首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
By advancing the technologies regarding seismic control of structures and development of earthquake resistance systems in the past decades application of different types of earthquake energy dissipation system has incredibly increased. Viscous damper device as a famous and the simplest earthquake energy dissipation system is implemented in many new structures and numerous number of researches have been done on the performance of viscous dampers in structures subjected to earthquake. The experience of recent severe earthquakes indicates that sometimes the earthquake energy dissipation devices are damaged during earthquakes and there is no function for structural control system. So, damage of earthquake energy dissipation systems such as viscous damper device must be considered during design of earthquake resistance structures.This paper demonstrates the development of three-dimensional elasto-plastic viscous damper element consisting of elastic damper in the middle part and two plastic hinges at both ends of the element which are compatible with the constitutive model to reinforce concrete structures and are capable to detect failure and damage in viscous damper device connections during earthquake excitation. The finite element model consists of reinforced concrete frame element and viscous damper element is developed and special finite element algorithm using Newmark׳s direct step-by-step integration is developed for inelastic dynamic analysis of structure with supplementary elasto-plastic viscous damper element. So based on all the developed components an especial finite computer program has been codified for “Nonlinear Analysis of Reinforced Concrete Buildings with Earthquake Energy Dissipation System”. The evaluation of seismic response of structure and damage detection in structural members and damper device was carried out by 3D modeling, of 3 story reinforced concrete frame building under earthquake multi-support excitation.  相似文献   

2.
Buildings are continually subject to dynamic loads, such as wind load, seismic ground motion, and even the load from internal utility machines. The recent trend of constructing more flexible high‐rise buildings underscores the importance of including viscoelastic dampers in building designs. Viscoelastic dampers are used to control the dynamic response of a building. If the seismic design is based only on the linear response spectrum, considerable error may occur when calculating the seismic response of a building; rubber viscoelastic dampers show non‐linear hysteretic damping that is quite different from viscous damping. This study generated a non‐linear response spectrum using a non‐linear oscillator model to simulate a building with viscoelastic dampers installed. The parameters used in the non‐linear damper model were obtained experimentally from dynamic loading tests. The results show that viscoelastic dampers effectively reduce the seismic displacement response of a structure, but transmit more seismic force to the structure, which essentially increases its seismic acceleration response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
This paper evaluates the hysteretic behavior of an innovative compressed elastomer structural damper and its applicability to seismic‐resistant design of steel moment‐resisting frames (MRFs). The damper is constructed by precompressing a high‐damping elastomeric material into steel tubes. This innovative construction results in viscous‐like damping under small strains and friction‐like damping under large strains. A rate‐dependent hysteretic model for the compressed elastomer damper, formed from a parallel combination of a modified Bouc–Wen model and a non‐linear dashpot is presented. The model is calibrated using test data obtained under sinusoidal loading at different amplitudes and frequencies. This model is incorporated in the OpenSees [17] computer program for use in seismic response analyses of steel MRF buildings with compressed elastomer dampers. A simplified design procedure was used to design seven different systems of steel MRFs combined with compressed elastomer dampers in which the properties of the MRFs and dampers were varied. The combined systems are designed to achieve performance, which is similar to or better than the performance of conventional steel MRFs designed according to current seismic codes. Based on the results of nonlinear seismic response analyses, under both the design basis earthquake and the maximum considered earthquake, target properties for a new generation of compressed elastomer dampers are defined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
粘弹性阻尼器连接的相邻结构非线性随机地震反应分析   总被引:7,自引:1,他引:7  
本文用随机等价线性化方法探讨了相邻结构之间用粘弹性阻尼器连接后的非线性随机地震反应,分析发现:在小震作用下,粘弹性阻尼器对相邻结构可以同时达到较好的控制效果;但是在强烈地震作用下,安装粘弹性阻尼器有可能会在减少一个结构的地震反应的同时,增大另外一个结构的地震反应。  相似文献   

