首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal and spatial variations in the δ13C and δ18O values of the modern endogenic (thermogene) travertine deposited in a calcite-depositing canal at Baishuitai, Yunnan, SW China were examined to understand their potential for paleoclimatic and paleoenvironmental implications. The sampling sites were set in the upstream, middle reach and downstream of the canal, and the modern endogenic travertine samples were collected semimonthly to measure their δ13C and δ18O values. It was found that both δ13C and δ18O values of the endogenic travertine were low in the warm rainy season and high in the cold dry season, and correlated with each other. The low δ18O values in warm rainy season were mainly related to the higher water temperature and the lower δ18O values of rainwater, and the low δ13C values are caused by the dilution effect of overland flow with low δ13C values in the warm rainy season and the reduced CO2-degassing of canal-water caused by the dilution effect of the overland flow. The linear negative correlation between the travertine δ18O (or δ13C) values and rainfall amount may be used for paleo-rainfall reconstruction if one knows the δ18O (or δ13C) values of the fossil endogenic travertine at Baishuitai though the reconstruction was not straightforward. It was also found that there was a progressive downstream increase of the δ18O and δ13C values of the travertine along the canal, the former being mainly due to the preferential evaporation of H216O to the atmosphere and the latter to the preferential release of 12CO2 to the atmosphere during CO2-degassing. However, the downstream increase of the travertine δ18O and δ13C values was less intensive in rainy season because of the reduced evaporation and CO2-degassing during the rainy season. To conclude, the downstream travertine sites could be more favorable for the paleo-rainfall reconstruction while the upstream travertine sites are more favorable for the paleo-temperature reconstruction. So, this study demonstrates that endogenic travertine, like epigenic (meteogene) tufa, could also be a good candidate for high-resolution paleoclimatic and paleoenvironmental reconstruction.  相似文献   

2.
Diurnal variations of hydrochemistry were monitored at a spring and two pools in a travertine-depositing stream at Baishuitai, Yunnan, SW China. Water temperature, pH and specific conductivity were measured in intervals of 5 and 30 min for periods of 1 to 2 days. From these data the concentrations of Ca2+, HCO3, calcite saturation index, and CO2 partial pressure were derived. The measurements in the spring of the stream did not show any diurnal variations in the chemical composition of the water. Diurnal variations, however, were observed in the water of the two travertine pools downstream. In one of them, a rise in temperature (thus more CO2 degassing) during day time and consumption of CO2 due to photosynthesis of submerged aquatic plants accelerated deposition of calcite, whereas in the other pool, where aquatic plants flourished and grew out of the water (so photosynthesis was taking place in the atmosphere), the authors suggest that temperature-dependent root respiration underwater took place, which dominated until noon. Consequently, due to the release of CO2 by the root respiration into water, which dominated CO2 production by degassing induced by temperature increase, the increased dissolution of calcite was observed. This is the first time anywhere at least in China that the effect of root respiration on diurnal hydrochemical variations has been observed. The finding has implications for sampling strategy within travertine-depositing streams and other similar environments with stagnant water bodies such as estuaries, lakes, reservoirs, pools and wetlands, where aquatic plants may flourish and grow out of water.  相似文献   

