首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the sea ice cover in the North Pacific and the typhoon frequency has been studied in this paper. It follows that the index for the sea ice cover in the North Pacific (ISA) both in December-January-February (DJF) and in March-April-May (MAM) is negatively correlated with annual typhoon number over the western North Pacific (TNWNP) during 1965―2004, with correlation coeffi-cients of -0.42 and -0.49 respectively (above 99% significant level). Large sea ice cover in the North Pacific tends to decrease TNWNP. Positive ISA (MAM) is associated with the tropical circulation and SST anomalies in the North Pacific, which may lead to unfavorable dynamic and thermal conditions for typhoon genesis over WNP from June to October (JJASO). The variability of the atmospheric circula-tion over the North Pacific, associated with the ISA anomaly in MAM is connected to the tropical at-mospheric circulation variability in MAM via the teleconnection wave train. Besides, as the tropical circulation has strong seasonal persistency from the MAM to JJASO, thus, the ISA in MAM-related variability of the tropical atmospheric circulation as well as the SST can affect the typhoon activity over the western North Pacific.  相似文献   

2.
The relationship between the North Atlantic Oscillation(NAO) and the tropical cyclone frequency over the western North Pacific(WNPTCF) in summer is investigated by use of observation data. It is found that their linkage appears to have an interdecadal change from weak connection to strong connection. During the period of 1948–1977, the NAO was insignificantly correlated to the WNPTCF. However, during the period of 1980–2009, they were significantly correlated with stronger(weaker) NAO corresponding to more(fewer) tropical cyclones in the western North Pacific. The possible reason for such a different relationship between the NAO and the WNPTCF during the former and latter periods is further analyzed from the perspective of large-scale atmospheric circulations. When the NAO was stronger than normal in the latter period, an anomalous cyclonic circulation prevailed in the lower troposphere of the western North Pacific and the monsoon trough was intensified, concurrent with the eastward-shifting western Pacific subtropical high as well as anomalous low-level convergence and high-level divergence over the western North Pacific. These conditions favor the genesis and development of tropical cyclones, and thus more tropical cyclones appeared over the western North Pacific. In contrast, in the former period, the impact of the NAO on the aforementioned atmospheric circulations became insignificant, thereby weakening its linkage to the WNPTCF. Further study shows that the change of the wave activity flux associated with the NAO during the former and latter periods may account for such an interdecadal shift of the NAO–WNPTCF relationship.  相似文献   

3.
Relationships between the North Pacific Oscillation (NPO) and the typhoon as well as hurricane fre-quencies are documented. The correlation between NPO index in June-July-August-September and the annual typhoon number in the western North Pacific is 0.37 for the period of 1949―1998. The NPO is correlated with the annual hurricane number in the tropical Atlantic at -0.28 for the same period. The variability of NPO is found to be concurrent with the changes of the magnitude of vertical zonal wind shear, sea-level pressure patterns, as well as the sea surface temperature, which are physically asso- ciated with the typhoons and hurricanes genesis. The NPO associated atmospheric circulation vari- ability is analyzed to explain how NPO is linked with variability of the tropical atmospheric circulation in the western Pacific and the tropical Atlantic, via the atmospheric teleconnection.  相似文献   

4.
In this paper, the impacts of the atmospheric circulation during boreal winter-spring on the western North Pacific (WNP) typhoon frequency (WNPTF) are studied. Several new factors in winter-spring in- fluencing the typhoon frequency were identified, including the sea ice cover in the North Pacific and the North Pacific oscillation. Based on these results, the multi-linear regression was applied to establishing a new forecast model for the typhoon frequency by using the datasets of 1965―1999. The forecast model shows a high correlation coefficient (0.79) between the model simulated and the actual typhoon frequencies in the period of 1965―1999. The forecast model also exhibits reasonable hindcasts for the typhoon frequencies for the years 2000―2006. Therefore, this work demonstrates that the new pre- dictors are significant for the prediction of the interannual variability of the WNPTF, which could be potentially used in the operational seasonal forecast of the typhoon frequency in the WNP to get a more physically based operational prediction model and higher forecast skill.  相似文献   