5.
Fluid viscous dampers are used to control story drifts and member forces in structures during earthquake events. These elements provide satisfactory performance at the design‐level or maximum considered earthquake. However, buildings using fluid viscous dampers have not been subjected to very large earthquakes with intensities greater than the design and maximum considered events. Furthermore, an extensive database of viscous damper performance during large seismic events does not exist. To address these issues, a comprehensive analytical and experimental investigation was conducted to determine the performance of damped structures subjected to large earthquakes. A critical component of this research was the development and verification of a detailed viscous damper mathematical model that incorporates limit states. The development of this model and the laboratory and simulation results conclude good correlation with the new model and the damper limit states and provide superior results compared with the typical damper model when considering near collapse evaluation of structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
高烈度地震对铁路桥梁安全造成巨大隐患,且次生灾害将引起较大经济损失。该大跨连续梁桥所处地震带正进入活跃期,未来有发生较大规模强烈地震的可能,但桥梁自身不具备高烈度抗震能力,需利用粘滞阻尼器对其进行减震处理。采用斜向设置阻尼器并配合双曲面球型支座,来控制可能发生的纵向和横向地震。通过数值模拟进行阻尼器参数敏感性分析以及减震效果讨论,进而确定其最优设置方案。选取相关参数作为评价指标,对比加设阻尼器前后易损部位的地震响应,确定其在高烈度地震荷载激励下的减震效果。研究结果表明:在液体粘滞阻尼器的作用下,使得各墩协同受力,大大增加了结构的整体性,同时能很好弥补减隔震支座不能很好的控制上部结构位移的缺点,同时能降低罕遇地震力对桥墩的冲击损伤。因此,在高烈度区大跨度桥梁中更有必要设置阻尼器来抗震。  相似文献   

7.
A series of large‐scale dynamic tests was conducted on a passively controlled five‐story steel building on the E‐Defense shaking table facility in Japan to accumulate knowledge of realistic seismic behavior of passively controlled structures. The specimen was tested by repeatedly inserting and replacing each of four damper types, that is, the buckling restrained braces, viscous dampers, oil dampers, and viscoelastic dampers. Finally, the bare steel moment frame was tested after removing all dampers. A variety of excitations was applied to the specimen, including white noise, various levels of seismic motion, and shaker excitation. System identification was implemented to extract dynamic properties of the specimen from the recorded floor acceleration data. Damping characteristics of the specimen were identified. In addition, simplified estimations of the supplemental damping ratios provided by added dampers were presented to provide insight into understanding the damping characteristics of the specimen. It is shown that damping ratios for the specimen equipped with velocity‐dependent dampers decreased obviously with the increasing order of modes, exhibiting frequency dependency. Damping ratios for the specimen equipped with oil and viscoelastic dampers remained constant regardless of vibration amplitudes, whereas those for the specimen equipped with viscous dampers increased obviously with an increase in vibration amplitudes because of the viscosity nonlinearity of the dampers. In very small‐amplitude vibrations, viscous and oil dampers provided much lower supplemental damping than the standard, whereas viscoelastic dampers could be very efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
薄弱层设置耗能阻尼器支撑的钢框架模型振动台试验   总被引:2,自引:0,他引:2  
陈灿  徐伟 《世界地震工程》2006,22(4):121-126
设计制作了一个五层钢框架模型,在其第一层、第三层和第五层薄弱层分别设置摩擦阻尼器、粘弹性阻尼器和粘弹性-摩擦阻尼器等三种耗能阻尼器支撑,进行了罕遇地震和多遇地震下的振动台试验。试验结果表明,耗能阻尼器支撑能够有效地控制结构的地震反应。  相似文献   

9.
朱晓莹  吴浩  周颖 《地震工程学报》2022,44(6):1317-1324
相对传统结构,自复位墙结构在地震作用下具有更大的变形能力且几乎无残余位移,但其耗能能力较弱,需采用附加阻尼来增加整体耗能.目前,金属阻尼器已广泛用于自复位墙结构,其可显著减小结构大震下的地震响应,但小震下的位移和加速度减震效果不佳.因此,将小变形下即可耗能的黏弹性阻尼器应用于自复位墙结构中.设计一幢10层自复位墙结构,分别采用黏弹性阻尼器和 U 型金属阻尼器作为附加耗能构件,通过弹塑性时程分析对比采用两种耗能机制的结构地震响应.结果表明,黏弹性阻尼器可显著减小自复位墙结构在小震下的位移和加速度响应;U 型金属阻尼器在中震下开始耗能,在大震和巨震下,其减震效果会超越黏弹性阻尼器.因此,为进一步优化自复位墙结构在不同水准地震作用下的抗震性能,建议结合阻尼器的特点进行合理设计.  相似文献   

