首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
An automatic Bayesian Kepler periodogram has been developed for identifying and characterizing multiple planetary orbits in precision radial velocity data. The periodogram is powered by a parallel tempering Markov chain Monte Carlo (MCMC) algorithm which is capable of efficiently exploring a multiplanet model parameter space. The periodogram employs an alternative method for converting the time of an observation to true anomaly that enables it to handle much larger data sets without a significant increase in computation time. Improvements in the periodogram and further tests using data from HD 208487 have resulted in the detection of a second planet with a period of 90982−92 d, an eccentricity of 0.370.26−0.20, a semimajor axis of 1.870.13−0.14 au and an M sin  i = 0.45+0.11−0.13 M J. The revised parameters of the first planet are period = 129.8 ± 0.4 d, eccentricity = 0.20 ± 0.09, semimajor axis = 0.51 ± 0.02 au and M sin  i = 0.41 ± 0.05  M J. Particular attention is paid to several methods for calculating the model marginal likelihood which is used to compare the probabilities of models with different numbers of planets.  相似文献   

2.
Using eight dark matter haloes extracted from fully self-consistent cosmological N -body simulations, we perform microlensing experiments. A hypothetical observer is placed at a distance of 8.5 kpc from the centre of the halo measuring optical depths, event durations and event rates towards the direction of the Large Magellanic Cloud. We simulate 1600 microlensing experiments for each halo. Assuming that the whole halo consists of massive astronomical compact halo objects (MACHOs),   f = 1.0  , and a single MACHO mass is   m M= 1.0 M  , the simulations yield mean values of  τ= 4.7+5.0−2.2× 10−7  and  Γ= 1.6+1.3−0.6× 10−6  events star−1 yr−1. We find that triaxiality and substructure can have major effects on the measured values so that τ and Γ values of up to three times the mean can be found. If we fit our values of τ and Γ to the MACHO collaboration observations, we find   f = 0.23+0.15−0.13  and   m M= 0.44+0.24−0.16  . Five out of the eight haloes under investigation produce f and m M values mainly concentrated within these bounds.  相似文献   

3.
We have observed the Sunyaev–Zel'dovich (SZ) effect in a sample of five moderate-redshift clusters with the Ryle Telescope, and used them in conjunction with X-ray imaging and spectral data from ROSAT and ASCA to measure the Hubble constant. This sample was chosen with a strict X-ray flux limit using both the Bright Cluster Sample and the Northern ROSAT All-Sky Survey (RASS) cluster catalogues to be well above the surface brightness limit of the RASS, and hence to be unbiased with respect to the orientation of the cluster. This controls a major potential systematic effect in the SZ/X-ray method of measuring H 0. Taking the weighted geometric mean of the results and including the main sources of error, namely the noise in the SZ measurement, the uncertainty in the X-ray temperatures and the unknown ellipticity and substructure of the clusters, we find   H 0= 59+10−9 (random)+8−7(systematic) km s−1 Mpc−1  assuming a standard cold dark matter model with  ΩM= 1.0, ΩΛ= 0.0  or   H 0= 66+11−10 +9−8 km  s−1 Mpc−1  if  ΩM= 0.3, ΩΛ= 0.7  .  相似文献   

4.
We present ROSAT [High Resolution Imager (HRI) and Position Sensitive Proportional Counter (PSPC)] and ASCA observations of the two luminous ( L x ∼ 1041−42 erg s−1) star-forming galaxies NGC 3310 and 3690. The HRI shows clearly that the sources are extended with the X-ray emission in NGC 3690 coming from at least three regions. The combined 0.1–10 keV spectrum of NGC 3310 can be described by two components, a Raymond–Smith plasma with temperature kT  = 0.81+0.09−0.12 keV and a hard power law, Γ = 1.44−0.20−0.11 (or alternatively a harder Raymond–Smith plasma with kT  ∼ 15 keV), while there is no substantial excess absorption above the Galactic column value. The soft component emission is probably a super wind while the nature of the hard emission is more uncertain with the likely origins being X-ray binaries, inverse Compton scattering of infrared photons, an active galactic nucleus or a very hot gas component (∼108 K). The spectrum of NGC 3690 is similar, with kT  = 0.83+0.02−0.04 keV and Γ = 1.56+0.11−0.11. We also employ more complicated models such as a multi-temperature thermal plasma, a non-equilibrium ionization code or the addition of a third softer component, which improve the fit but not at a statistically significant level (2σ). These results are similar to recent results on the archetypal star-forming galaxies M82 and NGC 253.  相似文献   

