首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The implicit dissipative generalized‐ α method is analyzed using discrete control theory. Based on this analysis, a one‐parameter family of explicit direct integration algorithms with controllable numerical energy dissipation, referred to as the explicit KR‐α method, is developed for linear and nonlinear structural dynamic numerical analysis applications. Stability, numerical dispersion, and energy dissipation characteristics of the proposed algorithms are studied. It is shown that the algorithms are unconditionally stable for linear elastic and stiffness softening‐type nonlinear systems, where the latter indicates a reduction in post yield stiffness in the force–deformation response. The amount of numerical damping is controlled by a single parameter, which provides a measure of the numerical energy dissipation at higher frequencies. Thus, for a specific value of this parameter, the resulting algorithm is shown to produce no numerical energy dissipation. Furthermore, it is shown that the influence of the numerical damping on the lower mode response is negligible. It is further shown that the numerical dispersion and energy dissipation characteristics of the proposed explicit algorithms are the same as that of the implicit generalized‐ α method. A numerical example is presented to demonstrate the potential of the proposed algorithms in reducing participation of undesired higher modes by using numerical energy dissipation to damp out these modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In real‐time hybrid simulations (RTHS) that utilize explicit integration algorithms, the inherent damping in the analytical substructure is generally defined using mass and initial stiffness proportional damping. This type of damping model is known to produce inaccurate results when the structure undergoes significant inelastic deformations. To alleviate the problem, a form of a nonproportional damping model often used in numerical simulations involving implicit integration algorithms can be considered. This type of damping model, however, when used with explicit integration algorithms can require a small time step to achieve the desired accuracy in an RTHS involving a structure with a large number of degrees of freedom. Restrictions on the minimum time step exist in an RTHS that are associated with the computational demand. Integrating the equations of motion for an RTHS with too large of a time step can result in spurious high‐frequency oscillations in the member forces for elements of the structural model that undergo inelastic deformations. The problem is circumvented by introducing the parametrically controllable numerical energy dissipation available in the recently developed unconditionally stable explicit KR‐α method. This paper reviews the formulation of the KR‐α method and presents an efficient implementation for RTHS. Using the method, RTHS of a three‐story 0.6‐scale prototype steel building with nonlinear elastomeric dampers are conducted with a ground motion scaled to the design basis and maximum considered earthquake hazard levels. The results show that controllable numerical energy dissipation can significantly eliminate spurious participation of higher modes and produce exceptional RTHS results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
显-隐式组合数值积分算法结合了显式算法无需迭代和隐式算法无条件稳定的各自优点,是结构抗震拟动力试验顺利运行的关键.在对传统显式中央差分法和隐式Newmark β组合算法进行参数修正的基础上,建立了修正CD-Newmark算法,考虑阻尼的影响分析了组合算法的稳定性条件、周期失真率和数值阻尼比,分别得到了试验子结构的稳定性条件和计算子结构无条件稳定的参数合理取值范围,并对计算精度进行了分析.通过算例分析验证了算法的数值特性,从而初步解决了CD-Newmark算法存在稳定性界限过严的问题,为结构抗震拟动力混合试验提供了研究参考.  相似文献   

4.
The existing on‐line numerical integration algorithms are derived from the Newmark method, which is based on an approximation of derivatives in the differential equation. The state–space procedure (SSP), based on an interpolation of the discrete excitation signals for piecewise convolution integral, has been confirmed as more reliable than the Newmark method in terms of numerical accuracy and stability. In an attempt to enhance the pseudodynamic test, this study presents an on‐line integration algorithm (referred to as the OS–SSP method) via an integration of the state–space procedure with Nakashima's operator‐splitting concept. Numerical stability and accuracy assessment of the proposed algorithm in addition to the explicit Newmark method and the OS method were investigated via an eigenvalue, frequency‐domain and time‐domain analysis. Of the on‐line integration algorithms investigated, the OS–SSP method is demonstrated as the most accurate method with an acceptable stability (although not unconditionally stable) characteristic. Therefore, the OS–SSP method is the most desirable method for pseudodynamic testing if the numerical stability criterion (Δt/T⩽0.5) is ensured for every vibration mode involved. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
The time-integration algorithm is an indispensable element to determine response of the boundary of the numerical as well as physical parts in a hybrid test. Instability of the time-integration algorithm may directly lead to failure of the test, so stability of an integration algorithm is particularly important for hybrid testing. The explicit algorithms are very popular in hybrid testing, because iteration is not needed. Many unconditionally stable explicit-algorithms have been proposed for hybrid testing. However, the stability analysis approaches used in all these methods are valid only for linear systems. In this paper, a uniform formulation for energy-consistent time integrations, which are unconditionally stable, is proposed for nonlinear systems. The solvability and accuracy are analyzed for typical energy-consistent algorithms. Some numerical examples and the results of a hybrid test are provided to validate the effectiveness of energy-consistent algorithms.  相似文献   

