previous concepts on shelf circulation, shelf–slope exchange and fate of shelf water. They also shed new light on shelf water budget: overrunning of the Slope Sea and southwest transport by upper slope current constitutes an important conduit for shelf water transport. Winter storms move the shelf–slope front, and with it shelf water, offshore to distances 10–40 km. The offshore displacement of shelf water can be related to the onshore veering of the Gulf Stream near Cape Hatteras, producing a blocking effect on the shelf circulation. Such a blocking effect of the southwestward flow of shelf water in the MAB appeared to be the reason for the overrunning of shelf water off New Jersey. In addition, the excess fresh water discharge from the St. Lawerence was also observed to be related to the overflow of shelf water off New Jersey.  相似文献   

12.
Sinking particulate matter were obtained from twelve depths using free-drifting sediment trap arrays which were deployed in the upper 2,000 m water column of the Izu Trench, northwest Pacific Ocean. The largest flux of 146 mgC m–2 day–1 was observed at 150 m depth. The flux generally decreased with depth below the maximum, however, minor flux peaks occurred at 1,000 and 1,250 m depth (>30 mgC m–2 day–1). Sinking large particles (>100 µm) were composed of fecal pellets typical of crustaceans, macroscopic aggregates, and planktonic organisms and their fragments. Three major components constituted 19%, 20% and 29%, respectively, of the total carbon flux (averaged from the fluxes at five depths; 50, 100, 150, 1,000 and 2,000 m). Among them, fecal pellet flux and large organism flux were well correlated with the total flux. The close correspondence between the fecal flux and the total carbon flux suggests that the latter is derived from a group of variables including other biogenic matter, among which fecal pellet is one of the leading factors controlling total flux, though the latter is only a minor covariable in quantity. Vertical flux profiles of fecal pellets and their internal constituents revealed some new inputs of feces occurring through the water column. This phenomenon implies that downward transportation of organic material is characterized by feeding and egestion activities of zooplankton, including overlapping processes of sinking and dispersion of large fecal particles and repackaging of dispersed small particles.  相似文献   

13.
Temporal variations of sinking particle flux, together with their organic chemical properties, were monitored in the deep basin of Sagami Bay, Japan, using sediment traps with very high time resolutions from March 1997 to August 1998. At a height of 350 m above the bottom (about 1200 m water depth), the averaged total mass flux was more than 1000 mg/m2/day, which is about 10 times higher than those obtained for open ocean regions near Sagami Bay. While large amounts of phytodetritus, derived from phytoplankton blooms in the surface water, were transported downward in spring, the following extraordinary patterns in the temporal variability of sinking particle flux were also observed: (1) A sustained large flux of sinking particles during low productive periods from summer to winter in 1997. (2) An episodic increase of sinking particle flux in June 1998. (3) A difference in the temporal variability of sinking particles between the spring bloom periods of 1997 and 1998. The content of total organic carbon (TOC) and the stable carbon isotopic ratio (δ13C) of TOC demonstrated that the large fluxes observed in (1) and (2) could be attributed to the resuspension of phytodetritus deposited on the sea floor during the spring bloom period, and the abrupt erosion of surface sediment on the continental slope, respectively. The concentration of suspended particles in the deep water column affect the apparent flux of sinking particles. At the same time, sinking particles exported from surface waters during the spring bloom both decrease and increase suspended particle concentration through scavenging and rebound processes, respectively. Finally, the apparent difference in sinking particle flux between 1997 and 1998, (3), could be explained by differences in the extent of the scavenging process, which depend on the flux and quality of exported particles from the surface waters.  相似文献   

14.
Hypoxic-to-anoxic conditions (2–0 mg O2 l− 1) occur in the bottom waters of the northern Gulf of Mexico on the Louisiana shelf west of the Mississippi river delta during late spring and summer where the rate of oxygen consumption exceeds its rate of input from physical transport plus photosynthetic generation. Although consumption of oxygen in the water column primarily via oxic respiration is an important process, the loss of oxygen at and near the seafloor may also be an important sink contributing to seasonal low oxygen conditions in the relatively shallow overlying waters in this region. Associated with the flux of oxygen into the sediments is the flux of nutrients out of the sediments from the remineralization of sedimentary organic matter via a number of possible electron acceptors. The nutrients that are released from the sediment can potentially stimulate further primary production. This can lead to generation of oxygen in the water column and production of organic matter, much of which can be transported to the seafloor where it again becomes a sink for oxygen.A non-steady-state data driven numeric benthic–pelagic model was developed to investigate the role of sediment and water-column metabolism in the development of hypoxia on the Louisiana shelf. The model simulations bare out the importance of sediment oxygen demand as the primary sink for oxygen at the beginning and end of a hypoxic event on the shelf, but once hypoxia has developed, the sediments, now isolated from the oxygen-rich surface waters, are driven into a more anoxic mode, becoming more dependent on sulfate and metal reduction. As a result, the bottom water near the pycnocline becomes the major sink for oxygen.Model simulations also suggest that there is a delay of several weeks between metabolite production (especially ammonium) and its efflux from the sediments. Thus the maximum sediment ammonium export occurs in September and October in time to fuel autumnal phytoplankton production, thereby continuing a biogeochemical cycle that expands the temporal and spatial scales of hypoxia on the Louisiana shelf.  相似文献   

