首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Huolin River is one of the most important water sources for Xianghai wetland, Horqin wetland, and Chaganhu wetland in the western Songnen Plain of Northeast China. The annual runoff series of 46 years at Baiyun- hushuo Hydrologic Station, which is located in the middle reaches of the Huolin River, were analyzed by using wavelet analysis. Main objective was to discuss the periodic characteristics of the runoff, and examine the temporal patterns of the Huolin River recharging to the floodplain wetlands in the lower reaches of the river, and the corresponding effects of recharging variation on the environmental evolution of the wetlands. The results show that the annual runoff varied mainly at three time scales. The intensities of periodical signals at different time scales were strongly characterized by local distribution in its time frequency domain. The interdecadal variation at a scale of more than 30yr played a leading role in the temporal pattern of runoff variation, and at this scale, the runoff at Baiyunhushuo Hydrologic Station varied in turn of flood, draught and flood. Accordingly, the landscape of the floodplain wetlands presented periodic features, es- pecially prominent before the 1990s. Compared with intense human activities, the runoff periodic pattern at middle (10-20yr) and small (1-10yr) scales, which has relatively low energy, exerted unobvious effects on the environmental evolution of the floodplain wetlands, especially after the 1990s.  相似文献   

2.
Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data from 1950 to 2011 at the Yangtze River Estuary.It can clearly reveal the multi-time scales structure,break point,change and distribution of periodic variation in the different time scales of the runoff series.The main conclusions are that:1) Repeated periodic oscillations accompanied by an extremely large fluctuation are presented in the runoff series with an obvious difference between wet and dry years,and the major periods of the time series are about 3,8,16 and 23 years respectively.Among them,the presented maximum periodic oscillation is 23 years scale.2) In the 23-year time scale,the wet periods are 1950-1958,1969-1980 and 1992-2003,and the dry periods are 1959-1968,1981-1991 and 2004-2011.3) It can be predicted from the view of long time scales that the low annual runoff will likely occur in the near future.  相似文献   

3.
Runoff change and trend of the Naoli River Basin were studied through the time series analysis using the data from the hydrological and meteorological stations. Time series of hydrological data were from 1957 to 2009 for Bao′an station, from 1955 to 2009 for Baoqing station, from 1956 to 2009 for Caizuizi station and from 1978 to 2009 for Hongqiling station. The influences of climate change and human activities on runoff change were investigated, and the causes of hydrological regime change were revealed. The seasonal runoff distribution of the Naoli River was extremely uneven, and the annual change was great. Overall, the annual runoff showed a significant decreasing trend. The annual runoff of Bao′an, Baoqing, and Caizuizi stations in 2009 decreased by 64.1%, 76.3%, and 84.3%, respectively, compared with their beginning data recorded. The wet and dry years of the Naoli River have changed in the study period. The frequency of wet year occurrence decreased and lasted longer, whereas that of dry year occurrence increased. The frequency of dry year occurrence increased from 25.0%-27.8% to 83.9%-87.5%. The years before the 1970s were mostly wet, whereas those after the 1970s were mostly dry. Precipitation reduction and land use changes contributed to the decrease in annual runoff. Rising temperature and water project construction have also contributed important effects on the runoff change of the Naoli River.  相似文献   

4.
Based on annual runoff data collected from several hydrological stations in the Nen River Basin from 1956 to 2004,the cumulative filter method,Mann-Kendall method and Morlet wavelet analysis were used to analyze variations in the characteristics and factors influencing runoff.Specifically,the general characteristics list as:The distribution of runoff was found to be uneven within a year,and the annual variation showed an overall decreasing trend.The abrupt change points of runoff were found to be in the early 1960s,middle 1980s and late 1990s.Multiple time scales analysis revealed three time-scale cycles,a long-term cycle of about 20-35 years with a scale center of 25 years,another cycle of about 8-15 years with a scale center of 11 years and a short-term cycle of about 5 years.Based on the Morlet wavelet transform coefficients figure of the 25-year time scale,it is preliminarily estimated that the Nen River Basin will enter a high flow period in 2013.The results obtained using various methods were consistent with each other.The physical causes of the results were also analyzed to confirm their accuracy.  相似文献   

5.
This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Maj or findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, av- erage temperature in summer, and average temperature in spring. The average annual temperature and annual precipitation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipitation showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we observed nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.  相似文献   