6.
Real‐time hybrid simulation is a viable experiment technique to evaluate the performance of structures equipped with rate‐dependent seismic devices when subject to dynamic loading. The integration algorithm used to solve the equations of motion has to be stable and accurate to achieve a successful real‐time hybrid simulation. The implicit HHT α‐algorithm is a popular integration algorithm for conducting structural dynamic time history analysis because of its desirable properties of unconditional stability for linear elastic structures and controllable numerical damping for high frequencies. The implicit form of the algorithm, however, requires iterations for nonlinear structures, which is undesirable for real‐time hybrid simulation. Consequently, the HHT α‐algorithm has been implemented for real‐time hybrid simulation using a fixed number of substep iterations. The resulting HHT α‐algorithm with a fixed number of substep iterations is believed to be unconditionally stable for linear elastic structures, but research on its stability and accuracy for nonlinear structures is quite limited. In this paper, a discrete transfer function approach is utilized to analyze the HHT α‐algorithm with a fixed number of substep iterations. The algorithm is shown to be unconditionally stable for linear elastic structures, but only conditionally stable for nonlinear softening or hardening structures. The equivalent damping of the algorithm is shown to be almost the same as that of the original HHT α‐algorithm, while the period elongation varies depending on the structural nonlinearity and the size of the integration time‐step. A modified form of the algorithm is proposed to improve its stability for use in nonlinear structures. The stability of the modified algorithm is demonstrated to be enhanced and have an accuracy that is comparable to that of the existing HHT α‐algorithm with a fixed number of substep iterations. Both numerical and real‐time hybrid simulations are conducted to verify the modified algorithm. The experimental results demonstrate the effectiveness of the modified algorithm for real‐time testing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
基于离散控制理论,结合CR法和RST法提出一种无条件稳定的动力学显式新算法。以算法精度和稳定性为条件,通过离散传递函数推导参数表达式和极点,使得新算法可满足零振幅衰减率和零周期延长率。算法参数αγ作为传递格式选择参数,当αγ分别取1时,新算法对应CR法和RST法的位移速度表达式。对新算法的精度和稳定性理论分析表明:新算法可满足无振幅衰减和周期延长,且对于线性系统和非线性刚度软化系统为无条件稳定,对非线性刚度硬化系统为条件稳定,并给出了非线性刚度硬化系统的稳定性范围。算例分析验证了新算法的精度和稳定性,证明提出的新算法是可靠有效的。  相似文献   

8.
An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear system.If the value of α is selected within [-0.5,0],then the algorithm is shown to be unconditionally stable.Next,the root locus method for a discrete dynamic system is applied to analyze the stability of a nonlinear system.The results show that the proposed method is conditionally stable for dynamic systems with stiffness hardening.To improve the stability of the proposed method,the structure stiffness is then identified and updated.Both numerical and pseudo-dynamic tests on a structure with the collision effect prove that the stiffness updating method can effectively improve stability.  相似文献   