10.
Performance analysis of the Pangu Plaza under earthquake and wind loads is described in this paper.The plaza is a 39-story steel high-rise building,191 m high,located in Beijing close to the 2008 Olympic main stadium.It has both fluid viscous dampers(FVDs) and buckling restrained braces or unbonded brace(BRB or UBB) installed.A repeated iteration procedure in its design and analysis was adopted for optimization.Results from the seismic response analysis in the horizontal and vertical directions show that th...  相似文献   

11.
阻尼器是一种效果良好的减震装置,将阻尼器安装于结构中能够适时为结构体系提供阻尼力,从而减小地震作用对结构的破坏。黏滞阻尼器对振动的反应比较敏感,在结构受到较小振动时就可以发挥其减震效果,其阻尼力会随着振动周期和使用状态温度的不同而变化。当地震发生时,安装在结构中的阻尼器会消减地震作用,降低传导到主结构体系的地震能量,减小结构相对位移。本文介绍了黏滞阻尼器的工作原理和安装有黏滞阻尼器的结构体系的阻尼比的计算方法,对减震结构的减震效果的评析方法做出探讨,并以一安装有黏滞阻尼器的台湾某既有钢框架结构为例,分析了(1)该结构在遭受地震作用时的地震反应;(2)该结构体系在不同地震作用水平时的阻尼比,包括主体结构阻尼比和黏滞阻尼器阻尼比;(3)结构安装黏滞阻尼器后的减震效果。实例对本文的减震评析方法和减震效果进行了说明和分析,计算及分析结果表明利用黏滞阻尼器加固既有结构能够取得较好的减震效果,本文所提减震效果评析方法是一种实用有效的评析方法,对类似工程的减震评析具有一定的参考价值。  相似文献   

12.
结构附加粘滞阻尼器的抗震设计   总被引:2,自引:0,他引:2  
本文结合抗震设计规范反应谱,给出了一个附加非线性流体粘滞阻尼器结构的抗震设计方法。研究了非线性阻尼器的力学特性,引入了非线性流体阻尼器的等效线性阻尼比,给出了计算最大加速度时刻附加非线性流体阻尼器结构反应的荷载组合系数,提出了按阻尼力的水平力分量与楼层剪力成正比的原则分配阻尼器阻尼系数的方法。同时给出了基于抗震规范设计反应谱附加非线性阻尼器结构的设计流程,通过一个算例说明了使用该方法设计附加非线性粘滞阻尼器结构的全过程。算例分析表明,这种设计方法适合于手算,便于设计人员掌握,在初步设计阶段可以快速、有效地设计满足给定性能水平的附加非线性流体阻尼器体系。  相似文献   

13.
In this study, several mass dampers were designed and fabricated to suppress the seismic responses of a ¼‐scale three‐storey building structure. The dynamic properties of the dampers and structure were identified from free and forced vibration tests. The building structure with or without the dampers was, respectively, tested on a shake table under the white noise excitation, the scaled 1940 El Centro earthquake and the scaled 1952 Taft earthquake. The dampers were placed on the building floors using the sequential procedure developed by the authors in previous studies. Experimental results indicated that the multiple damper system is substantially superior to a single tuned mass damper in mitigating the floor accelerations even though the multiple dampers are sub‐optimal in terms of tuning frequency, damping and placement. These results validated the sequential procedure for placement of the multiple dampers. The structure was also analysed numerically based on the shake table excitation and the identified structure and damper parameters for all test cases. Numerical and experimental results are in good agreement, validating the dynamic properties identified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
某周期比超限偏心结构地震反应控制分析   总被引:1,自引:0,他引:1  
本文以周期比超限的某偏心结构工程为研究背景,基于SAP2000建立三维有限元模型,采用黏滞阻尼器、黏弹性阻尼器、软钢阻尼器、复合铅黏弹性阻尼器和钢支撑五种减震方案对其进行扭转控制,针对不同扭转控制方案分别进行了模态分析、反应谱分析和动力时程分析,对比研究了多遇地震作用下各控制方案的周期比、层间位移、支撑内力及阻尼器的耗能能力。研究表明:五种控制方案均具有有效抑制结构扭转振动响应的能力,降低结构的最大层间位移角,并使之满足规范要求;后四种控制方案能明显减小结构的周期比,将结构第一扭转反应控制在第三振型;对于此类偏心结构体系的扭转振动控制,本文建议阻尼器设置应尽量远离刚度中心,以达到最佳扭转控制效果。  相似文献   