3.
采用水化学仪器自动记录、现场滴定和样品碳氧稳定同位素测试相结合等方法,对云南中甸白水台钙华景区的水化学和碳氧稳定同位素特征进行了综合分析。主要结论是:形成白水台钙华的泉水具有很高的钙和重碳酸根离子浓度,相应地,泉水的CO2分压显著高于土壤生物成因所能产生的CO2分压。结合泉水出露的地质条件及其碳稳定同位素特征(δ13C=-1.23‰)的分析,进一步发现,高CO2分压主要与深部地热成因的CO2有关,而非原来普遍认为的“是温暖湿润气候的产物”。可见,白水台钙华属于热成因类钙华。由此,根据白水台不同时代钙华氧稳定同位素组成的差异,对钙华形成时的水温进行了计算。结果发现自白水台钙华形成以来,水温变化高达11℃,即从最老(<35万年)钙华形成时的21℃降至现在的10℃。这可能与本地区强烈抬升导致的气温降低有关,也可能反映出地热对水温的影响在降低。此外,本文对用热成因类钙华进行古环境重建研究中值得注意的问题也做了讨论。这些问题包括放射性碳测年中“死碳”(来自深部碳酸盐碳和深部CO2)的干扰及由深源CO2和CO2自水中逸出导致的钙华13C富集,后者在利用类似热成因碳酸盐沉积的δ13C进行古植被重建时也是必须考虑的问题  相似文献   

4.
Rhodochrosite crystals were precipitated from Na-Mn-Cl-HCO3 parent solutions following passive, forced and combined passive-to-forced CO2 degassing methods. Forced and combined passive-to-forced CO2 degassing produced rhodochrosite crystals with a small non-equilibrium oxygen isotope effect whereas passive CO2 degassing protocols yielded rhodochrosite in apparent isotopic equilibrium with water. On the basis of the apparent equilibrium isotopic data, a new temperature-dependent relation is proposed for the oxygen isotope fractionation between rhodochrosite and water between 10 and 40 °C:
1000lnαrhodochrosite-water=17.84±0.18(103/T)-30.24±0.62  相似文献   

5.
6.
The quaternary travertine deposits of Europe and Asia Minor   总被引:7,自引:0,他引:7  
A summary is provided of the published information relating to all aspects of Quaternary travertine formation in Europe west of the Ural Mountains. The deposits have been divided into two broad groups, the meteogene travertines, which result primarily from the degassing of soil-borne aqueous CO2, and thermogene deposits resulting from the degassing of thermally generated CO2. Meteogene deposits are rare above latitude 58°N, and in regions where the mean annual air temperature is below 5°C. A significant positive correlation exists between mean air temperature and travertine deposit thickness. The combined effects of temperature and rainfall are used to provide a zoned map showing the travertine-forming potential of limestones within the region. Information from 14C dating indicates that deposition reached a maximum in the period 5–10 ka BP) and is currently limited by land and water management practices in the populated areas. Thermogene deposits occur in regions of high CO2 discharge resulting from tectonic activity, such as Italy and Turkey where there is much vulcanism. These travertines are frequently more massive and less readily weathered than meteogene deposits. Fully referenced information is provided for 320 important, mostly well studied sites (227 meteogene, 93 thermogene), of which 156 are currently active.  相似文献   

7.
The effect of the outgassing of CO2 from a hydrothermal fluid on the C- and O-isotopic compositions of calcite, which is precipitated from this fluid, is quantitatively modelled in terms of batch and Rayleigh distillation equations. Both CO2 degassing and calcite precipitation are considered to be the removal mechanisms for dissolved carbon species from the fluid. Combined degassing-precipitation models are then developed by taking H2CO3 and HCO 3 , respectively, as the dominant dissolved carbon species. A positive correlation array between 13C and 13O values of calcite can be yielded by the precipitation of calcite from a H2CO 3 -dominant fluid, accompanied by a progressive decrease in temperature during CO2 degassing, whereas calcite precipitated from a HCO 3 -dominant fluid under the same conditions tends to display much smaller variation in 13C values than in 18O values. The combined processes of CO2 degassing and calcite precipitation result in lowering the 13C value of calcites with respect to those precipitated in a closed system simply due to temperature effect. Carbon and oxygen isotopic data for calcite from the Kushikino gold-mining area in Japan illustrate the application of quantitative modelling, and degassing of CO2 is suggested as a more likely cause for the precipitation of the calcite and quartz in this mining area.  相似文献   

