首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microflare or a group of Ellerman bombs was found to be associated with several points of white-light enhancements. These points had similar sizes as facular points (d 0.3 arc sec). Temporal evolution of these activities is described. Origins of these activities are discussed to be deeply seated excess heating in chromospheric and photospheric levels.  相似文献   

2.
NOAA 5747 was a flare-productive active region during its transit across the solar disk in October 1989. After the resolution of the 180° ambiguity of the transverse field synthetically, and transformation of vector magnetograms from the image plane to the heliographic frame, we have determined the distribution of the photospheric vertical electric current density in the active region. By analyzing the evolution of vector magnetograms and vertical current over a 6-day period (October 17–22) in the active region, we get the following results: (1) Two magnetic fluxes of opposite polarities emerged synchronously with their separating motion, one of which converged with an old magnetic structure and caused a number of flares. (2) There appeared a new current system, with the emergence of the fluxes. (3) The initial H bright kernels occurred in the vicinity of the neutral line of vertical current (J z = 0) with a steep gradient, but not just on the sites of vertical current peaks. (4) The flares were probably triggered by the interaction between the new emerging electric current system and old current system.  相似文献   

3.
Spectroheliograms taken in the CN(0, 0) violet band near 3883 Å show very small scale network and cell structures with high contrast. The bandhead itself, which is a broad feature due to overlap of several CN lines, allows the diagnostic simplicity of a continuum since motions, magnetic fields, and broadening mechanisms are unimportant. We have obtained spectroheliograms in the bandhead and center-to-limb photoelectric spectra of CN(0, 0) at Kitt Peak National Observatory. From the photoelectric spectra and a detailed analysis of the formation of the CN(0, 0) spectrum we derive a best-fit one-component upper photospheric model differing from that of the HSRA and recommend a change in solar carbon abundance from the HSRA value of logA c = 8.55 to logA c = 8.25. From the calibrated spectroheliograms we consider a multi-component model to account for the observed fine structure intensity variations.Staff Member, Laboratory Astrophysics Division, National Bureau of Standards.Visiting Astronomer at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

4.
The evolution of vector photospheric magnetic fields has been studied in concert with photospheric spot motions for a flare-productive active region. Over a three-day period (5–7 April, 1980), sheared photospheric velocity fields inferred from spot motions are compared both with changes in the orientation of transverse magnetic fields and with the flare history of the region. Rapid spot motions and high inferred velocity shear coincide with increased field alignment along the B L= 0 line and with increased flare activity; a later decrease in velocity shear precedes a more relaxed magnetic configuration and decrease in flare activity. Crude energy estimates show that magnetic reconfiguration produced by the relative velocities of the spots could cause storage of 1032 erg day–1, while the flares occurring during this time expended 1031 erg day–1.Maps of vertical current density suggest that parallel (as contrasted with antiparallel) currents flow along the stressed magnetic loops. For the active region, a constant-, force-free magnetic field (J = B) at the photosphere is ruled out by the observations.Presently located at NASA/MSFC, Huntsville, Ala. 35812, U.S.A.  相似文献   

5.
We describe an instrument we have built and installed at Mees Solar Observatory on Haleakala, Maui, to measure polarization in narrow-band solar images. Observations in Zeemansensitive photospheric lines have been made for nearly all solar active regions since the instrument began operations in 1992. The magnetograph includes a 28-cm aperture telescope, a polarization modulator, a tunable Fabry-Pérot filter, CCD cameras and control electronics. Stokes spectra of a photospheric line are obtained with 7 pm spectral resolution, 1 arc sec spatial resolution over a field 4.7 arc min square, and polarimetric precision of 0.1%. A complete vector magnetogram observation can be made every eight minutes. The flexibility of the instrument encourages diverse observations: besides active region magnetograms we have made, for example, composite vector magnetograms of the full solar disk, and H polarization movies of flaring regions.  相似文献   