5.
The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season over the past twenty years. More TCs formed in the eastern region of the WNP and the northern region of the South China Sea(SCS). More TCs took the northeast quadrant in the WNP, recurving from northwestward to northward and causing heavy damages in China's Mainland(69.73 billion yuan) in 2018. Multiscale climate variability is conducive to an active season via an enhanced monsoon trough and a weakened subtropical high in the WNP. The large-scale backgrounds in 2018 showed a favorable environment for TCs established by a developing central Pacific(CP) El Ni?o and positive Pacific meridional mode(PMM)episode on interannual timescales. The tropical central Pacific(TCP) SST forcing exhibits primary control on TCs in the WNP and large-scale circulations, which are insensitive to the PMM. During CP El Ni?o years, anomalous convection associated with the TCP warming leads to significantly increased anomalous cyclonic circulation in the WNP because of a Gill-type Rossby wave response. As a result, the weakened subtropical high and enhanced monsoon trough shift eastward and northward, which favor TC genesis and development. Although such increased TC activity in 2018 might be slightly suppressed by interdecadal climate variability, it was mostly attributed to the favorable interannual background. In addition, high-frequency climate signals,such as intraseasonal oscillations(ISOs) and synoptic-scale disturbances(SSDs), interacted with the enhanced monsoon trough and strongly modulated regional TC genesis and development in 2018.  相似文献   

6.
The global warming has obviously been causingthe Arctic sea ice shrinking and thinning during thelast 30 years, which would increase free ice waters andenhance biological productivity. These changes willimpact the source and sink of carbon in the ArcticOcean and subarctic waters as well as a feedback tothe global change[1—3]. The Chukchi Sea is located in the southwest ofthe western Arctic Ocean and the Bering Sea in thenorthwest of the North Pacific Ocean. Both seas are 1997—2001) and…  相似文献   

7.
This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.  相似文献   

8.
In this study, sea surface salinity(SSS) indexes are derived from reanalysis and observational datasets to distinguish the two types of(Central Pacific(CP) and Eastern Pacific(EP)) El Ni?o events in the tropical Pacific. Based on the SSS anomalous spatial and temporal pointwise correlations with sea surface temperature(SST) indexes of two types of El Ni?o events, the key areas with SSS variations for EP and CP El Ni?o events are identified. For EP El Ni?o events, the key areas are located over an arcuate area centered at(0°, 130°E) and in the central equatorial Pacific covering(5°S–5°N, 175°W–158°W). For CP El Ni?o events, the key areas are located in the northeastern western Pacific covering(2°N, 142°E–170°E) and in the southeastern Pacific covering(20°S–10°S, 135°W–95°W). The key areas for EP and CP El Ni?o events in this study are not located near the dateline in the equatorial Pacific and differ from those obtained from the regression or composite methods.Accordingly, these key areas are used to construct SSS indexes, termed as the CP/EP El Ni?o SSS index(CSI/ESI), to distinguish EP and CP El Ni?o events independently. The SSS indexes are verified by different datasets over varying time periods and they can be adequately used to identify the two types of El Ni?o events and serve as another useful tool for monitoring ENSO. These analyses offer novel insight into how to represent the diversity of El Ni?o events.  相似文献   

9.
The relationship between the Asian-Pacific oscillation (APO) and the tropical cyclone frequency over the western North Pacific (WNP) in summer is preliminarily investigated through an analysis of ob- served data. The result has shown clearly that APO is significantly and positively correlated to the tropical cyclone frequency in the WNP. If APO is above (below) the normal in summer, more (less) tropical cyclones will tend to appear in the WNP. The present study also addresses the large-scale at- mospheric general circulation changes underlying the linkage between APO and the WNP tropical cy- clone frequency. It follows that a positive phase of summer APO is concurrent with weakened as well as northward and eastward located western Pacific subtropical high (WPSH), low-level convergence and high-level divergence, and reduced vertical zonal wind shear in the WNP, providing favorable envi- ronment for the tropical cyclone genesis, and thus more tropical cyclones will come into being, and vice versa.  相似文献   

