首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximately 39,000 km of marine gravity data collected during 1975 and 1976 have been integrated with U.S. Navy and other available data over the U.S. Atlantic continental margin between Florida and Maine to obtain a 10 mgal contour free-air gravity anomaly map. A maximum typically ranging from 0 to +70 mgal occurs along the edge of the shelf and Blake Plateau, while a minimum typically ranging from −20 to −80 mgal occurs along the base of the continental slope, except for a −140 mgal minimum at the base of the Blake Escarpment. Although the maximum and minimum free-air gravity values are strongly influenced by continental slope topography and by the abrupt change in crustal thickness across the margin, the peaks and troughs in the anomalies terminate abruptly at discrete transverse zones along the margin. These zones appear to mark major NW—SE fractures in the subsided continental margin and adjacent deep ocean basin, which separate the margin into a series of segmented basins and platforms. Rapid differential subsidence of crustal blocks on either side of these fractures during the early stages after separation of North America and Africa (Jurassic and Early Cretaceous) is inferred to be the cause of most of the gravity transitions along the length of margin. The major transverse zones are southeast of Charleston, east of Cape Hatteras, near Norfolk Canyon, off Delaware Bay, just south of Hudson Canyon and south of Cape Cod.Local Airy isostatic anomaly profiles (two-dimensional, without sediment corrections) were computed along eight multichannel seismic profiles. The isostatic anomaly values over major basins beneath the shelf and rise are generally between −10 and −30 mgal while those over the platform areas are typically 0 to +20 mgal. While a few isostatic anomaly profiles show local 10–20 mgal increases seaward of the East Coast Magnetic Anomaly (ECMA: inferred to mark the ocean-continent boundary), the lack of a consistent correlation indicates that the relationship of isostatic gravity anomalies to the magnetic anomalies and the ocean—continent transition is variable.Two-dimensional gravity models have been computed for two profiles off Cape Cod, Massachusetts and Cape May, New Jersey, where excellent reflection, refraction and magnetic control appear to define 10 and 12 km deep sedimentary basins beneath the shelf, respectively and 10 km deep basins beneath the rise. The basins are separated by a 6–8 km deep basement ridge which underlies the ECMA and appears to mark the landward edge of oceanic crust. The gravity models suggest that the oceanic crust is between 11 and 18 km thick beneath the ECMA, but decreases to a thickness of less than 8 km within the first 20–90 km to the southeast. In both profiles, the derived crustal thickness variations support the interpretation that the ECMA occurs over the ocean-continent boundary. The crust underlying the sedimentary cover appears to be 12 to 15 km thick on the landward side of the ECMA and gradually thickens to normal continental values of greater than 25 km within the first 60 to 110 km to the northwest. Multichannel seismic profiles across platform areas, such as Cape Hatteras and Cape Cod, indicate the ocean-continent transition zones there are much narrower than profiles across major sedimentary basins, such as the one off New Jersey.  相似文献   

2.
南海中部和北部海域重力异常特征与地壳构造关系   总被引:1,自引:0,他引:1       下载免费PDF全文
1976年,中国科学院南海海洋研究所与国家海洋局南海分局共同协作使用“向阳红”五号海洋调查船,利用西德GSS-2型海洋重力仪和我国的CHHK-1型核子旋进式磁力仪,在南海珠江口外海域(北纬22°—17°、东经113°50′—115°10′),进行约3000公里的海洋重力、磁力和测深。设计的测线方向为南北向,测线距为10海里。  相似文献   