8.
Stable oxygen and carbon isotopefractionation during the experimental formation ofordered norsethite (BaMg[CO3]2) from thereaction of anhydrous BaCO3 (witherite) withrelatively low concentrated sodium-magnesiumbicarbonate solutions has been studied between20° and 135 °C. In the investigatedtemperature range, 18O and 13C are enrichedin norsethite with respect to water and gaseous carbondioxide, respectively. Whereas 18O/16Opartitioning is intermediate between those of theBaCO3–H2O and MgCO3–H2O systems,13C/12C partitioning is more similar to thatfor BaCO3–CO2. Between 20° and90°C, the temperature dependences of the18O/16O and 13C/12C fractionationfactors are represented by the equations (T in °K):103 ln BaMg[CO3]2-H2O = 2.83 106T--2.85, and 103lnBaMg[CO3]2-CO2(gas) = 1.78 106T--10.16. The later equation considers carbon isotope fractionationbetween the dissolved carbonate ion and carbon dioxide measured by Halaset al. (1997). Under standard state conditions (25 °C) the fractionation factors in the system BaMg[CO3]2-CO2-H2O are: Oxygen isotopes: BaMg(CO3)2-H2O = 1.02941, BaMg(CO3)2-OH-(aq) = 1.07059,BaMg(CO3)2-CO2(gas) = 0.98868, andBaMg(CO3)2-H2CO3 * = 0.98843; carbon isotopes:BaMg(CO3)2-CO2(gas) = 1.00992,BaMg(CO3)2-H2CO3 * = 1.01099,BaMg(CO3)2-HCO3 - = 1.00194,BaMg(CO3)2-CO3 2- = 1.00491 or 1.00150.The spontaneous precipitation of aBaMg[CO3]2 gel at 20 °C,followed by the alteration of the products at20° or 60°C for 31 days,demonstrated isotope exchange reactions betweensolids and mother solutions dueto recrystallization. Isotope equilibrium, wasnot reached within run time.  相似文献   

9.
The carbon isotopic fractionation between CO2 vapour and sodamelilite (NaCaAlSi2O7) melt over a range of pressures and temperatures has been investigated using solid-media piston-cylinder high pressure apparatus. Ag2C2O4 was the source of CO2 and experimental oxygen fugacity was buffered at hematite-magnetite by the double capsule technique. The abundance and isotopic composition of carbon dissolved in sodamelilite (SM) glass were determined by stepped heating and the 13C of coexisting vapour was determined directly by capsule piercing. CO2 solubility in SM displays a complex behavior with temperature. At pressures up to 10 kbars CO2 dissolves in SM to form carbonate ion complexes and the solubility data suggest slight negative temperature dependence. Above 20 kbars CO2 reacts with SM to form immiscible Na-rich silicate and Ca-rich carbonate melts and CO2 solubility in Na-enriched silicate melt rises with increasing temperature above the liquidus. Measured values for carbon isotopic fractionation between CO2 vapour and carbonate ions dissoived in sodamelilite melt at 1200°–1400° C and 5–30 kbars average 2.4±0.2, favouring13C enrichment in CO2 vapour. The results are maxima and are independent of pressure and temperature. Similar values of 2 are obtained for the carbon isotopic fractionation between CO2 vapour and carbonate melts at 1300°–1400° C and 20–30 kbars.  相似文献   

