首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have imaged several known molecular (CO) outflows in H2 v=1-0 S(1) and wide-band K in order to identify the molecular shocks associated with the acceleration of ambient gas by outflows from young stars. We detected H2 line emission in all the flows we observed: L 1157, VLA 1623, NGC 6334I, NGC 2264G, L 1641N and Haro 4-255. A comparison of the H2 data with CO outflow maps strongly suggests that prompt entrainment near the head of a collimated jet probably is the dominant mechanism for producing the CO outflows in these sources.  相似文献   

2.
3.
4.
We present proper motion measurements for a number of knots in the jets and bow shocks of the outflows from DG Tau, DG Tau B, T Tau, CoKu Tau 1, FS Tau, and FS Tau B in the nearby Taurus-Auriga star forming region. From these measurements and the available radial velocity data we derive tangential velocities, spatial velocities, angles of the outflows with respect to the plane of the sky, and in a couple of cases the pattern motions of the knots relative to the flow speed.  相似文献   

5.
Observations of active galactic nuclei imply that shocks must be an essential and important part of their structure. We outline the basic observations, and discuss those features which must be addressed by any physical model of active nuclei. These features, in particular the observed spectrum of strong emission and absorption lines, lead naturally to the conclusion that shocks are present. The velocity widths of these lines, which range from hundreds to many thousands of kilometres per second, are most readily explained by models in which shocks play an important role in the generation of cool gas. The extreme parameters of the shocks in and around active nuclei provide a unique application for the physics discussed in this meeting.  相似文献   

6.
In an attempt to identify the molecular shocks associated with the entrainment of ambient gas by collimated stellar winds from young stars, we have imaged a number of known molecular outflows in H2 v=1-0 S(1) and wide-band K. In each flow, the observed H2 features are closely associated with peaks in the CO outflow maps. We therefore suggest that the H2 results from shocks associated with the acceleration or entrainment of ambient, molecular gas. This molecular material may be accelerated either in a bow shock at the head of the flow, or along the length of the flow through a turbulent mixing layer.  相似文献   

7.
We present new images of the well-known molecular outflow and Herbig-Haro complex L 1551-IRS 5. Deep, high-resolution images of the central region of the flow in [SII] 6716,6731 and H (6565 Å) are complemented by a mosaic of much of the CO outflow in H2 v=1-0 S(1). While the optical data trace the intermediate-to-high excitation shocks in the flow (v shock > 30 – 50 km s–1), the near-IR data reveal the lower-excitation, molecular shocks (v shock 10–50 km s–1). In particular, the H2 data highlight the regions where the flow impacts and shocks ambient molecular gas.  相似文献   

8.
9.
We present a comprehensive near-infrared study of two molecular bow shocks in two protostellar outflows, HH 99 in R Coronae Australis and VLA 1623A (HH 313) in Rho Ophiuchi. New, high-resolution, narrow-band images reveal the well-defined bow shock morphologies of both sources. These are compared with two-dimensional MHD modelling of molecular bows from which we infer flow inclination angles, shock speeds and the magnetic field in the pre-shock gas in each system. With combined echelle spectroscopy and low-resolution K -band spectra we further examine the kinematics and excitation of each source. Bow shock models are used to interpret excitation (CDR) diagrams and estimate the extinction and, in the case of VLA 1623, the ortho–para ratio associated with the observed H2 population. For the first time, morphology, excitation and kinematics are fitted with a single bow shock model.
Specifically, we find that HH 99 is best fitted by a C-type bow shock model (although a J-type cap is probably responsible for the [Fe  ii ] emission). The bow is flowing away from the observer (at an angle to the line of sight of ∼45°) at a speed of roughly 100 km s−1. VLA 1623A is interpreted in terms of a C-type bow moving towards the observer (at an angle to the line of sight of ∼75°) at a speed of ∼80 km s−1. The magnetic field associated with HH 99 is thought to be orientated parallel to the flow axis; in VLA 1623A the field is probably oblique to the flow axis, since this source is clearly asymmetric in our H2 images.  相似文献   