3.
徐伟民  陈石  石磊 《地球科学》2014,39(12):1831-1841
基于最新重力场模型对2014年于田Ms7.3地震震区的重力异常特征进行分析, 并应用Crust1.0地壳模型计算得到震区的深部构造形态, 结果显示: 震中位于地壳厚度陡变带上.同2008年于田Ms7.3地震相比, 震中虽位于不同位置, 但发震机制均与深部地壳结构变化密切相关.统计研究区内历史地震活动性与重力异常之间的关系, 发现震中的自由空气异常与地形存在明显的线性相关性, 而布格异常和均衡异常的结果则明显不同.进一步地分别计算不同重力异常的水平总梯度和线性信号, 结果表明: 重力异常梯度量与地形的相关特性更明显.研究表明: Ms7.0以上大震活动与重力异常之间具有明显的统计特性学, 这可能与重力异常反映的深部结构和壳内质量分布的不均匀有关.   相似文献   

4.
ABSTRACT

We investigated the oceanic crustal structure and lithospheric dynamics of the South China Sea (SCS) basin through a comprehensive analysis of residual gravity anomaly and bathymetry combined with seismic constraints and interpretation from geodynamic modelling. We first calculated the residual mantle Bouguer anomaly (RMBA) of the oceanic crustal regions of the SCS by removing from free-air gravity anomaly the predicted gravitational attractions of water-sediment, sediment-crust, and crust-mantle interfaces, as well as the effects of lithospheric plate cooling, using the latest crustal age constraints including IODP Expedition 349 and recent deep-tow magnetic surveys. We then calculated models of the gravity-derived crustal thickness and calibrated them using the available seismic refraction profiles of the SCS. The gravity-derived crustal thickness models correlate positively with seismically determined crustal thickness values. Our analysis revealed that the isochron-averaged RMBA are consistently more negative over the northern flank of the SCS basin than the southern conjugate for magnetic anomaly chrons C8n (~25.18 Ma) to C5Dn (~17.38 Ma), implying warmer mantle and/or thicker crust over much of the northern flank. Computational geodynamic modelling yielded the following interpretations: (1) Models of asymmetric and variable spreading rates based on the relatively high-resolution deep-tow magnetic analysis would predict alternating thicker and thinner crust at the northern flank than the southern conjugate, which is inconsistent with the observed systematically thicker crust on the northern flank. (2) Models of episodic southward ridge jumps could reproduce the observed N-S asymmetry, but only for crustal age of 23.6–20 Ma. (3) Southward migration of the SCS ridge axis would predict slightly thinner crust at the northern flank, which is inconsistent with the observations. (4) Models of higher mantle temperatures of up to 25–50°C or >2% less depleted mantle sources on the northern flank could produce large enough anomalies to explain the observed N-S asymmetries.  相似文献   

5.
The structural geometry, kinematics and density structure along the rear of the offshore Taiwan accretionary prism were studied using seismic reflection profiling and gravity modeling. Deformation between the offshore prism and forearc basin at the point of incipient collision, and southward into the region of subduction, has been interpreted as a tectonic wedge, similar to those observed along the front of mountain ranges. This tectonic wedge is bounded by an east-dipping roof thrust and a blind, west-dipping floor thrust. An east-dipping sequence of forearc-basin strata in the hanging wall of the roof thrust reaches a thickness in excess of 4 km near the tip of the interpreted tectonic wedge. Section restoration of the roof sequence yields an estimate of 4 km of shortening, which is small compared with that inferred in the collision area to the north, based on the variation in distance between the apex of the prism and the island arc.Previous studies propose that either high-angle normal faulting or backfolding has exhumed the metamorphic rocks along the eastern flank of the Central Range in the collision zone on land. To better constrain the initial crustal configuration, we tested 350 crustal models to fit the free-air gravity anomaly data in the offshore region to study the density structure along the rear of the accretionary prism in the subduction and initial collision zones before the structures become more complex in the collision zone on land. The gravity anomaly, observed in the region of subduction (20.2°N), can be modeled with the arc basement forming a trenchward-dipping backstop that is overlain by materials with densities in the range of sedimentary rocks. Near the point of incipient collision (20.9°N), however, the free-air gravity anomaly over the rear of the prism is approximately 40 mgal higher, compared with the region of subduction, and requires a significant component of high density crustal rocks within the tectonic wedge. These results suggest that the forearc basement may be deformed along the rear of the prism, associated with the onset of collision, but not in the subduction region further to the south.  相似文献   