10.
We applied a season-reliant empirical orthogonal function(S-EOF) analysis based on the results of the Community Earth System Model, version 1-Biogeochemistry, to seasonal mean air-sea CO_2 flux over the western North Pacific(WNP)(0°–35°N, 110°E–150°E). The first leading mode accounts for 29% of the total interannual variance, corresponding to the evolution of the El Ni-Southern Oscillation(ENSO) from its developing to decaying phases. During the ENSO developing phase in the summer and fall, the contribution of surface seawater CO_2 partial pressure anomalies is greater than that of gas transfer/solubility anomalies, which contribute to increasing oceanic CO_2 uptake over the WNP. During the ENSO mature phase in the winter, the anomalous southwesterly northwest of the western North Pacific anticyclone(WNPAC) reduces the surface wind speed in the China marginal sea and thus decreases oceanic CO_2 uptake by reducing the gas transfer coefficient. In the subsequent spring, the WNPAC maintains with an eastward shift in position. The anomalous southwesterly warms sea surface temperatures in the China marginal sea by reducing evaporation and thus decreases oceanic CO_2 uptake by enhancing surface seawater CO_2 partial pressure. This process, rather than the effect of decreasing gas transfer coefficient, dominates CO_2 flux anomalies in the spring.  相似文献   

11.
As large-scale ocean circulation is a key regulator in the redistribution of oceanic energy, evaluating the multi-decadal trends in the western Pacific Ocean circulation under global warming is essential for not only understanding the basic physical processes but also predicting future climate change in the western Pacific. Employing the hydrological observations of World Ocean Atlas 2018(WOA18) from 1955 to 2017, this study calculated the geostrophic currents, volume transport and multidecadal trends for the North Equatorial Current(NEC), the North Equatorial Countercurrent(NECC), the Mindanao Current(MC), the Kuroshio Current(KC) in the origin and the New Guinea Coastal Undercurrent(NGCUC) within tropical western Pacific Ocean over multi-decades. Furthermore, this study examined the contributions of temperature and salinity variations. The results showed significant strengthening trends in NEC, MC and NGCUC over the past six decades, which is mainly contributed by temperature variations and consistent with the tendency in the dynamic height pattern. Zonal wind stress averaged over the western Pacific Ocean in the same latitude of each current represents the decadal variation and multi-decadal trends in corresponding ocean currents, indicating that the trade wind forcing plays an important role in the decadal trend in the tropical western Pacific circulation. Uncertainties in the observed hydrological data and trends in the currents over the tropical western Pacific are also discussed. Given that the WOA18 dataset covers most of the historical hydrological sampling data for the tropical western Pacific, this paper provides important observational information on the multi-decadal trend of the large-scale ocean circulation in the western Pacific.  相似文献   