10.
To determine oxygen isotope fractionation between aragonite and water, aragonite was slowly precipitated from Ca(HCO3)2 solution at 0 to 50°C in the presence of Mg2+ or SO42−. The phase compositions and morphologies of synthetic minerals were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The effects of aragonite precipitation rate and excess dissolved CO2 gas in the initial Ca(HCO3)2 solution on oxygen isotope fractionation between aragonite and water were investigated. For the CaCO3 minerals slowly precipitated by the CaCO3 or NaHCO3 dissolution method at 0 to 50°C, the XRD and SEM analyses show that the rate of aragonite precipitation increased with temperature. Correspondingly, oxygen isotope fractionations between aragonite and water deviated progressively farther from equilibrium. Additionally, an excess of dissolved CO2 gas in the initial Ca(HCO3)2 solution results in an increase in apparent oxygen isotope fractionations. As a consequence, the experimentally determined oxygen isotope fractionations at 50°C indicate disequilibrium, whereas the relatively lower fractionation values obtained at 0 and 25°C from the solution with less dissolved CO2 gas and low precipitation rates indicate a closer approach to equilibrium. Combining the lower values at 0 and 25°C with previous data derived from a two-step overgrowth technique at 50 and 70°C, a fractionation equation for the aragonite-water system at 0 to 70°C is obtained as follows:
  相似文献   

11.
Metamorphic decarbonation reactions and volcanic degassing lead to significant influx of CO2, a major greenhouse gas, into the ocean-atmosphere system from the solid Earth. Here we present quantitative estimates on CO2 derived through metamorphic degassing during ultrahigh-temperature (UHT) metamorphism in the Neoproterozoic through the mineralogical and geological analyses of the UHT decarbonation. Our computations show that an extra flux of CO2 was added to the atmosphere through a Himalayan scale UHT metamorphism to the extent of 6 × 1016 to 3.0 × 1018 mol/my, for a duration of 10 my. A calculation of the impact of the extra CO2 influx to the global mean temperature in the context of carbon cycle and greenhouse effect of CO2 shows that at the peak influx stage, the steady state temperature would be raised by 4 °C from 15 °C and by 13 °C from 4 °C. Our results have important bearing in evaluating the mechanism of melting and the duration of the Snowball Earth. Our estimate of the maximum degassing rate during UHT metamorphism suggests that the duration of the Marinoan snowball Earth was probably shorter, and the recovery from an ice-covered Earth to ocean-covered Earth was faster than previous estimates.  相似文献   

12.
Isotope fractionation of carbon between CO2 and carbon dissolved in a tholeiitic magma measured in the range 1120–1280 ° C, 7.0–8.4 Kb varies from 4.6 to 4 in favor of CO2. These results make possible to explain all deep seated 13C values from a restricted range of primary mantle 13C concentrations. They also suggest that carbon could be dissolved in basaltic magmas in a reduced form.  相似文献   

13.
Diverse interpretations have been made of carbon isotope time series in speleothems, reflecting multiple potential controls. Here we study the dynamics of 13C and 12C cycling in a particularly well-constrained site to improve our understanding of processes affecting speleothem δ13C values. The small, tubular Grotta di Ernesto cave (NE Italy) hosts annually-laminated speleothem archives of climatic and environmental changes. Temperature, air pressure, pCO2, dissolved inorganic carbon (DIC) and their C isotopic compositions were monitored for up to five years in soil water and gas, cave dripwater and cave air. Mass-balance models were constructed for CO2 concentrations and tested against the carbon isotope data. Air advection forces winter pCO2 to drop in the cave air to ca. 500 ppm from a summer peak of ca. 1500 ppm, with a rate of air exchange between cave and free atmosphere of approximately 0.4 days. The process of cave ventilation forces degassing of CO2 from the dripwater, prior to any calcite precipitation onto the stalagmites. This phase of degassing causes kinetic isotope fractionation, i.e. 13C-enrichment of dripwater whose δ13CDIC values are already higher (by about 1‰) than those of soil water due to dissolution of the carbonate rock. A subsequent systematic shift to even higher δ13C values, from −11.5‰ in the cave drips to about −8‰ calculated for the solution film on top of stalagmites, is related to degassing on the stalagmite top and equilibration with the cave air. Mass-balance modelling of C fluxes reveals that a very small percentage of isotopically depleted cave air CO2 evolves from the first phase of dripwater degassing, and shifts the winter cave air composition toward slightly more depleted values than those calculated for equilibrium. The systematic 13C-enrichment from the soil to the stalagmites at Grotta di Ernesto is independent of drip rate, and forced by the difference in pCO2 between cave water and cave air. This implies that speleothem δ13C values may not be simply interpreted either in terms of hydrology or soil processes.  相似文献   