6.
Shallow and deep sources generate a gravity low in the central Iberian Peninsula. Long-wavelength shallow sources are two continental sedimentary basins, the Duero and the Tajo Basins, separated by a narrow mountainous chain called the Spanish Central System. To investigate the crustal density structure, a multitaper spectral analysis of gravity data was applied. To minimise biases due to misleading shallow and deep anomaly sources of similar wavelength, first an estimation of gravity anomaly due to Cenozoic sedimentary infill was made. Power spectral analysis indicates two crustal discontinuities at mean depths of 31.1 ± 3.6 and 11.6 ± 0.2 km, respectively. Comparisons with seismic data reveal that the shallow density discontinuity is related to the upper crust lower limit and the deeper source corresponds to the Moho discontinuity. A 3D-depth model for the Moho was obtained by inverse modelling of regional gravity anomalies in the Fourier domain. The Moho depth varies between a mean depth of 31 km and 34 km. Maximum depth is located in a NW–SE trough. Gravity modelling points to lateral density variations in the upper crust. The Central System structure is described as a crustal block uplifted by NE–SW reverse faults. The formation of the system involves displacement along an intracrustal detachment in the middle crust. This detachment would split into several high-angle reverse faults verging both NW and SE. The direction of transport is northwards, the detachment probably being rooted at the Moho.  相似文献   

7.
Gravity data from Assam compiled on Bouguer, Hayford and Airy isostatic anomaly maps have been interpreted in terms of tectonics of the area. The gravity anomalies suggest that the Dauki fault is very deep-seated. A gravity high of about 60 mGal near Haflong is interpreted as being the expression of an intrusive body with a density contrast of about + 0.15 g/cm3 with respect to the surroundings. From isostatic considerations, approximate crustal thicknesses over the Shillong Plateau, the Upper Assam valley and the Surma valley are estimated to be 40, 29 and 22 km respectively, suggesting a sharp change in crustal thickness from the Shillong Plateau to the Surma valley across the Dauki fault.  相似文献   

8.
A total of 11,500 line km of aerogravity data have been used to construct an free-air gravity anomaly map for the Antarctic region that may contain the microplate boundary between the Haag Nunataks block and southern Antarctic Peninsula. Along-line free-air gravity anomaly data resolved wavelengths of 9 km or greater with better than 5 mGal accuracy. Coincident radio echo soundings provided data to construct a digital terrain model. The gravity effect of the terrain was calculated by Gauss–Legendre quadrature (GLQ) and spectrally correlated with the free-air gravity data. Terrain-correlated free-air anomalies related to possible isostatic imbalances of the crust were separated from terrain-decorrelated anomalies that may reflect intra-crustal density contrasts. Subtracting terrain-correlated free-air anomalies from the gravity effects of the terrain yielded compensated terrain gravity effects (CTGE) that were used to model the Moho by inversion. The results indicate moderate but significant crustal thinning below the Evans Ice Stream that is consistent with an extensional origin for the deep, wide, steep-sided trough that contains the ice stream as well as the continued elevation of the footwall flank of the basin. Changes along the axis of the rift, both in the gravity anomaly field and the distribution of Moho topography, can be explained by processes associated with continental lithospheric extension. Subsequently, many of the features produced by extension have been modified by glacial erosion and the sub-ice topography and gravity data reflect this.  相似文献   