12.
13.
In general,the tropical cyclone(TC) activity is considered to be influenced by the heat content of underlying ocean,vertical shear of horizontal wind,vorticity in the low troposphere,moisture in the troposphere,and favorable condition for deep convection development.However,these factors by nature merely present the internal factors of either atmosphere or ocean which influence the TC activity.In fact,the energy budget of the Earth system and its variation,modulated by the land-sea thermal contrast,are the intrinsic reasons responsible for the variation of TC activity.Here we investigate the modulation of diabatic heating distribution associated with the land-sea thermal contrast on the distribution of TC activity energy source and sink as well as the seasonality.An accumulated energy increment index(AEI) is defined using the TC best track data,and the energy sources and sinks of TC activity are then diagnosed effectively and practically according to the distribution of AEI.Results show that the thermal contrast of land and ocean is the primary reason for asymmetric distribution of TC activity about the Equator as well as the zonally asymmetric distribution of TC activity.The energy sources of TC activity are dominated by condensation heating of deep convection or double-dominant heating,which includes the condensation heating and cooling of longwave radiation(LO),while the sink areas are dominated by LO.The large scale diabatic heating associated with land-sea thermal contrast results in more favorable conditions for TC activity over the west part of oceans than those over the east parts.Moreover,the intensity of interaction of different diabatic heating over the west and east parts of ocean is also affected by the zonal scale of the oceans,which induces the difference of TC activity over the western North Pacific(WNP) and North Atlantic(ATL).The favorable westerlies and anticyclonic vertical shear associated with the tropical zonally asymmetric diabatic heating also contribute to the most intense TC activity over the WNP.The variation of large scale diabatic heating modulates the annual cycle of TC energy sources and sinks.In particular,the annual cycle over the WNP is the most typical one among the three basins(the WNP,the south Indian Ocean,and western South Pacific) that are characterized by the meridional shift of the energy sources and sinks.However,sources over the eastern North Pacific tend to extend westward and withdraw eastward associated with the variation of LO,while over the ATL,sources always merge from small pieces into a big one as the different diabatic heating over its west and east parts interacts with each other.Over the boreal Indian Ocean,the subcontinental scale land-sea heating contrast modifies the large scale circulation,and consequently contributes to the bimodal annual cycle of TC activity.In summary,TC activities are closely related to the interaction among various components of the climate system more than the atmosphere and ocean.  相似文献   

14.
A streamfunction projection method called gravest empirical mode(GEM) is applied to the hydrographic section at 137°E to filter out eddy noises in the western North Pacific and derive quantitative ensemble-average water mass properties in the North Equatorial Current region. The GEM fields capture more than 80% of total property variances in the thermocline layer. The core layer structures of key water masses, including the North Pacific Tropical Water(NPTW) and the North Pacific Intermediate Water(NPIW), are examined with a definition of water mass boundary based on property gradient. It shows that a tongue of maximal root-mean-square(RMS) residual exists in the upper half of NPIW for all water properties. These subsurface RMS tongues appear to be close to sharp property gradients. It is the first time a GEM diagnosis is applied to nutrient data, which reveals a drastic difference of N/P reaction rate ratio above and below the maximal-nutrient core at 1250 m. Additionally, a GEM velocity reconstruction successfully produces the North Equatorial Undercurrent(NEUC), demonstrating the stable thermal-wind nature of this newly-discovered current.  相似文献   

15.
Here we assessed the performances of IAP/LASG climate system model FGOALS-g2 and FGOAS-s2 in the simulation of the tropical Pacific Walker circulation(WC). Both models reasonably reproduce the climatological spatial distribution features of the tropical Pacific WC. We also investigated the changes of WC simulated by two versions of FGOALS model and discussed the mechanism responsible for WC changes. Observed Indo-Pacific sea level pressure(SLP) reveals a reduction of WC during 1900–2004 and 1950–2004, and an enhancement of WC during 1982–2004. During the three different time spans, the WC in FGOALS-g2 shows a weakening trend. In FGOALS-s2, tropical Pacific atmospheric circulation shows no significant change over the past century, but the WC strengthens during 1950–2004 and 1982–2004. The simulated bias of the WC change may be related to the phase of the multi-decadal mode in coupled models, which is not in sync with that in the observations. The change of WC is explained by the hydrological cycle constraints that precipitation must be balanced with the moisture transporting from the atmospheric boundary layer to the free troposphere. In FGOALS-g2, the increasing amplitude of the relative variability of precipitation(?P/P) is smaller(larger) than the relative variability of moisture(?q/q) over the tropical western(eastern) Pacific over the three time spans, and thus leads to a weakened WC. In FGOALS-s2, the convective mass exchange fluxes increase(decrease) over the tropical western(eastern) Pacific over the past 53 a(1950–2004) and the last 23 a(1982– 2004), and thus leads to a strengthened WC. The distributions of sea surface temperature(SST) trends dominate the change of WC. Over the past 55 a and 23 a, tropical Pacific SST shows an El Ni?o-like(a La Ni?a-like) trend pattern in FGOALS-g2(FGOALS-s2), which drives the weakening(strengthening) of WC. Therefore, a successful simulation of the tropical Pacific SST change pattern is necessary for a reasonable simulation of WC change in climate system models. This idea is further supported by the diagnosis of historical sea surface temperature driven AGCM-simulations.  相似文献   