9.
This paper employs a velocity plus displacement(V+D)-based equivalent force control(EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 feedback control loops to replace mathematical iteration to solve the nonlinear dynamic equation. A spectral radius analysis of the amplification matrix shows that the type 2 EFC-explicit, Newmark-β method has beneficial numerical characteristics for this method. Its stability limit of Ω = 2 remains unchanged regardless of the system damping because the velocity is achieved with very high accuracy during simulation. In contrast, the stability limits of the central difference method using direct velocity prediction and the EFC-average acceleration method with linear interpolation are shown to decrease with an increase in system damping. In fact, the EFC-average acceleration method is shown to change from unconditionally stable to conditionally stable. We also show that if an over-damped system with a damping ratio of 1.05 is considered, the stability limit is reduced to Ω =1.45. Finally, the results from an experiment with a single-degree-of-freedom structure installed with a magneto-rheological(MR) damper are presented. The results demonstrate that the proposed method is able to follow both displacement and velocity commands with moderate accuracy, resulting in improved test performance and accuracy for structures that are sensitive to both velocity and displacement inputs. Although the findings of the study are promising, additional test data and several further improvements will be required to draw general conclusions.  相似文献   

10.
A new family of generalized‐α (G‐α) algorithm without overshoot is presented by introducing seven free parameters into the single‐step three‐stage formulation for solution of structural dynamic problems. It is proved through finite difference analysis that these algorithms are unconditionally stable, second‐order accurate and numerical dissipation controllable. The comparison of the new G‐α algorithms with the commonly used G‐α algorithms shows that the newly developed algorithms have the advantage of eliminating the overshooting characteristics exhibited by the commonly used algorithms while their excellent property of dissipation is preserved. The numerical simulation results obtained using a single‐degree‐of‐freedom system and a two‐degree‐of‐freedom system to represent the character of typical large systems coincide well with the results of theoretical analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents the authors' response to the discussion by Dean J. Maxam and Kumar K. Tamma of the paper titled “Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation.”  相似文献   

12.
A variant of the Rosenbrock‐W integration method is proposed for real‐time dynamic substructuring and pseudo‐dynamic testing. In this variant, an approximation of the Jacobian matrix that accounts for the properties of both the physical and numerical substructures is used throughout the analysis process. Only an initial estimate of the stiffness and damping properties of the physical components is required. It is demonstrated that the method is unconditionally stable provided that specific conditions are fulfilled and that the order accuracy can be maintained in the nonlinear regime without involving any matrix inversion while testing. The method also features controllable numerical energy dissipation characteristics and explicit expression of the target displacement and velocity vectors. The stability and accuracy of the proposed integration scheme are examined in the paper. The method has also been verified through hybrid testing performed of SDOF and MDOF structures with linear and highly nonlinear physical substructures. The results are compared with those obtained from the operator splitting method. An approach based on the modal decomposition principle is presented to predict the potential effect of experimental errors on the overall response during testing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The two one-state-variable, rate- and state-dependent friction laws, i.e., the slip and slowness laws, are compared on the basis of dynamical behavior of a one-degree-of-freedom spring-slider model through numerical simulations. Results show that two (normalized) model parameters, i.e., Δ (the normalized characteristic slip distance) and β?α (the difference in two normalized parameters of friction laws), control the solutions. From given values of Δ, β, and α, for the slowness laws, the solution exists and the unique non-zero fixed point is stable when Δ>(β?α), yet not when Δ < (β?α). For the slip law, the solution exists for large ranges of model parameters and the number and stability of the non-zero fixed points change from one case to another. Results suggest that the slip law is more appropriate for controlling earthquake dynamics than the slowness law.  相似文献   

14.
Bao  Xin  Liu  Jingbo  Li  Shutao  Wang  Fei  Lu  Xihuan 《地震工程与工程振动(英文版)》2022,21(4):929-945

Viscoelastic artificial boundaries are widely adopted in numerical simulations of wave propagation problems. When explicit time-domain integration algorithms are used, the stability condition of the boundary domain is stricter than that of the internal region due to the influence of the damping and stiffness of an viscoelastic artificial boundary. The lack of a clear and practical stability criterion for this problem, however, affects the reasonable selection of an integral time step when using viscoelastic artificial boundaries. In this study, we investigate the stability conditions of explicit integration algorithms when using three-dimensional (3D) viscoelastic artificial boundaries through an analysis method based on a local subsystem. Several boundary subsystems that can represent localized characteristics of a complete numerical model are established, and their analytical stability conditions are derived from and further compared to one another. The stability of the complete model is controlled by the corner regions, and thus, the global stability criterion for the numerical model with viscoelastic artificial boundaries is obtained. Next, by analyzing the impact of different factors on stability conditions, we recommend a stability coefficient for practically estimating the maximum stable integral time step in the dynamic analysis when using 3D viscoelastic artificial boundaries.