9.
Clues to the understanding of intra- and inter-plate variations in strength or stress state of the crust can be achieved through different lines of evidence and their mutual relationships. Among these parameters Bouguer gravity anomalies and seismic b-values have been widely accepted over several decades for evaluating the crustal character and stress regime. The present study attempts a multivariate analysis for the Shillong Plateau using the Bouguer gravity anomaly and the earthquake database, and establishes a causal relationship between these parameters. Four seismic zones (Zones I–IV), with widely varying b-values, are delineated and an excellent correlation between the seismic b-value and the Bouguer gravity anomaly has been established for the plateau. Low b-values characterize the southwestern part (Zone IV) and a zone (Zone III) of intermediate b-values separates the eastern and western parts of the plateau (Zones I and II) which have high b-values. Positive Bouguer anomaly values as high as +40 mgal, a steep gradient in the Bouguer anomaly map and low b-values in the southwestern part of the plateau are interpreted as indicating a thinner crustal root, uplifted Moho and higher concentration of stress. In comparison, the negative Bouguer anomaly values, flat regional gradient in the Bouguer anomaly map and intermediate to high b-values in the northern part of the plateau are consistent with a comparatively thicker crustal root and lower concentration of stress, with intermittent dissipation of energy through earthquake shocks. Further, depth wise variation in the b-value for different seismic zones, delineated under this study, allowed an appreciation of intra-plateau variation in crustal thickness from ∼30 km in its southern part to ∼38 km in the northern part. The high b-values associated with the depth, coinciding with lower crust, indicate that the Shillong Plateau is supported by a strong lithosphere.  相似文献   

10.
Takeshi Kudo  Koshun Yamaoka   《Tectonophysics》2003,367(3-4):203-217
The driving force for the basin subsiding against isostatic balance in and around Lake Biwa in the Kinki district, Japan is discussed. The lake region is characterized by strong negative Bouguer anomalies, especially by a steep horizontal gradient zone of gravity anomaly running along the western margin of the lake. The large negative anomaly (>50 mgal) cannot be explained by low-density sediments beneath it. A down-warping structure extending to the Moho depth should be taken into account. This conjecture has been strongly supported by a short-period receiver function imaging, which shows a clear offset of about 8 km for the Moho discontinuity under the steep gravity gradient zone.A question arises as to what is the driving force to create such a large down-warping structure. We consider that the subduction of the shallow-dipping slab under the region (Philippine Sea Slab) may cause crustal deformation by dragging the viscous mantle downward. In order to verify this model, we simulated the induced mantle flow due to the subduction of the Philippine Sea Slab and the pressure distribution on the crust–mantle boundary. This numerical experiment showed that the induced flow makes a strong negative pressure zone under the lake region if the slab has a vertical offset along the direction of subduction. This offset of the slab is consistent with plate models deduced from hypocentral distributions and Sp phases of the deep-focus earthquakes.  相似文献   

11.
Ten global positioning system (GPS)–gravity profiles were conducted to provide sub-surface geometry of two sections of the Najd Fault System (NFS) Ruwah and Ar Rika faults, six in the Afif and four in the Al Muwayh area about 500 and 650 km west of Riyadh, respectively. GPS surveys were collected in differential GPS (DGPS) mode, allowing a large area to be covered in limited time. DGPS is utilized for the advantages of accuracy, economy, and speed. Output DGPS location coordinates were used in free-air and Bouguer reductions; terrain corrections were applied using a 3-arcsecond digital elevation model; finally, isostatic and decompensative corrections were applied. Integration of the resulting decompensative isostatic residual anomalies and aeromagnetic map has mapped the NFS very accurately. Modeling the gravity field crossing the Ruwah fault zone revealed that it is associated with low gravity anomalies probably due to a complex of lower density crushed rocks and modeled the geometry of the subsurface structure of Ar Rika fault as an inclined fault with reverse movement that would imply a compression component (post-dated the shearing) parallel to the plane of the cross-section.  相似文献   

12.
Environmental managers and protection agencies try to assess the magnitudes of earthquakes in regions of seismic activity. For several decades they have used the seismic b-values and Bouguer anomalies for evaluating the crustal character and stress regimes. We have analyzed geostatistically data on both variables to map their spatial distributions in the southeast of the Zagros of Iran. We found a strong correlation between the distribution of the b-value and the Bouguer gravity anomaly in the region. The large Bouguer gravity anomaly values and small b-values all accord with there being a thinner crustal root and a larger concentration of stress in the center. The small to moderate Bouguer gravity anomaly values and intermediate to large b-values accord with the thicker crustal root and the smaller concentration of stress in the northeast. We conclude the southeast of the Zagros, consists of heterogeneous crust, such that accounts for its varied tectonics.  相似文献   