15.
Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins.  相似文献   

16.
Total mass flux, size distribution of sediment particles and some chemical components such as total carbon (TC), total nitrogen (TN) and calcium carbonate (CaCO3) were monitored monthly using a multi-cup sediment traps at seven coral reef sites (6 reef flat and 1 reef slope) of the Marine Protected Areas around Ishigaki, Kohama, Kuroshima and Iriomote Islands in the southern Ryukyus, Japan from September 2000 to September 2001. The size distribution of trapped sediments revealed mostly uni-modal fine sand to mud in the reef flat and gravelly to coarse sand in the reef slope. The total mass flux ranged between 0.54 to 872 gm−2d−1, and showed a pronounced seasonality (high in summer-autumn and low in spring) at each site, which was consistent with the rainfall and typhoon regime. Exceptionally high values were observed on the reef slope (Iriomote) in February–March 2001 (1533 gm−2d−1) owing to a large amount of bottom sediment re-suspension. On the reef flat (Todoroki South and North; Ishigaki), values obtained in July–August 2001 (872 gm−2d−1) and August–September 2001 (800 gm− 2d−1) indicate the high terrestrial discharge from Todoroki River. Trapped sediment particles consist of CaCO3 (1.2–27.1%) and a non-carbonate fraction (98.8–72.9%), which contains total carbon (4.9–26%), carbonate carbon (CO2-C) (0.2–3.1%) and non-carbonate carbon (NC-C) (7.9–25.6%). Total nitrogen content was in the range 0.02–0.48%. TN is contained mainly in the carbonate fraction and NC-C may be contained in the non-carbonate fraction. The low TN/OC ratio of the trapped sediments suggests that they were mostly of terrestrial origin and that both fractions migrated. The high total mass flux derived from Todoroki River exceeded the threshold at which a lethal effect on coral community is caused. The results stress the importance of conducting seasonal studies of sedimentation over more than one year and at more than one location in south Japan coral reef ecosystems to gain an understanding of the processes controlling the total mass fluxes and their nutrients content, also to develop an awareness of how to prevent the damage of coral reef ecosystems and, if it does occur, to allow mitigation measures to be undertaken.  相似文献   

17.
The flow of Atlantic water between Iceland and the Faroe Islands is one of three current branches flowing from the Atlantic Ocean into the Nordic Seas across the Greenland–Scotland Ridge. By the heat that it carries along, it keeps the subarctic regions abnormally warm and by its import of salt, it helps maintain a high salinity and hence density in the surface waters as a precondition for thermohaline ventilation. From 1997 to 2001, a number of ADCPs have been moored on a section going north from the Faroes, crossing the inflow. Combining these measurements with decade-long CTD observations from research vessel cruises along this section, we compute the fluxes of water (volume), heat, and salt. For the period June 1997–June 2001, we found the average volume flux of Atlantic water to be 3.5±0.5 Sv (1 Sv=106 m3·s−1). When compared to recent estimates of the other branches, this implies that the Iceland–Faroe inflow is the strongest branch in terms of volume flux, transporting 47% of the total Atlantic inflow to the Arctic Mediterranean (Nordic Seas and Arctic Ocean with shelf areas). If all of the Atlantic inflow were assumed to be cooled to 0 °C, before returning to the Atlantic, the Iceland–Faroe inflow carries a heat flux of 124±15 TW (1 TW=1012 W), which is about the same as the heat carried by the inflow through the Faroe–Shetland Channel. The Iceland–Faroe Atlantic water volume flux was found to have a negligible seasonal variation and to be remarkably stable with no reversals, even on daily time scales. Out of a total of 1348 daily flux estimates, not one was directed westwards towards the Atlantic.  相似文献   