5.
We present an XMM–Newton observation of the Seyfert–LINER (low-ionization nuclear emission-line region) galaxy NGC 7213. The RGS soft X-ray spectrum is well fitted with a power law plus soft X-ray collisionally ionized thermal plasma  ( kT = 0.18+0.03−0.01 keV)  . We confirm the presence of Fe  i , Fe  xxv and Fe  xxvi Kα emission in the EPIC spectrum and set tighter constraints on their equivalent widths of  82+10−13, 24+9−11  and 24+10−13 eV, respectively. We compare the observed properties together with the inferred mass accretion rate of NGC 7213 with those of other Seyfert and LINER galaxies. We find that NGC 7213 has intermediate X-ray spectral properties lying between those of the weak active galactic nucleus found in the LINER M81 and higher-luminosity Seyfert galaxies. There appears to be a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, probably determined by the amount of material available for accretion in the central regions.  相似文献   

6.
Using results from structural analysis of a sample of nearly 1000 local galaxies from the Sloan Digital Sky Survey, we estimate how the mass in central black holes is distributed amongst elliptical galaxies, classical bulges and pseudo-bulges, and investigate the relation between their stellar masses and central stellar velocity dispersion σ. Assuming a single relation between elliptical galaxy/bulge mass, M Bulge, and central black hole mass, M BH, we find that  55+8−4  per cent of the mass in black holes in the local universe is in the centres of elliptical galaxies,  41+4−2  per cent in classical bulges and  4+0.9−0.4  per cent in pseudo-bulges. We find that ellipticals, classical bulges and pseudo-bulges follow different relations between their stellar masses and σ, and the most significant offset occurs for pseudo-bulges in barred galaxies. This structural dissimilarity leads to discrepant black hole masses if single   M BH– M Bulge  and   M BH–σ  relations are used. Adopting relations from the literature, we find that the   M BH–σ  relation yields an estimate of the total mass density in black holes that is roughly 55 per cent larger than if the   M BH– M Bulge  relation is used.  相似文献   

7.
We report the identification, from a photometric, astrometric and spectroscopic study, of a massive white dwarf member of the nearby, approximately solar metallicity, Coma Berenices open star cluster (Melotte 111). We find the optical to near-infrared energy distribution of WD 1216+260 to be entirely consistent with that of an isolated DA and determine the effective temperature and surface gravity of this object to be   T eff= 15 739+197−196 K  and  log  g = 8.46+0.03−0.02  . We set tight limits on the mass of a putative cool companion,   M ≳ 0.036 M  (spatially unresolved) and   M ≳ 0.034 M  (spatially resolved and   a ≲ 2500 au  ). Based on the predictions of CO core, thick H layer evolutionary models we determine the mass and cooling time of WD 1216+260 to be   M WD= 0.90 ± 0.04 M  and  τcool= 363+46−41 Myr  , respectively. For an adopted cluster age of  τ= 500 ± 100 Myr  we infer the mass of its progenitor star to be   M init= 4.77+5.37−0.97 M  . We briefly discuss this result in the context of the form of the stellar initial mass–final mass relation.  相似文献   