13.
南海重力异常特征及其显著的构造意义   总被引:1,自引:0,他引:1  
在南海地区地震测深数据有限的情况下,利用重力异常可以研究南海大范围的深部地壳结构及地质构造展布特征。基于空间重力异常,结合最新的地形、沉积物厚度及地震测深等数据,分别从地震约束的莫霍面反演和无约束的三维相关成像两个视角研究南海的地壳结构,利用壳幔界面起伏、地壳厚度及三维等效密度分布来探讨地壳结构的纵横向变化。同时,联合采用延拓、水平梯度及线性构造增强滤波方法聚焦重力异常中的区域线性特征,突出显示了反映地壳横向变化的深断裂、洋陆转换边界、海盆扩张轴等线性构造的展布。重力解释与贯穿南海南北的广州-巴拉望地学断面对比表明,重力异常反演及异常的区域线性特征,较好地揭示了南海海域大范围的地壳结构与区域构造展布。  相似文献   

14.
The present-day topography of the Iberian peninsula can be considered as the result of the Mesozoic–Cenozoic tectonic evolution of the Iberian plate (including rifting and basin formation during the Mesozoic and compression and mountain building processes at the borders and inner part of the plate, during the Tertiary, followed by Neogene rifting on the Mediterranean side) and surface processes acting during the Quaternary. The northern-central part of Iberia (corresponding to the geological units of the Duero Basin, the Iberian Chain, and the Central System) shows a mean elevation close to one thousand meters above sea level in average, some hundreds of meters higher than the southern half of the Iberian plate. This elevated area corresponds to (i) the top of sedimentation in Tertiary terrestrial endorheic sedimentary basins (Paleogene and Neogene) and (ii) planation surfaces developed on Paleozoic and Mesozoic rocks of the mountain chains surrounding the Tertiary sedimentary basins. Both types of surfaces can be found in continuity along the margins of some of the Tertiary basins. The Bouguer anomaly map of the Iberian peninsula indicates negative anomalies related to thickening of the continental crust. Correlations of elevation to crustal thickness and elevation to Bouguer anomalies indicate that the different landscape units within the Iberian plate can be ascribed to different patterns: (1) The negative Bouguer anomaly in the Iberian plate shows a rough correlation with elevation, the most important gravity anomalies being linked to the Iberian Chain. (2) Most part of the so-called Iberian Meseta is linked to intermediate-elevation areas with crustal thickening; this pattern can be applied to the two main intraplate mountain chains (Iberian Chain and Central System) (3) The main mountain chains (Pyrenees and Betics) show a direct correlation between crustal thickness and elevation, with higher elevation/crustal thickness ratio for the Central System vs. the Betics and the Pyrenees. Other features of the Iberian topography, namely the longitudinal profile of the main rivers in the Iberian peninsula and the distribution of present-day endorheic areas, are consistent with the Tertiary tectonic evolution and the change from an endorheic to an exorheic regime during the Late Neogene and the Quaternary. Some of the problems involving the timing and development of the Iberian Meseta can be analysed considering the youngest reference level, constituted by the shallow marine Upper Cretaceous limestones, that indicates strong differences induced by (i) the overall Tertiary and recent compression in the Iberian plate, responsible for differences in elevation of the reference level of more than 6 km between the mountain chains and the endorheic basins and (ii) the effect of Neogene extension in the Mediterranean margin, responsible for lowering several thousands of meters toward the East and uplift of rift shoulders. A part of the recent uplift within the Iberian plate can be attributed of isostatic uplift in zones of crustal thickening.  相似文献   