6.
Images of a flare and active regions were obtained in the extreme ultraviolet emission lines such as CIII 977 Å, Ne VIII 770 Å, and HI L, and hydrogen Lyman continua with a spatial resolution of less than ten seconds of arc together with one-dimensional scanning at 1650 Å. A microchannel plate was used as a detector, and pointing accuracy was, for about half of the observation time, around 0.5 arc sec.The relationship between the shape of the flare and the structure of the photospheric magnetic field is discussed. A map of the electron temperature distribution derived from the intensity ratio of the Lyman continua at 880 Å and 815 Å showed a lower temperature in regions of higher activity. A very small geometrical thickness of 50–500 m in the C III emitting region of the flare was found. And the layer emitting the continuum in 1650 Å is shown to be at a temperature of 5300 K in the flare and 4700 K in active regions.  相似文献   

7.
Berger  T.E.  Lites  B.W. 《Solar physics》2002,208(2):181-210
Cotemporal Fei 630.2 nm magnetograms from the Solar Optical Universal Polarimeter (SOUP) filter and the Advanced Stokes Polarimeter (ASP) are quantitatively compared using observations of active region AR 8218, a large negative polarity sunspot group observed at S20 W22 on 13 May 1998. The SOUP instrument produces Stokes V/I `filter magnetograms' with wide field of view and spatial resolution below 0.5 arc sec in good seeing, but low spectral resolution. In contrast, the ASP uses high spectral resolution to produce very high-precision vector magnetic field maps at spatial resolution values on the order of 1 arc sec in good seeing. We use ASP inversion results to create an ASP `longitudinal magnetic flux-density map' with which to calibrate the less precise SOUP magnetograms. The magnetograms from each instrument are co-aligned with an accuracy of about 1 arc sec. Regions of invalid data, poor field-of-view overlap, and sunspots are masked out in order to calibrate SOUP predominately on the relatively vertical `weak-field' plage magnetic elements. Pixel-to-pixel statistical comparisons are used to determine the SOUP magnetogram linear calibration constant relative to ASP flux-density values. We compare three distinct methods of scaling the ASP and SOUP data to a common reference frame in order to explore filling factor effects. The recommended SOUP calibration constant is 17000 ± 550 Mx cm–2 per polarization percent in plage regions. We find a distinct polarity asymmetry in SOUP response relative to the ASP, apparently due to a spatial resolution effect in the ASP data: the smaller, less numerous, minority polarity structures in the plage region are preferentially blended with the majority polarity structures. The blending occurs to a lesser degree in the high-resolution SOUP magnetogram thus leading to an apparent increase in SOUP sensitivity to the minority polarity structures relative to the ASP. One implication of this effect is that in mixed polarity regions on the Sun, lower spatial resolution magnetograms may significantly underestimate minority polarity flux levels, thus leading to apparent flux imbalances in the data. *Visiting Astronomer, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

8.
In this paper, we describe the results of an investigation of magnetic field structures in two active regions. The photospheric magnetic fields were measured simultaneously in all three components with the Crimean vector magnetograph in the Fe i 5250 line. In our analysis, we compare the observed magnetic field with the potential field. The potential field vector was calculated according to the potential-field theory, and the H z component was taken as a boundary condition. From these data vertical gradients are calculated from the condition div H = 0. Averaged gradients of both fields increase with the H z field intensity and within the error limits they do not differ from one another for field strengths up to 1200 G. For larger H z the potential field gradients become higher than those of the observed field. In large spots, observed field gradients are about two times less than those of the potential field. It is shown that this difference is connected with the observed field twisting.  相似文献   