14.
The intramolecular kinetic oxygen isotope fractionation between CO2 and CO32− during reaction of phosphoric acid with natural smithsonite (ZnCO3) and cerussite (PbCO3) has been determined between 25 and 72°C. While cerussite decomposes in phosphoric acid within a few hours at 25°C, smithsonite reacts very slowly with the acid at 25°C providing yields of CO2 < 25% after 2 weeks. The low yields result in a low precision for oxygen isotope measurements of the acid-liberated CO2 (±1.65‰, 1σ, n = 9). The yield and reproducibility of oxygen isotope values of the acid-liberated CO2 from smithsonite can be improved, the latter to ∼±0.15‰, by increasing the reaction temperature to 50°C for 12 h or to 72°C for 1 h. Our new phosphoric acid fractionation factor for natural cerussite at 25°C deviates significantly from a previously published value on synthetic material. The temperature dependence of the oxygen isotope factionation factor, α between acid-liberated CO2 and carbonate at 25 to 72°C is given by the following equations
  相似文献   

15.
In light of recent studies that show oxygen isotope fractionation in carbonate minerals to be a function of HCO3 and CO32− concentrations, the oxygen isotope fractionation and exchange between water and components of the carbonic acid system (HCO3, CO32−, and CO2(aq)) were investigated at 15°, 25°, and 40°C. To investigate oxygen isotope exchange between HCO3, CO32−, and H2O, NaHCO3 solutions were prepared and the pH was adjusted over a range of 2 to 12 by the addition of small amounts of HCl or NaOH. After thermal, chemical, and isotopic equilibrium was attained, BaCl2 was added to the NaHCO3 solutions. This resulted in immediate BaCO3 precipitation; thus, recording the isotopic composition of the dissolved inorganic carbon (DIC). Data from experiments at 15°, 25°, and 40°C (1 atm) show that the oxygen isotope fractionation between HCO3 and H2O as a function of temperature is governed by the equation:
  相似文献   

16.
Ground waters in North Hesse (Germany) are conspicuous by high amounts of dissolved inorganic carbon (DIC) at low pH. The DIC is received from the uptake of soil CO2 and CO2 of volcanic origin and the subsequent dissolution ofTriassic and Permian limestone and dolomites. The volcanic CO2 is related to Miocene basaltic magma which has liberated gaseous CO2 during thebreakthrough to Triassic and Permian sediments. The volcanic CO2 (-6 < 13CCO2 < -3, PDB) was trapped within pore spacesand intra- and intergranulares of Permian evaporites and Triassic sandstones and was stored within such reservoirs until recent times. The uptake of volcanic CO2 occurs as ground water migrates through such reservoirs. The 13 C/12 C-signatures of the DIC indicate mixture of soil-CO2and CO2 of volcanic origin for the dissolution of marine limestone and dolomites. The obtained two types for CO2 of volcanic origin with 13CCO 2-values of -10 ± 3 and +2 ± 2 can be explained by diffusion of CO2 through micropores, faults, and interfacesof solids. This mobilisation of CO2 is accompanied with a kinetic fractionation of -9. 13 C-depleted CO2 is liberated from the reservoir,whereas 13 CO2 is accumulated in the residue  相似文献   