6.
Climate change has significantly affected hydrological processes and increased the frequency and severity of water shortage, droughts and floods in northeast China. A study has been conducted to quantify the influence of climate change on the hydrologic process in the Tao'er River Basin(TRB), one of the most prominent regions in northeast China for water contradiction. The Soil and Water Assessment Tool(SWAT) model was calibrated and validated with observed land use and hydro-climatic data and then employed for runoff simulations at upper, middle and lower reaches of the river basin for different climate change scenarios. The results showed that a gradual increase in temperature and decrease in annual precipitation in the basin was projected for the period 2020-2050 for both representative concentration pathways(RCP) 4.5 and 8.5 scenarios. The climate changes would cause a decrease in annual average runoff at basin outlet by 12 and 23 million m3 for RCP4.5 and 8.5, respectively. The future runoff in the upstream and midstream of the basin during 2020-2050 would be-10.8% and-12.1% lower than the observed runoff compared to the base period for RCP4.5, while those would be-5.3% and-10.7% lower for RCP8.5. The future runoff will decrease at three hydrology stations for the assumed future climate scenarios. The results can help us understand the future temperature and precipitation trends and the hydrological cycle process under different climate change scenarios, and provide the basis for the rational allocation and management of water resources under the influence of future climate change in the TRB.  相似文献   

7.
Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.  相似文献   

8.
The mountainous hydrological process usually shows high variation to climate change and human action. In the Longitudinal Range-Gorge Region (LRGR), Southwestern China and Southeast Asian, the transboundary runoff variations are much more sensitive and complex under the interaction of climate change, “corridor-barrier” functions in LRGR, and dams building. In this paper, based on the long hydrological records (1956-2013) from three mainstream hydrological stations in Nu River, Lancang River, and Red River, the region runoff variations were analyzed. The results show out: i) the regional runoff changes were strongly influenced by the “Corridor-Barrier” functions in LRGR from west to east, the variability extent of annual runoff increased, but tended to decrease after 2009 and the reduced extents also increased; ii) the annual runoff change in the three rivers had high concentration degrees; iii) there were periodicities of 33 years of runoff change in Nu River and Lancang River, and 30 years in Red River, and the lower flow period would continue for 8-9 years in Nu River and Lancang River but only for 4 years in Red River; iv) since 2010, as the two mega dams of Xiaowan and Nuozhadu built in Lancang River mainstream, their variations of annual runoff were quite different. The research results could offer a scientific base for sustainable utilization, conservation, and management of the regional water resources  相似文献   

9.
Based on the time series data from the Aral hydrological station for the period of 1958-2005, the paper reveals the long-term trend and fractal of the annual runoff process in the mainstream of the Tarim River by using the wavelet analysis method and the fractal theory. The main conclusions are as follows: 1) From a large time scale point of view, i.e. the time scale of 16 (24) years, the annual runoff basically shows a slightly decreasing trend as a whole from 1958 to 2005. If the time scale is reduced to 8 (23) or 4 (22) years, the annual runoff still displays the basic trend as the large time scale, but it has fluctuated more obviously during the period. 2) The correlation dimension for the annual runoff process is 3.4307, non-integral, which indicates that the process has both fractal and chaotic characteristics. The correlation dimension is above 3, which means that at least four independent variables are needed to describe the dynamics of the annual runoff process. 3) The Hurst exponent for the first period (1958-1973) is 0.5036, which equals 0.5 approximately and indicates that the annual runoff process is in chaos. The Hurst exponents for the second (1974-1989) and third (1990-2005) periods are both greater than 0.50, which indicate that the annual runoff process showed a long-enduring characteristic in the two periods. The Hurst exponent for the period from 1990 to 2005 indicates that the annual runoff will show a slightly increasing trend in the 16 years after 2005.  相似文献   

10.
The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Reservoir.This study aims to characterize the spatial distribution,inter-annual variation of runoff and sediment load in the Jinsha River Basin,and to analyze the contribution of rainfall and human activities to the runoff and sediment load changes.The monitoring data on runoff,sediment load and precipitation were collected from 11hydrological stations in the Jinsha River Basin from1966 to 2016.The data observed at the outlet of the basin showed that 71.4%of the runoff is from the upper reaches of the Jinsha River Basin and the Yalong River,while 63.3%of the sediment is from the lower reaches(excluding the Yalong River).There is no significant increase in runoff on temporal scale in the Jinsha River Basin,while it has an abrupt change in runoff in both upstream and midstream in 1985,and an abrupt change in downstream in 1980 and2013.The sediment load demonstrated a significantincreasing trend in the upstream,no significant reducing trend in the midstream,but significant reducing trend in the downstream.The sediment load in upstream showed abrupt change in 1987,in midstream in 1978 and 2014,in downstream in 2012.Rainfall dominated runoff variation,contributing more than 59.0%of the total variation,while human activity,including reservoirs construction,the implementation of soil and water conservation projects,is the major factor to sediment load variation,contributing more than 87.0%of the total variation.  相似文献   