15.
粘弹性阻尼器(ved)是抗震被动控制中一种十分有效的耗能减震装置。本文根据粘弹性阻尼材料的应力-应变关系,推导了粘弹性阻尼器和人字型支撑的组合层间单元刚度矩阵及单元控制力向量;并基于框架结构的空间特性,建立了设置斜撑Ved框架结构在考虑空间协同分析的基础上地震反应时程分析的控制方法;最后,应用本文的方法,对设置Ved斜支撑后钢筋混凝土框架结构进行了结构地震反应时程分析,并根据计算结果对其减震效果进行了分析讨论。  相似文献   

16.
A simplified design procedure (SDP) for preliminary seismic design of frame buildings with structural dampers is presented. The SDP uses elastic‐static analysis and is applicable to structural dampers made from viscoelastic (VE) or high‐damping elastomeric materials. The behaviour of typical VE materials and high‐damping elastomeric materials is often non‐linear, and the SDP idealizes these materials as linear VE materials. With this idealization, structures with VE or high‐damping elastomeric dampers can be designed and analysed using methods based on linear VE theory. As an example, a retrofit design for a typical non‐ductile reinforced concrete (RC) frame building using high‐damping elastomeric dampers is developed using the SDP. To validate the SDP, results from non‐linear dynamic time history analyses (NDTHA) are presented. Results from NDTHA demonstrate that the SDP estimates the seismic response with sufficient accuracy for design. It is shown that a non‐ductile RC frame building can be retrofit with high‐damping elastomeric dampers to remain essentially elastic under the design basis earthquake (DBE). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
三种阻尼减振结构抗震性能的对比分析   总被引:4,自引:0,他引:4  
对设置两种新型摩擦阻尼器(T形芯板摩擦阻尼器和拟粘滞摩擦阻尼器)和粘滞阻尼器的单自由度结构及多层实际工程结构进行了时程分析研究。结果表明,一方面三种阻尼器都能有效地控制结构的反应,另一方面T形芯板摩擦阻尼器的位移控制效果略好于拟粘滞摩擦阻尼器,但是后者的加速度控制效果好于前者。  相似文献   

18.
针对某型钢混凝土框支剪力墙高层建筑结构高宽比过大、竖向刚度不规则等问题,采用耗能减震技术,在转换层与避难层处设置黏滞阻尼器,采用ETABS进行非线性动力时程分析,研究黏滞阻尼器对型钢混凝土框支剪力墙结构的地震和风荷载控制作用,提高型钢混凝土转换构件的抗震性能。研究结果表明,在不同地震动作用下黏滞阻尼器均能有效地降低型钢混凝土框支剪力墙结构的地震响应,结构峰值位移和最大层间位移角的减幅分别介于3%~45%和2%~43%,而黏滞阻尼器耗散总输入能量比例最高达73.65%;在风荷载时程作用下,结构各控制楼层的峰值位移减幅介于1%~11%之间。  相似文献   

19.
Plan asymmetric buildings are very susceptible to earthquake induced damage due to lateral torsional coupling, and the corners of these systems suffer heavy damage during earthquakes. Therefore, it is important to investigate the seismic behavior of an asymmetric plan building with MR dampers. In this study, the effectiveness of MR damper-based control systems has been investigated for seismic hazard mitigation of a plan asymmetric building. Furthermore, the infl uence of the building parameters and damper command voltage on the control performance is examined through parametric study. The building parameters chosen are eccentricity ratio and frequency ratio. The results show that the MR damper-based control systems are effective for plan asymmetric systems.  相似文献   

20.
The effectiveness of viscous and viscoelastic dampers for seismic response reduction of structures is quite well known in the earthquake engineering community. This paper deals with the optimal utilization of these dampers in a structure to achieve a desired performance under earthquake‐induced ground excitations. Frequency‐dependent and ‐independent viscous dampers and viscoelastic dampers have been considered as the devices of choice. To determine the optimal size and location of these dampers in the structure, a genetic algorithm is used. The desired performance is defined in terms of several different forms of performance functions. The use of the genetic approach is not limited to any particular form of performance function as long as it can be calculated numerically. For illustration, numerical examples for different building structures are presented showing the distribution and size of different dampers required to achieve a desired level of reduction in the response or a performance index. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号