  相似文献   

15.
The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical nonlinear damping, including the special case of velocity power type damping with a bilinear restoring force model. Based on the energy approach, the stability of the AAM is proven for SDOF structures using the mathematical features of the velocity power function and for MDOF structures by applying the virtual displacement theorem. Finally, numerical examples are given to demonstrate the accuracy of the theoretical analysis.  相似文献   

16.
The algorithm of successive formulas for computing numerical vibrating response of unequal time interval for a single-degree of freedom oscillator in linear cases are more systematically introduced in the paper. Some numerical analysis characteristics of the algorithm are discussed. It is proved that the algorithm is unconditionally stable and convergent. A computer program for simultaneous calculation of the relative displacement, the relative velocity and the absolute acceleration response spectra is edited in the paper. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 236–242, 1992.  相似文献   

17.
Input variable selection (IVS) is a necessary step in modeling water resources systems. Neglecting this step may lead to unnecessary model complexity and reduced model accuracy. In this paper, we apply the minimum redundancy maximum relevance (MRMR) algorithm to identifying the most relevant set of inputs in modeling a water resources system. We further introduce two modified versions of the MRMR algorithm (α-MRMR and β-MRMR), where α and β are correction factors that are found to increase and decrease as a power-law function, respectively, with the progress of the input selection algorithms and the increase of the number of selected input variables. We apply the proposed algorithms to 22 reservoirs in California to predict daily releases based on a set from a 121 potential input variables. Results indicate that the two proposed algorithms are good measures of model inputs as reflected in enhanced model performance. The α-MRMR and β-MRMR values exhibit strong negative correlation to model performance as depicted in lower root-mean-square-error (RMSE) values.  相似文献   

18.
An accurate algorithm for the integration of the equations of motion arising in structural dynamics is presented. The algorithm is an unconditionally stable single-step implicit algorithm incorporating algorithmic damping. The displacement for a Single-Degree-of-Freedom system is approximated within a time step by a function which is cubic in time. The four coefficients of the cubic are chosen to satisfy the two initial conditions and two weighted integral equations. By considering general weight functions, eight additional coefficients arise. These coefficients are selected to (i) minimize the difference between exact and approximate solutions for small time steps, (ii) incorporate specified algorithmic damping for large time steps, (iii) ensure unconditional stability and (iv) minimize numerical operations in forming the amplification matrix. The accuracy of the procedure is discussed, and the solution time is compared with a widely used algorithm. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Real‐time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real‐time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree‐of‐freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real‐time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real‐time testing to ensure the continuous movement of the servo‐hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real‐time hybrid test results of single‐degree‐of‐freedom and multi‐degree‐of‐freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real‐time hybrid test results to be achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The convergence and stability of step-by-step integration schemes used in the inelastic dynamic analysis of structures and their corresponding criteria were studied for a restoring force model with negative-stiffness. Convergence conditions and stability conditions 1, 2 or 3 were established. The numerical stability of the integration under negative-stiffness belongs to the category of relative stability; consequently, the concepts and the conclusions concerning numerical stability in the case of positive-stiffness (which belongs to absolute stability) cannot be used. Research into several step-by-step integration methods usually employed in inelastic dynamic analysis has shown great differences in numerical stability for models with negative-stiffness as compared with positive-stiffness models. The central difference method is convergent and unconditionally stable in the case of negative-stiffness, though it is only conditionally stable in the case of positive-stiffness. The Houbolt method satisfies the requirement for convergence; its stability, however, depends not only on the integration step size Δt but also on the stiffness ratio β for the model with negative-stiffness, unlike the unconditional stability for the model with positive-stiffness. The Newmark constant acceleration method is convergent and unconditionally stable in the case of negative-stiffness just like it is in the case of positive-stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号