11.
The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.  相似文献   

12.
Asatypicalmarshriver,theBielahongRiverliesinthehinterlandofthehoiangPlain.ItrisesinandgoeSthroughl~areasofplainma-rsh.Themarshrateinthebasinis45Percent.ThehydrologicalcharacteristicsoftheBielahongRiverbasincanreflectthehydrologicalcharacteristicsofthewholernaxshplain.Thereare1.119x106hamarshintheSanjiangPlain.AlterlOng-timedevelopment,marshisstillthemainnaturallandscapeandsoiltypeintheplain.Waterisoneofthemostactiveelementsinmarshecosystem.Itaffectsplantsgrowth,speciesdistribution,soilfo…  相似文献   

13.
Based on runoff, air temperature, and precipitation data from 1960 to 2010, the effects of climate change on water resources in the arid region of the northwestern China were investigated. The long-term trends of hydroclimatic variables were studied by using both Mann-Kendall test and distributed-free cumulative sum (CUSUM) chart test. Results indicate that the mean annual air temperature increases significantly from 1960 to 2010. The annual precipitation exhibits an increasing trend, especially in the south slope of the Tianshan Mountains and the North Uygur Autonomous Region of Xinjiang in the study period. Step changes occur in 1988 in the mean annual air temperature time series and in 1991 in the precipitation time series. The runoff in different basins shows different trends, i.e., significantly increasing in the Kaidu River, the Aksu River and the Shule River, and decreasing in the Shiyang River. Correlation analysis reveals that the runoff in the North Xinjiang (i.e., the Weigan River, the Heihe River, and the Shiyang River) has a strong positive relationship with rainfall, while that in the south slope of the Tianshan Mountains, the middle section of the north slope of the Tianshan Mountains and the Shule River has a strong positive relationship with air temperature. The trends of runoff have strong negative correlations with glacier coverage and the proportion of glacier water in runoff. From the late 1980s, the climate has become warm and wet in the arid region of the northwestern China. The change in runoff is interacted with air temperature, precipitation and glacier coverage. The results show that streamflow in the arid region of the northwestern China is sensitive to climate change, which can be used as a reference for regional water resource assessment and management.  相似文献   

14.
人口增长、气候变化、制度变迁、城市化等均会导致土地利用/覆被的变化,进而引起流域水文过程(截留、入渗、蒸散发和地下水补给等)和水循环过程的改变。当前,由于逐年土地利用/覆被数据获取困难、水文模型本身计算缺陷等问题,所有在流域尺度上开展的借助水文模型进行的土地利用/覆被变化影响下的水文模拟研究都存在一个共同缺点,就是采用的水文模型并不能逐年调用土地利用/覆被数据,即水文模型无法真实体现或模拟土地利用/覆被的时空变化。SWAT作为一个广泛应用的分布式水文模型,在其模拟期内,不能逐年调用土地利用/覆被数据,即在进行水文模拟时忽略了土地利用/覆被时间上的变化,这可能会影响其在土地利用/覆被变化剧烈地区(如黑河中游)的应用。黑河流域是典型的内陆河流域,也是中国西北地区第二大内陆河流域。黑河中游是黑河流域的径流耗散区。本文针对SWAT模型在考虑土地利用/覆被变化时的缺点,对其进行了改进并开发出能够逐年调用土地利用/覆被数据的LU-SWAT模型。在土地利用/覆被变化剧烈的黑河中游对SWAT和LU-SWAT模型的径流模拟效果进行比较,发现LU-SWAT模型更适用于黑河中游水循环模拟。  相似文献   

15.
淮河流域是水体遭受营养盐污染较严重的地区,本研究选择淮河上游的淮滨流域(淮滨站以上,流域面积1.6万km2)为研究对象,首先构建了淮滨流域SWAT水文水质模型,然后利用2011—2017年淮滨站实测的月径流和月氨氮浓度对SWAT模型进行了校正与验证,最后基于全球气候模型(GCM)气象数据,预测了未来30年(2020—2029年、2030—2039年、2040—2049年)不同气候变化情境(RCP2.6、RCP4.5、RCP6.0、RCP8.5)下的径流、氨氮浓度和非点源总氮负荷。结果发现,径流在校正期和验证期的Nash-Suttcliffe系数均为0.79,氨氮在校正期和验证期的Nash-Suttcliffe系数均高于0.5,表明模型的适用性良好。研究发现本研究区施肥量与土地利用类型是非点源氮负荷空间分异的主导因素。2020—2049年,不同气候变化情景下,本研究区的降水量和气温均为增长趋势。假如保持基准期(2011—2016年)污染排放强度,仅考虑气候变化影响,流域内非点源污染总氮负荷将比基准期最多增加31.8%,流域出水口淮滨站的年均氨氮浓度将最多减小42.6%。本研究可以为气候变化下淮滨流域的水文水质管理提供科学支撑。  相似文献   