9.
Existing models of the quiet chromosphere-corona transition region predict a distribution of emission measure over temperature that agrees with observation for T 105 K. These network models assume that all magnetic field lines that emerge from the photosphere extend into and are in thermal contact with the corona. We show that the observed fine-scale structure of the photospheric magnetic network instead suggests a two-component picture in which magnetic funnels that open into the corona emerge from only a fraction of the network. The gas that makes up the hotter transition region is mostly contained within these funnels, as in standard models, but, because the funnels are more constricted in our picture, the heat flowing into the cooler transition region from the corona is reduced by up to an order of magnitude. The remainder of the network is occupied by a population of low-lying loops with lengths 104 km. We propose that the cooler transition region is mainly located within such loops, which are magnetically insulated from the corona and must, therefore, be heated internally. The fine-scale structure of ultraviolet spectroheliograms is consistent with this proposal, and theoretical models of internally heated loops can explain the behavior of the emission measure below T 105 K.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

10.
The common observation that where photospheric magnetic fields are strong, the overlying corona is bright is examined quantitatively. White light coronal brightness is employed because it is independent of coronal temperature and is directly related to coronal electron density. Brightness data for the inner corona on 7 March, 1970, taken from isodensitometer traces having a resolution of 10 arc sec, are utilized. The data were obtained from photographs which exhibit distinct chromospheric features 5 arc sec or smaller. These data are quantitatively compared, using cross correlation and scatter plot techniques, with the corresponding photospheric magnetic field data provided by Kitt Peak National Observatory. Cross correlation coefficients are computed between latitudes ±55° at specified heights. In general, a statistically significant positive correlation is found. The correlation decreases with height in the corona. However, a range of values in several parameters remains to be investigated so the physical significance of the presently observed correlation is not yet entirely clear. We expect that refinement of our input parameters will produce a more sensitive correlation and lead to an expression for the relationship of electron density to photospheric magnetic field strength.NAS/NRC Research Associate.  相似文献   

11.
In this paper, we analyze the relations between photospheric vector magnetic fields, chromospheric longitudinal magnetic fields and velocity fields in a solar active region. Agreements between the photospheric and chromospheric magnetograms can be found in large-scale structures or in the stronger magnetic structures, but differences also can be found in the fine structures or in other places, which reflect the variation of the magnetic force lines from the photosphere to the chromosphere. The chromospheric superpenumbral magnetic field, measured by the Hline, presents a spoke-like structure. It consists of thick magnetic fibrils which are different from photospheric penumbral magnetic fibrils. The outer superpenumbral magnetic field is almost horizontal. The direction of the chromospheric magnetic fibrils is generally parallel to the transverse components of the photospheric vector magnetic fields. The chromospheric material flow is coupled with the magnetic field structure. The structures of the H chromospheric magnetic fibrils in the network are similar to H dark fibrils, and the feet of the magnetic fibrils are located at the photospheric magnetic elements.  相似文献   

12.
Tritschler  A.  Schmidt  W.  Langhans  K.  Kentischer  T. 《Solar physics》2002,211(1-2):17-29
We present the characteristics and demonstrate the performance of the Triple Etalon SOlar Spectrometer (TESOS) operated at the German Vacuum Tower Telescope (VTT) on Tenerife. The Fabry–Pérot interferometer TESOS is ideally suited for precise measurements of photospheric and chromospheric motion. Installed in 1997 and equipped with two etalons, TESOS has recently been completed with a third etalon and upgraded with two high-speed, backside-illuminated CCD cameras. The image scale of 0.089 arc sec pixel–1 is adapted to the resolution of the telescope. The improved system enables frame rates up to 5 frames per second. The spectral resolution of 300000 allows for spectral diagnostics of weak photospheric lines, including individual CH-lines within the G-band at 430.6 nm.  相似文献   

13.
Emission gradient curves for extreme ultraviolet (EUV) resonance lines of O vi and Mg x have been constructed from spectroheliograms of quiet limb regions observed with the Harvard experiment on Skylab. An analysis of these data suggests that the coronal temperature rises throughout the height range 1.03R r1.3R . This result implies that in quiet regions there is significant coronal heating beyond r = 1.3R .Now at E.O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C., U.S.A.  相似文献   