8.
We report the discovery of WASP-3b, the third transiting exoplanet to be discovered by the WASP and SOPHIE collaboration. WASP-3b transits its host star USNO-B1.0 1256−0285133 every  1.846 834 ± 0.000 002  d. Our high-precision radial velocity measurements present a variation with amplitude characteristic of a planetary-mass companion and in phase with the light curve. Adaptive optics imaging shows no evidence for nearby stellar companions, and line-bisector analysis excludes faint, unresolved binarity and stellar activity as the cause of the radial velocity variations. We make a preliminary spectroscopic analysis of the host star and find it to have   T eff= 6400 ± 100 K  and  log   g = 4.25 ± 0.05  which suggests it is most likely an unevolved main-sequence star of spectral type F7-8V. Our simultaneous modelling of the transit photometry and reflex motion of the host leads us to derive a mass of  1.76+0.08−0.14 M J  and radius  1.31+0.07−0.14 R J  for WASP-3b. The proximity and relative temperature of the host star suggests that WASP-3b is one of the hottest exoplanets known, and thus has the potential to place stringent constraints on exoplanet atmospheric models.  相似文献   

9.
We report the detection, from the Far Ultraviolet Spectroscopic Explorer (FUSE) data, of phosphorus in the atmospheres of GD71 and two similar DA white dwarfs. This is the first detection of a trace metal in the photosphere of the spectrophotometric standard star GD71. Collectively, these objects represent the coolest DA white dwarfs in which photospheric phosphorus has been observed. We use a grid of homogeneous non-local thermodynamic equilibrium synthetic spectra to measure abundances of  [P/H]=−8.57+0.09−0.13, −8.70+0.23−0.37  and  −8.36+0.14−0.19  in GD71, RE J1918+595 and RE J0605−482 respectively. At the observed level we find that phosphorus has no significant impact on the overall energy distribution of GD71. We explore possible mechanisms responsible for the presence of this element in these stars, concluding that the most likely is an interplay between radiative levitation and gravitational settling, possibly modified by weak mass loss.  相似文献   

10.
We model the mass distribution in the recently discovered Einstein ring LBG J213512.73−010143 (the 'Cosmic Eye') using archival Hubble Space Telescope imaging. We reconstruct the mass density profile of the z = 0.73 lens and the surface brightness distribution of the z = 3.07 source and find that the observed ring is best fitted with a dual-component lens model consisting of a baryonic Sersic component nested within a dark matter halo. The dark matter halo has an inner slope of 1.42+0.24−0.22, consistent with cold dark matter simulations after allowing for baryon contraction. The baryonic component has a mass-to-light ratio of  1.71+0.28−0.38 M/L B   which when evolved to the present day is in agreement with local ellipticals. Within the Einstein radius of 0.77 arcsec (5.6 kpc), the baryons account for 46 ± 11 per cent of the projected lens mass. External shear from a nearby foreground cluster is accurately predicted by the model. The reconstructed surface brightness distribution in the source plane clearly shows two peaks. Through a generalization of our lens inversion method, we conclude that the redshifts of both peaks are consistent with each other, suggesting that we are seeing structure within a single galaxy.  相似文献   

11.
We test the consistency of estimates of the non-linear coupling constant f NL using non-Gaussian cosmic microwave background (CMB) maps generated by the method described in the work of Liguori, Matarrese & Moscardini. This procedure to obtain non-Gaussian maps differs significantly from the method used in previous works on the estimation of f NL. Nevertheless, using spherical wavelets, we find results in very good agreement with Mukherjee & Wang, showing that the two ways of generating primordial non-Gaussian maps give equivalent results. Moreover, we introduce a new method for estimating the non-linear coupling constant from CMB observations by using the local curvature of the temperature fluctuation field. We present both Bayesian credible regions (assuming a flat prior) and proper (frequentist) confidence intervals on f NL, and discuss the relation between the two approaches. The Bayesian approach tends to yield lower error bars than the frequentist approach, suggesting that a careful analysis of the different interpretations is needed. Using this method, we estimate   f NL=−10+270−260  at the 2σ level (Bayesian) and   f NL=−10+310−270  (frequentist). Moreover, we find that the wavelet and the local curvature approaches, which provide similar error bars, yield approximately uncorrelated estimates of f NL and therefore, as advocated in the work of Cabella et al., the estimates may be combined to reduce the error bars. In this way, we obtain   f NL=−5 ± 85  and   f NL=−5 ± 175  at the 1σ and 2σ level respectively using the frequentist approach.  相似文献   