16.
黄河中游黄土高原区河川基流特点及变化分析   总被引:2,自引:0,他引:2  
由于气候变化和人类活动的影响。黄土高原河川基流呈显著下降趋势。对黄河径流量减少产生一定影响。采用日流量过程线切割法计算了河龙区间黄土高原主要支流的基流量。结合地形地貌、水文地质条件,分析了不同地貌类型支流基流的特点,初步分析了影响基流变化的各种因素。认为河龙区间基流变化对黄河水资源影响较大。  相似文献   

17.
The multi-model assessment of glaciohydrological regimes can enhance our understanding of glacier response to climate change. This improved knowledge can uplift our computing abilities to estimate the contributing components of the river discharge. This study examined and compared the hydrological responses in the glacier-dominated Shigar River basin(SRB) under various climatic scenarios using a semi-distributed Modified Positive Degree Day Model(MPDDM) and a distributed Glacio-hydrological Degree-day Model(GDM). Both glacio-hydrological models were calibrated and validated against the observed hydro-meteorological data from 1988-1992 and 1993-1997. Temperature and precipitation data from Shigar and Skardu meteorological stations were used along with field estimated degree-day factor, temperature, and precipitation gradients. The results from both models indicate that the snow and ice melt are vital contributors to sustain river flow in the catchment. However, MPDDM estimated 68% of rain and baseflow contribution to annual river runoff despite low precipitation during the summer monsoon, while GDM estimated 14% rain and baseflow contribution. Likewise, MPDDM calculated 32%, and GDM generated 86% of the annual river runoff from snow and ice melt. MPDDM simulated river discharge with 0.86 and 0.78 NSE for calibration and validation, respectively. Similarly, GDM simulated river discharge with improved accuracy of 0.87 for calibration and 0.84 NSE for the validation period. The snow and ice melt is significant in sustaining river flow in the SRB, and substantial changes in melt characteristics of snow and ice are expected to have severe consequences on seasonal water availability. Based on the sensitivity analysis, both models' outputs are highly sensitive to the variation in temperature. Furthermore, compared to MPDDM, GDM simulated considerable variation in the river discharge in climate scenarios, RCP4.5 and 8.5, mainly due to the higher sensitivity of GDM model outputs to temperature change. The integration of an updated melt module and two reservoir baseflow module in GDM is anticipated to advance the representation of hydrological components, unlike one reservoir baseflow module used separately in MPDDM. The restructured melt and baseflow modules in GDM have fundamentally enriched our perception of glacio-hydrological dynamics in the catchment.  相似文献   

18.
Using wavelet analysis, regression analysis and the Mann-Kendall test, this paper analyzed time-series (1959–2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region, China. Major findings are as follows: 1) In the 48-year study period, average annual temperature, annual precipitation and average annual relative humidity all presented nonlinear trends. 2) At the 16-year time scale, all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter. At the 8-year time scale, an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices. Incidentally, they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards. The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases. 3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale, which revealed a close dynamic relationship among them at the confidence level of 0.001. 4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend, as represented by the rising average annual temperature, was remarkable, but the climate wetting trend, as indicated by the rising annual precipitation and average annual relative humidity, was not obvious.  相似文献   

19.
DYNAMIC VARIATION OF NITROGEN CONTENT IN THE SECOND SONGHUA RIVER   总被引:1,自引:0,他引:1  
ThewaterpollutionintheSecondSonghuaRiverhasbeenpaidmuchattentiontoforalongtime.Manyenvironmentalscientistshavedonealotofresearchworkonit,butmostofresearchcontentsweretofocusonheavymetalpollutionandorganicpollutioninwater,andlittleaboutnitrogen(Fuet…  相似文献   

20.
WATERRESOURCESTRANSFORMATIONANDWATERQUALITYVARIATIONINTHEURUMQIRIVERBASINQuYaoguang(曲耀光);LuoHongzhen(骆鸿珍)(LanzhouInstituteofG...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号