18.
Within the framework of the multidisciplinary RECS project and with the aim of describing the particle flux transfer from the continental shelf to the deep basin, an array of five mooring lines equipped with a total of five pairs of PPS3/3 sequential-sampling sediment traps and RCM-7/8 current meters were deployed 30 m above the bottom from March 2003 to March 2004 inside and outside the Blanes Canyon. One mooring line was located in the upper canyon at 600 m depth, one in the canyon axis at 1700 m depth and other two close to the canyon walls at 900 m depth. A fifth mooring line was deployed in the continental open slope at 1500 m water depth.The highest near-bottom downward particle flux (14.50 g m−2 d−1) was recorded at the trap located in the upper canyon (M1), where continental inputs associated with the presence of the Tordera River are most relevant. On the other hand, the downward fluxes (4.35 g m−2 d−1) in the canyon axis (M2) were of the same order as those found in the western flank (M3) of the canyon. Both values were clearly higher than the value (1.95 g m−2 d−1) recorded at the eastern canyon wall (M4). The open slope (M5) mass flux (5.42 mg m−2 d−1) recorded by the sediment trap located outside the canyon system was three orders of magnitude lower than the other values registered by the inner canyon stations. The relevance of our data is that it explains how the transport pathway in the canyon occurs through its western flank, where a more active and persistent current toward the open ocean was recorded over the entire year of the experiment.Off-shelf sediment transport along the canyon axis showed clear differences during the period of the study, with some important events leading to strong intensifications of the current coupled with large transport of particle fluxes to the deepest parts of the canyon. Such events are primarily related to increases in river discharge and the occurrence of strong storms and cascading events during the winter.In summary, in this study it is shown that the dynamics of the water masses and the currents in the study area convert the sharp western flank of the Blanes Canyon in a more active region that favors erosion processes than the eastern flank, which has a smoother topography and where the absence of erosional conditions yields to steadier sedimentary processes.  相似文献   

19.
Seasonal new production (g C m−2) estimates obtained from dissolved oxygen and nitrate concentrations in surface waters (5 m depth) along a track between the UK (Portsmouth) and northern Spain (Bilbao) are compared. An oxygen flux method, in combination with a ship of opportunity (SOO), was tested on the northwest European shelf for its value in distinguishing high production in frontal regions. Dissolved oxygen, nitrate and chlorophyll a samples were collected monthly from February to July 2004, alongside continuous autonomous measurements of salinity, temperature and chlorophyll fluorescence. Depth integrated new production estimates for all the individually analysed hydrographic regions of the route were produced.Results from three widely used gas-exchange parameterizations gave seasonal (February–July) new production estimates of 54–68 g C m−2 for the Ushant region of the western English Channel and 31–40 g C m−2 for the shelf slope, averaging 24–31 g C m−2 for the route. This is double the route average obtained using the nitrate assimilation method (17 g C m−2) and within the ranges of previous estimates in the same region. The oxygen flux method gave a fivefold enhancement compared to the nitrate method in the Ushant frontal region and a threefold enhancement in the English Channel and shelf break regions. Determining oxygen fluxes to estimate new production may be more reliable than nitrate assimilation in active tidal or frontal regions of shelves where nitrate may be added to the system post-winter through advection or entrainment.  相似文献   

20.
Methylmercury (MeHg) concentration and production rates were studied in bottom sediments along the mainstem of Chesapeake Bay and on the adjoining continental shelf and slope. Our objectives were to 1) observe spatial and temporal changes in total mercury (HgT) and MeHg concentrations in the mid-Atlantic coastal region, 2) investigate biogeochemical factors that affect MeHg production, and 3) examine the potential of these sediments as sources of MeHg to coastal and open waters. Estuarine, shelf and slope sediments contained on average 0.5 to 1.5% Hg as MeHg (% MeHg), which increased significantly with salinity across our study site, with weak seasonal trends. Methylation rate constants (kmeth), estimated using enriched stable mercury isotope spikes to intact cores, showed a similar, but weaker, salinity trend, but strong seasonality, and was highly correlated with % MeHg. Together, these patterns suggest that some fraction of MeHg is preserved thru seasons, as found by others [Orihel, D.M., Paterson, M.J., Blanchfield, P.J., Bodaly, R.A., Gilmour, C.C., Hintelmann, H., 2008. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem. Environmental Pollution 154, 77] Similar to other ecosystems, methylation was most favored in sediment depth horizons where sulfate was available, but sulfide concentrations were low (between 0.1 and 10 μM). MeHg production was maximal at the sediment surface in the organic sediments of the upper and mid Bay where oxygen penetration was small, but was found at increasingly deeper depths, and across a wider vertical range, as salinity increased, where oxygen penetration was deeper. Vertical trends in MeHg production mirrored the deeper, vertically expanded redox boundary layers in these offshore sediments. The organic content of the sediments had a strong impact on the sediment:water partitioning of Hg, and therefore, on methylation rates. However, the HgT distribution coefficient (KD) normalized to organic matter varied by more than an order of magnitude across the study area, suggesting an important role of organic matter quality in Hg sequestration. We hypothesize that the lower sulfur content organic matter of shelf and slope sediments has a lower binding capacity for Hg resulting in higher MeHg production, relative to sediments in the estuary. Substantially higher MeHg concentrations in pore water relative to the water column indicate all sites are sources of MeHg to the water column throughout the seasons studied. Calculated diffusional fluxes for MeHg averaged  1 pmol m− 2 day− 1. It is likely that the total MeHg flux in sediments of the lower Bay and continental margin are significantly higher than their estimated diffusive fluxes due to enhanced MeHg mobilization by biological and/or physical processes. Our flux estimates across the full salinity gradient of Chesapeake Bay and its adjacent slope and shelf strongly suggest that the flux from coastal sediments is of the same order as other sources and contributes substantially to the coastal MeHg budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号