14.
A series of VLA maps at 6 cm wavelength have been generated from observations of a solar active region (NOAA 2363) on 29 and 30 March, 1980. During the same period, X-ray spectroheliograms were acquired for this region in the lines of O viii, Ne ix, Mg xi, Si xiii, S xv, and Fe xxv, with X-rayn Polychromator (XRP) aboard the Solar Maximum Mission (SMM). Intervals of relative quiescence (i.e., when X-ray flares and centimeter wave bursts were not evident) were selected for microwave mapping. The resulting VLA maps have spatial resolution of 4 × 4, and generally show two or more sources whose slowly evolving substructures have spatial scales of 10–30. These maps were co-registered with H photographs (courtesy of AF/AWS SOON, Holloman and Ramey AFB) to an accuracy of ± 8. Similarly, the X-ray spectroheliograms have been co-registered with white light photographs to about the same accuracy. Magnetograms from KPNO and MSFC have also been co-aligned, and the magnetic X-ray, and microwave features compared. In general we have found that (a) the peaks of X-ray and 6 cm emission do not coincide, although (b) the sources in the two wavelength domains tend to overlap. These facts in themselves are evidence for the existence of opacity mechanisms other than thermal bremsstrahlung. In order to quantify this assertion, we have computed differential emission measures to derive densities and temperatures. Using these and calculated force-free magnetic fields from Kitt Peak magnetograms, we present an assessment of the mechanism of gyroresonance absorption at low harmonics of the electron gyrofrequency as the source of opacity responsible for the microwave features. We conclude that large-scale currents must be present in the active region loops to account for the bright 6 cm sources far from sunspots.Lockheed Missiles and Space Company, Palo Alto: currently at GSFC.Currently at NASA/MSFC.  相似文献   

15.
The interaction between small-scale magnetic fields and horizontal photospheric flows has been studied from observations of high angular resolution obtained with the Lockheed narrowband filter in the Swedish Vacuum Solar Telescope at La Palma. The measured magnetic flux density (B ) is in the range from a detection limit of 10 G to about 500 G, showing a good correspondence with the filigree. The magnetic flux elements take part in the local flows towards downdrafts at the supergranulation cell boundaries. The measured flux density, as well as the associated filigree intensity, decrease as the structures approach the downdrafts, presumably as a result of increased tilting and possibly submergence of flux into the downdrafts.  相似文献   

16.
Full disk, He I 10 830 Å solar spectroheliograms have been generated using the Haleakala Stokes polarimeter-spectrometer. The spectroheliograms, with spatial resolution of 10 × 16 arc sec and wavelength bandpass of 0.53 Å, were developed for the detection of coronal holes, and have been compared with nearly simultaneous H and Ca K flltergrams.Areas of reduced helium absorption have been noted in the neighborhood of filaments and neutral zones in the longitudinal solar magnetic field. The existence of these helium lanes is discussed in terms of their relationship to H filament channels or to the coronal cavities which surround prominences.  相似文献   