17.
通过比较中国四川黄龙、中国云南白水台、土耳其帕穆克卡莱棉花堡三地钙华景观的基本环境地质特征、钙华景观水化学、钙华沉积生物因素的差异性,探讨了土耳其棉花堡钙华退化缓慢的影响因素。对比发现,棉花堡景区藻类约为38种,种类单一,植被覆盖率较低,沉积主要受物理化学因素控制,沉积速率较快,多形成较好的层状结构,杂质少,且原生孔隙度较低,结构致密,结晶度较高,不易坍塌损坏;黄龙和白水台景区藻类分别为86种、196种,种类多样,且植被覆盖率皆高达80%以上,沉积主控于化学和生物因素,沉积速率较慢,结构呈多孔疏松状或多孔珊瑚状,原生孔隙度普遍较高,易退化。此外,棉花堡钙华景区泉水各离子含量均高于黄龙和白水台景区,尤其是Ca2+和HCO3-,这能有效促进CaCO3的沉积。  相似文献   

18.
The Jifei hot spring emerges in the form of a spring group in the Tibet–Yunnan geothermal zone, southwest of Yunnan Province, China. The temperatures of spring waters range from 35 to 81°C and are mainly of HCO3–Na·Ca type. The total discharge of the hot spring is about 10 L/s. The spring is characterized by its huge travertine terrace with an area of about 4,000 m2 and as many as 18 travertine cones of different sizes. The tallest travertine cone is as high as 7.1 m. The travertine formation and evolution can be divided into three periods: travertine terrace deposition period, travertine cone formation period and death period. The hydrochemical characteristics of the Jifei hot spring was analyzed and compared with a local non-travertine hot spring and six other famous travertine springs. The results indicate that the necessary hydrochemical conditions of travertine and travertine cones deposition in the Jifei area are (1) high concentration of HCO3 and CO2; (2) about 52.9% deep source CO2 with significantly high value; (3) very high milliequivalent percentage of HCO3 (97.4%) with not very high milliequivalent percentage of Ca2+ (24.4%); and (4) a large saturation index of calcite and aragonite of the hot water.  相似文献   

19.
云南白水台钙华水池中水化学日变化及其生物控制的发现   总被引:11,自引:0,他引:11  
为弄清云南白水台泉及其下游钙华水池中水化学的日变化,选取1号泉及其流经的两个钙华水池(6号和10号)作为研究对象并对其水温、pH值和电导率进行了自动监测。根据Ca2 、HCO3-与电导率存在的线性关系,用WATSPAC软件计算了水中方解石的饱和指数和PCO2。监测发现:泉水不存在显著的水化学日动态变化,而两个钙华水池表现出显著的日动态变化。其中10号钙华水池在白天温度较高时水中的CO2大量逸出并通过水下水生植物的光合作用加速了水中碳酸钙的沉积。6号钙华水池水生植物生长茂盛,其叶片和部分枝干露出水面,因而光合作用主要发生在空中,所以此处水化学表现为白天pH值降低和电导率升高的反常现象,即由温度主导的根呼吸作用,在白天释放更多的CO2进入水体而使沉积下来的碳酸钙重新溶解。  相似文献   

20.
Tufas, which are freshwater carbonates, are potential archives of terrestrial paleoclimate. Time series of stable isotopic compositions commonly show regular seasonal patterns controlled by temperature-dependent processes, and some perturbation intrinsic to the locality. We examined three tufa-depositing sites in southwestern Japan with similar temperate climates, to understand the origin of local characteristics in the isotopic records. Seasonal change in the oxygen isotope is principally reflected by temperature-dependent fractionation between water and calcite but was perturbed after heavy rainfalls overwhelming the stability of the δ18O value of the groundwater at one site. Isotopic mass balance indicates an undersaturated and relatively small aquifer at this locality. Water δ18O values at the other two sites were stable, reflecting a regular seasonal change in the δ18O value of tufa. Perturbation of the δ13C values in tufa is largely due to CO2 degassing from the stream, which significantly increases the δ13C values of dissolved inorganic carbon (DIC). At a site with remarkably high pCO2 in springwater and a sensitive response of flow rate to rainfall, the amount of CO2 degassing changed distinctly with flow rate. In contrast, the other two sites having low pCO2 springwater reflect a regular seasonal pattern of δ13C in DIC and tufa specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号