12.
This work investigates the use of a well-known empirical correlation between the velocity dispersion, metallicity and luminosity in Hβ of nearby H  ii galaxies to measure the distances to H  ii -like starburst galaxies at high redshifts. This correlation is applied to a sample of 15 starburst galaxies with redshifts between   z = 2.17  and   z = 3.39  to constrain  Ωm  , using data available from the literature. A best-fitting value of  Ωm= 0.21+0.30−0.12  in a Λ-dominated universe and of  Ωm= 0.11+0.37−0.19  in an open universe is obtained. A detailed analysis of systematic errors, their causes and their effects on the values derived for the distance moduli and  Ωm  is carried out. A discussion of how future work will improve constraints on  Ωm  by reducing the errors is also presented.  相似文献   

13.
Constraints on an exact quintessence scalar-field model with an exponential potential are derived from gravitational lens statistics. An exponential potential can account for data from both optical quasar surveys and radio-selected sources. Based on the Cosmic Lens All-Sky Survey (CLASS) sample, lensing statistics provides, for the pressureless matter density parameter, an estimate of  ΩM0= 0.31+0.12−0.14  .  相似文献   

14.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   

15.
We investigate the brightest regions of the kpc-scale jet in the powerful radio galaxy 3C 346, using new optical Hubble Space Telescope ( HST ) ACS/F606W polarimetry together with Chandra X-ray data and 14.9 and 22.5 GHz Very Large Array (VLA) radio polarimetry. The jet shows a close correspondence between optical and radio morphology, while the X-ray emission shows a  0.80 ± 0.17 kpc  offset from the optical and radio peak positions. Optical and radio polarimetry show the same apparent magnetic field position angle and fractional polarization at the brightest knot, where the jet undergoes a large kink of almost 70° in the optical and radio images. The apparent field direction here is well aligned with the new jet direction, as predicted by earlier work that suggested the kink was the result of an oblique shock. We have explored models of the polarization from oblique shocks to understand the geometry of the 3C 346 jet, and find that the upstream flow is likely to be highly relativistic  (βu= 0.91+0.05−0.07)  , where the plane of the shock front is inclined at an angle of  η= 51°± 11°  to the upstream flow which is at an angle  θ= 14+8−7  deg to our line of sight. The actual deflection angle of the jet in this case is only 22°.  相似文献   

16.
In this article, we study the well-known strong lensing system SDSS J1004+4112. Not only does it host a large-separation lensed quasar with measured time-delay information, but several other lensed galaxies have been identified as well. A previously developed strong lens inversion procedure that is designed to handle a wide variety of constraints is applied to this lensing system and compared to results reported in other works. Without the inclusion of a tentative central image of one of the galaxies as a constraint, we find that the model recovered by the other constraints indeed predicts an image at that location. An inversion which includes the central image provides tighter constraints on the shape of the central part of the mass map. The resulting model also predicts a central image of a second galaxy where indeed an object is visible in the available Advanced Camera for Surveys images. We find masses of  2.5 × 1013  and  6.1 × 1013 M  within a radius of 60 and 110 kpc, respectively, confirming the results from other authors. The resulting mass map is compatible with an elliptical generalization of a projected NFW profile, with   r s= 58+21−13  arcsec and   c vir= 3.91 ± 0.74  . The orientation of the elliptical NFW profile closely follows the orientation of the central cluster galaxy and the overall distribution of cluster members.  相似文献   