16.
According to the different pattern of sea surface temperature anomaly(SSTA) in the previous year of La Nia events,we categorized La Nia events into two types to investigate the different characteristics of tropical cyclone(TC) activity over the western North Pacific(WNP) in TC peak season of two types La Nia events.One type is following the previous El Nio event(La Nia I);the other is following the previous neutral phase or developing La Nia event(La Nia II).Results show that TC genesis frequency in the WNP during TC peak season of La Nia I is less than normal year,whereas it has no differences from normal year during La Nia II.The main reason is attributed to the different amplitude SSTA in the East Indian Ocean(EIO) and the western Pacific Ocean(WPO).Similar to the capacitor effect,strongly positive SSTA in the EIO-WPO during La Nia I triggers an equatorial baroclinic Kelvin wave,which intensifies the easterly in the lower troposphere and weakens the East Asian summer monsoon,and thus the TC frequency decreased during La Nia I.However,the easterly anomaly shows a weak response to the SSTA in the EIO-WPO during La Nia II,and there is no significant change in the environmental pattern over the WNP;so is TC frequency.The modulation of strong EIO-WPO SSTA on large-scale circulation over the WNP reduces the environmental barotropic energy conversion into synoptic-scale disturbances during La Nia I,and also suppresses TC disturbances.The understanding of two different types of La Nia events could help improve the seasonal prediction of TC activity in the WNP during La Nia.  相似文献   

17.
Previous studies have revealed a significantly negative correlation between prior winter snow cover over the Tibetan Plateau(TPSC) and tropical cyclone genesis frequency(TCF) over the western North Pacific(WNP) in the following typhoon season. This study revisited this relationship based on long-term observational data. The results showed that the interannual correlation between TCF over the WNP and TPSC experienced a shift in the early 1990 s. This correlation is significant during only 1993–2012 and is considerably weak during 1976–1992. The possible reasons causing the shift were examined further, and the results demonstrated that the central Pacific(CP) El Ni?o-Southern Oscillation(ENSO) has played a vital role in intensifying the interannual relationship between TCF over the WNP and TPSC since the early 1990 s. During 1993–2012, TPSC was negatively related to CP ENSO. When TPSC was higher than(lower than) normal, CP ENSO was often in its cold(warm) phase. Such a combination remarkably enhances the relationship of TPSC with the zonal land-sea thermal difference and thus with the summer monsoon over the WNP. Additionally, it enhances the modulation of TPSC on the dynamical environments controlling TCF. As a result, the linkage between TPSC and TCF was significantly strengthened in this period. In sharp contrast, due to the weak relationship between TPSC and ENSO followed by the weak modulation of TPSC on the summer monsoon over the WNP and the dynamical environment during 1976–1992, the linkage between TPSC and TCF was weak during this time period. The results from additional dynamical diagnostic analyses further showed that during 1993–2012 CP ENSO modulated the barotropic energy conversion of zonal winds over the WNP, contributing to the intensified relationship between TPSC and TCF. These results will improve seasonal forecasting of tropical cyclone activity over the WNP.  相似文献   