17.
A large equatorial coronal streamer observed in the outer corona (3R ) grew in brightness and size during successive limb passages between October 6, 1973 and January 10, 1974 (solar rotations 1606–1611). Unlike previous studies of streamers and their photospheric associations, no definite surface feature could be identified in the present case. This suggests that the streamer is associated with the large scale photospheric magnetic field. Comparison of the streamer growth with observed underlying photospheric magnetic flux changes indicated that as the streamer increased in brightness, areal extent, and density, the photospheric magnetic flux decreased. Three possible explanations for the streamer's growth are presented; the conceptually simplest being that the decrease in photospheric field results in an opening of the flux tubes under the streamer which permits an increased mass flux through the streamer.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
Using the Westerbork Synthesis Radio Telescope (WSRT) we produced a synthesized map of a quiet Sun region on June 15, 1976, and studied the structure and time variability of the quiet emitting regions at 6 cm wavelength with a spatial resolution of 6 arc sec. Comparison of the 12hr synthesis map with Ca+ K filtergram shows that bright and dark features on the 6 cm quiet Sun synthesized map correspond to the chromospheric networks and cells observed in Ca+ K. All 6 cm bright features lie over bright Ca+ K network elements. The reverse correlation is not true, that is, not all bright Ca+ K network features have their 6 cm counterparts. Comparison with the photospheric magnetogram shows that about 72% of the photospheric magnetic field enhancements (¦B¦ 5 G) are coincident with 6 cm emissive regions. Only one 6 cm feature could be positively identified with a bipolar magnetic structure. This implies that no more than 20–25% of the 6 cm emitting features could be associated with X-ray bright points. Intercomparison of our 12hr two-dimensional synthesis map, a 4hr two-dimensional synthesis map (around meridian) and the one-dimensional fan beam scans of the quiet Sun region at 6 cm, along with the Ca+ K filtergram and photospheric magnetogram shows that: (1) All of the 15 time-varying elements at 6 cm were located on Ca+ K networks; (2) about 40% of the 15 time varying elements at 6 cm are coincident with enhancements of the photospheric magnetogram; (3) individual time-varying sources have minimum source size (FWHM) of 15 arc sec and maximum brightness temperature of 105 K; (4) the life time of the time varying sources varies from a few minutes to several tens of minutes; (5) the intensity of the sources varies by factors of 2 to 7 over time periods of 1 min to tens of minutes; and (6) the sources tend to disappear for periods of up to tens of minutes and to reappear at the same locations.  相似文献   

19.
Leka  K.D. 《Solar physics》1999,188(1):21-40
This investigation is the second of two centering on the parameter =(×Bh)z/Bz=0Jz/Bzand its derivation from photospheric vector magnetogram data. While can be evaluated at every spatial position where the vector B is measured, for many reasons it is useful to determine a single value of to parameterize the magnetic complexity of an entire active region, here called AR(see Leka and Skumanich, 1999). As such, the limitations in today's vector magnetograph data, e.g., finite spatial resolution and limited field of view, may influence any final 'AR' value. We apply three methods of calculating 'AR' to degraded high-spatial-resolution data and find that in general the discrepancies worsen for decreasing resolution compared to the original. We apply the three methods to sub-regions centered on the constituent sunspots for AR 7815. Two of the sub-regions are shown to have magnetic twist with significant magnitude but opposite sign. We show by mosaicing or otherwise combining separate sunspot observations that a measure of ARcan be calculated which is consistent with a single large field-of-view observation. Still, the AR0 assigned for the entire active region is an average, and does not accurately represent the magnetic morphology of this flux system. To measure the validity of the ARparameterization, we demonstrate that, from each method, a relevant quantity can be calculated which describes the 'goodness of fit' of the resulting AR. Given the spatial variation of (x,y) over an active region, it is suggested that such a second parameter be used either to indicate uncertainty in ARor as a criterion for data selection, as appropriate.  相似文献   

20.
A Cassegrain telescope with a resolution of 2 sec of arc was successfully flown in an Aerobee-150 rocket from White Sands Missile Range on October 20, 1965. A pinhole, 33 in diameter, was placed at the focus of the telescope, followed by a photo-ionization detector with a lithium-fluoride window. The instrument was kept pointed at the sun by a biaxial solar pointing control.Results indicate that in Lyman- the solar surface shows structures whose characteristic dimensions can be as small as 2 sec of arc, which corresponds to the limit of instrumental resolution. Larger structures with very sharp gradients have also been found. Intensity ratios between bright and dark areas are typically a factor of 1.7. Isophote maps of two small selected areas are discussed in this paper. The results were obtained in an undisturbed (free of plages) portion of the solar disk.Jointly sponsored by the Office of Naval Research and the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号