15.
Gravity data were analyzed in conjunction with available geological data to determine the origin of observed gravity anomalies and their possible relationship to metallic ore deposits. The gravity data analysis included the construction of a Bouguer gravity anomaly, isostatic residual gravity anomaly and enhanced horizontal gravity gradient maps, and two and one-half dimensional gravity models. The isostatic residual gravity anomaly field could be broken down into five distinct regions based on anomaly amplitude, trend and wavelength. The analysis of these regions showed that both the Birimian and granitoid provinces consist mainly of a series of short wavelength gravity maxima and minima with a few large scale anomalies which suggests that the subsurface geology is more complicated than is currently known. Two gravity models roughly oriented north-south also implied this complicated subsurface geology and showed that most source bodies have depths up to 5 km. The known base metal deposits occur on the edge of small-scale gravity maxima within the Birimian province with the exceptions of the deposits within the Bouroum-Yalogo belt which occur next to a large amplitude gravity maximum related to an ultramafic complex.  相似文献   

16.
Gravity data were integrated with seismic refraction/reflection data, well data and geological investigations to determine a general crustal structure of Tunisia. The gravity data analysis included the construction of a complete Bouguer gravity anomaly map, residual gravity anomaly maps, horizontal gravity gradient maps and a 2.5-D gravity model. Residual gravity anomaly maps illustrate crustal anomalies associated with various structural domains within Tunisia including the Sahel Block, Saharian Flexure, Erg Oriental Basin, Algerian Anticlinorium, Gafsa Trough, Tunisian Trough, Kasserine Platform and the Tell Mountains. Gravity anomalies associated with these features are interpreted to be caused either by thickening or thinning of Palæozoic and younger sediments or by crustal thinning. Analysis of the residual gravity anomaly and horizontal gravity gradient maps also determined a number of anomalies that may be associated with previously unknown structures. A north-south trending gravity model in general indicated similar subsurface bodies as a coincident seismic model. However, thinner Mesozoic sediments within the Tunisian Trough, thinner Palæozoic sediments in the Gafsa Trough, and a greater offset on the Saharian Flexure were required by the gravity data. Additionally, basement uplifts under the Kasserine Platform and Gafsa Trough, not imaged by seismic data, were required by the gravity data. The gravity model revealed two previously unknown basins north and south of the Algerian Anticlinorium (5 km), while the Erg Oriental Basin is composed of at least two sub-basins, each with a depth of 5 km.  相似文献   

17.
为了深入研究东北地区断裂分布及构造分区,利用全国1∶2 500 000布格重力异常图,分析了泛东北地区(包括东北3省及内蒙古自治区的东北部分地区)的区域重力场特征。利用布格异常变化形态,并参考地质资料,在研究区内划分出岩石圈断裂14条,壳内断裂11条。根据大兴安岭和依兰—伊通两条明显的重力异常梯级带把研究区划分出兴安、松嫩以及张广才岭等三大重力异常区,在划分断裂和分析重力场特征的基础上进行了构造分区。其研究成果为认识和研究泛东北地区油气与矿产分布提供了重力场方面的依据。  相似文献   

18.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

19.
Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2–2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.  相似文献   

20.
Ewald Lüschen 《Tectonophysics》1986,130(1-4):141-146
Crustal studies in western Colombia, by deep seismic, gravity and geomagnetic surveys, during the last two decades have revealed an extremely anomalous crustal structure as compared to the South American Andes further south. Strong gravity gradients and differences in seismic velocities showed a transition from oceanic to continental character between the Western and Central Andes.

Measured gravity and height variations of opposite sign and lengths of 50 to 100 km on three east-west running profiles correlate surprisingly well with the typical positive Bouguer anomaly of the Western Andes which represents an isostatic instability. A gravity decrease of 0.5–1.0 mGal on two profiles and an increase on an intermediate one and corresponding ratios of gravity to apparent height variations of nearly −20 mGal/m are interpreted as consequences of deep-seated density variations. They may be related to collision tectonics and recent obduction processes between aseismic ridges riding on the Pacific Nazca plate and the continent.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号