18.
Using correlation and EOF analyses on sea level pressure from 57-year NCEP-NCAR reanalysis data, the Arabian Peninsula-North Pacific Oscillation (APNPO) is identified. The APNPO reflects the co-variability between the North Pacific high and South Asian summer monsoon low. This teleconnec- tion pattern is closely related to the Asian summer monsoon. On interannual timescale, it co-varies with both the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM); on decadal timescale, it co-varies with the EASM: both exhibit two abrupt climate changes in the middle 1960s and the late 1970s respectively. The possible physical process for the connections between the APNPO and Asian summer monsoon is then explored by analyzing the APNPO-related atmospheric circulations. The results show that with a strong APNPO, the Somali Jet, SASM flow, EASM flow, and South Asian high are all enhanced, and an anomalous anticyclone is produced at the upper level over northeast China via a zonal wave train. Meanwhile, the moisture transportation to the Asian monsoon regions is also strengthened in a strong APNPO year, leading to a strong moisture convergence over India and northern China. All these changes of circulations and moisture conditions finally result in an anoma- lous Asian summer monsoon and monsoon rainfall over India and northern China. In addition, the APNPO has a good persistence from spring to summer. The spring APNPO is also significantly corre- lated with Asian summer monsoon variability. The spring APNPO might therefore provide valuable in- formation for the prediction of Asian summer monsoon.  相似文献   

19.
Co-rich seamount crusts have been shown to possess great potential for providing information on paleoceanographic and paleoclimatic changes. High resolution data are essential to decipher and correctly understand such high-density records. With the development of modern microprobe techniques, detailed sampling of crusts can be performed and it is possible to retrieve detailed information about envi- ronmental changes recorded in the seamount crusts. We report here geochemical results of more than 40 elements (including all rare earth elements) of four Co-rich seamount crust samples, which were collected from seamounts in the central and western Pacific Ocean. These data were obtained with two micro-probe techniques: Electron Probe Micro Analyzer and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. The chronological framework of the seamount crust samples was determined using the cos- mogenic 10Be and the Co-chronometer. Records of elemental composition, P, and Al/(Fe Mn) and Y/Ho ratios across the sections of the four samples are used to identify paleoceanographic and paleoclimatic events over the past ~30 Ma. These data show that: (1) Al/(Fe Mn) in the western Pacific seamount crust is a useful proxy for the assessment of changes of source materials related to the variability of the Asian monsoon; (2) P and Y/Ho can be used as proxies to infer biogenic episodes. Finally we discuss the methodology related to dating and micro-probe analysis used in crust study.  相似文献   

20.
Most ocean-atmosphere coupled models have difficulty in predicting the El Nio-Southern Oscillation(ENSO) when starting from the boreal spring season. However, the cause of this spring predictability barrier(SPB) phenomenon remains elusive. We investigated the spatial characteristics of optimal initial errors that cause a significant SPB for El Nio events by using the monthly mean data of the pre-industrial(PI) control runs from several models in CMIP5 experiments. The results indicated that the SPB-related optimal initial errors often present an SST pattern with positive errors in the central-eastern equatorial Pacific, and a subsurface temperature pattern with positive errors in the upper layers of the eastern equatorial Pacific, and negative errors in the lower layers of the western equatorial Pacific. The SPB-related optimal initial errors exhibit a typical La Ni-a-like evolving mode, ultimately causing a large but negative prediction error of the Nio-3.4 SST anomalies for El Nio events. The negative prediction errors were found to originate from the lower layers of the western equatorial Pacific and then grow to be large in the eastern equatorial Pacific. It is therefore reasonable to suggest that the El Nio predictions may be most sensitive to the initial errors of temperature in the subsurface layers of the western equatorial Pacific and the Nio-3.4 region, thus possibly representing sensitive areas for adaptive observation. That is, if additional observations were to be preferentially deployed in these two regions, it might be possible to avoid large prediction errors for El Nio and generate a better forecast than one based on additional observations targeted elsewhere. Moreover, we also confirmed that the SPB-related optimal initial errors bear a strong resemblance to the optimal precursory disturbance for El Nio and La Nia events. This indicated that improvement of the observation network by additional observations in the identified sensitive areas would also be helpful in detecting the signals provided by the precursory disturbance, which may greatly improve the ENSO prediction skill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号