17.
Using cosmological hydrodynamic simulations, we measure the mean transmitted flux in the Lyα forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel quasar separation distance can be fitted using a simple power-law form including the usual correlation function parameters r 0 and γ, so that     . From the simulations, we find the relation between r 0 and quasar host mass, and formulate this as a way to estimate quasar host dark matter halo masses, quantifying uncertainties due to cosmological and IGM parameters, and redshift errors. With this method, we examine data for ∼9000 quasars from the Sloan Digital Sky Survey (SDSS) Data Release 5, assuming that the effect of ionizing radiation from quasars (the so-called transverse proximity effect) is unimportant (no evidence for it is seen in the data). We find that the best-fitting host halo mass for SDSS quasars with mean redshift z = 3 and absolute G -band magnitude −27.5 is  log  M /M= 12.68+0.81−0.67  . We also use the Lyman-Break Galaxy (LBG) and Lyα forest data of Adelberger et al. in a similar fashion to constrain the halo mass of LBGs to be  log10  M /M= 11.41+0.54−0.59  , a factor of ∼20 lower than the bright quasars. In addition, we study the redshift distortions of the Lyα forest around quasars, using the simulations. We use the quadrupole to monopole ratio of the quasar Lyα forest correlation function as a measure of the squashing effect. We find its dependence on halo mass difficult to measure, but find that it may be useful for constraining cosmic geometry.  相似文献   

18.
We find the nine bulk flow and shear moments from the SFI++ survey, as well as for subsamples of group and field galaxies. We constrain the velocity power spectrum shape parameter Γ in linear theory using these moments. A likelihood function for Γ was found after marginalizing over the power spectrum amplitude  σ8Ω0.6m  using constraints obtained from comparisons between redshift surveys and peculiar velocity data. We have estimated the velocity noise  σ*  from the data since without it our results may be biased. We also performed a statistical analysis of the difference between the field and group catalogues and found that the results from each reflect the same underlying large-scale flows. We found that we can constrain the power spectrum shape parameter to be  Γ= 0.15+0.18−0.08  for the groups catalogue and  Γ= 0.09+0.04−0.04  for the field galaxy catalogue in fair agreement with the value from Wilkinson Microwave Anisotropy Probe .  相似文献   

19.
We constrain the velocity power spectrum shape parameter Γ in linear theory using the nine bulk flow and shear moments estimated from four recent peculiar velocity surveys. For each survey, a likelihood function for Γ was found after marginalizing over the power spectrum amplitude  σ8Ω0.6m  using constraints obtained from comparisons between redshift surveys and peculiar velocity data. In order to maximize the accuracy of our analyses, the velocity noise σ* was estimated directly for each survey. A statistical analysis of the differences between the values of the moments estimated from different surveys showed consistency with theoretical predictions, suggesting that all the surveys investigated reflect the same large-scale flows. The peculiar velocity surveys were combined into a composite survey yielding the constraint  Γ= 0.13+0.09−0.05  . This value is lower than, but consistent with, values obtained using redshift surveys and cosmic microwave background data.  相似文献   

20.
Measurement sensitivity in the energetic γ-ray region has improved considerably and is about to increase further in the near future, motivating a detailed calculation of high-energy (HE; ≥100 MeV) and very high-energy (VHE; ≥100 GeV) γ-ray emission from the nearby starburst galaxy NGC 253. Adopting the convection–diffusion model for energetic electron and proton propagation, and accounting for all the relevant hadronic and leptonic processes, we determine the steady-state energy distributions of these particles by a detailed numerical treatment. The electron distribution is directly normalized by the measured synchrotron radio emission from the central starburst region; a commonly expected theoretical relation is then used to normalize the proton spectrum in this region. Doing so fully specifies the electron spectrum throughout the galactic disc and, with an assumed spatial profile of the magnetic field, the predicted radio emission from the full disc matches well the observed spectrum, confirming the validity of our treatment. The resulting radiative yields of both particles are calculated; the integrated HE and VHE fluxes from the entire disc are predicted to be   f (≥100 MeV) ≃ (1.8+1.5−0.8) × 10−8 cm−2 s−1  and   f (≥100 GeV) ≃ (3.6+3.4−1.7) × 10−12 cm−2 s−1  , with a central magnetic field value   B 0≃ 190 ± 10 μ  G. We discuss the feasibility of measuring emission at these levels with the space-borne Fermi and ground-based Cherenkov telescopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号