10.
11.
C-type shocks in the partially ionized ISM are modelled by numerical simulations. Under certain conditions the shocks are subject to the Wardle instability, which initially makes the shock front rippled, then in the non-linear stage can produce density variations in both the ion and neutral fluids. A systematic search in the numerically accessible parameter space is done to determine the wave vector kmax and the growth rates max of the fastest growing modes. The neutral Alfvén number, and the angle sbetween the shock normal and the upstream magnetic field determine the strength and obliqueness of the shock, as well as the dimensionless parameters of the fastest growing mode. The results confirm and extend Wardle's linear analysis.The non-linear evolution shows saturation of the instability and the formation of high density regions that detach from the shock front with the downstream flow. Numerical difficulties are partially solved by an implicit treatment of the ion-neutral friction terms, but strong shocks still can not be modelled efficiently. A fully implicit method for the ions and the magnetic field is used to model C-type shocks with low fractional ionization and high ion Alfvén speed.  相似文献   

12.
Long-slit spectra of the molecular outflow Herbig–Haro (HH) 46/47 have been taken in the J and K near-infrared bands. The observed H2 line emission confirms the existence of a bright and extended redshifted counter-jet outflow south-west of HH 46. In contrast with the optical appearance of this object, we show that this outflow seems to be composed of two different emission regions characterized by distinct heliocentric velocities. This implies an acceleration of the counter-jet.
The observed [Fe  ii ] emission suggests an average extinction of 7–9 visual magnitudes for the region associated with the counter-jet.
Through position–velocity diagrams, we show the existence of different morphologies for the H2 and [Fe  ii ] emission regions in the northern part of the HH 46/47 outflow. We have detected for the first time high-velocity (−250 km s−1) [Fe  ii ] emission in the region bridging HH 46 to HH 47A. The two strong peaks detected can be identified with the optical positions B8 and HH 47B.
The H2 excitation diagrams for the counter-jet shock suggest an excitation temperature for the gas of T ex≈2600 K . The lack of emission from the higher energy H2 lines, such as the 4–3 S(3) transition, suggests a thermal excitation scenario for the origin of the observed emission. Comparison of the H2 line ratios with various shock models yielded useful constraints about the geometry and type of these shocks. Planar shocks can be ruled out whereas curved or bow shocks (both J- and C-type) can be parametrized to fit our data.  相似文献   

13.
The effects of the production on dust grain surfaces of molecular hydrogen in excited states have been investigated. On the assumption that all of the H2 formed on the surface of grains has a sufficient level of excitation too vercome the energy barriers in the formation reactions for the important OH and CH+ radicals, we consider the likely abundances of excited H2 (H2 *), OH and CH+ in various situations. Two different models are employed; the first links the H2 * abundance directly to that of H2 using a steady-state approximation, whilst the second considers the time-dependence of H2 *. The second model is applied to gas that has been subjected to a strong isothermal shock (specifically, the shock-induced collapse of a diffuse cloud), which results in an extreme (high density, high atomic hydrogen abundance) environment. In general, it is found that the presence of the excited H2 has only marginal effects on the chemistry of interstellar clouds. However, in the isothermal shock model, the abundances of CH+ are significantly enhanced, but only on short timescales, whilst the effects on the OH abundances are smaller, but last longer. We conclude that other than in such exceptional environments there are no obvious chemical signatures of the formation of H2 *. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Theoretical predictions by Farebrother et al. and Meijer et al. of rovibrational excitation probabilities in H2 arising from formation by Eley-Rideal processes on a graphite surface are incorporated into a model of the chemistry and excitation of interstellar H2. The model includes the usual radiative and collisional pumping of H2 rotational and vibrational states, in addition to the formation processes. Predictions are made for HH2 rovibrational emission line intensities for representative points in diffuse and in dark interstellar clouds. We find that – if all the interstellar HH2 is formed by this Eley-Rideal process – then the consequences of formation pumping, as distinct from collisional and radiative pumping, should be clearly evident in both cases. In particular, we predict a clear spectral signature of this direct HH2 formation process on graphite, distinct from radiative and collisional pumping; this signature should be evident in both diffuse and dark clouds; but the emissivity for dark clouds is predicted to be some 500 times greater than that in diffuse clouds in which the dense material may be embedded. An observational search for this signature in two dark cloud sources was made, but a preliminary analysis of the data did not yield a detection. The implications of and possible reasons for this preliminary conclusion are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
16.
17.
The detailed processes giving maser line radiation from various molecules in space are not well understood, as can be seen from many recent detailed studies of maser line emission with high spatial and velocity resolution, and with polarization measurements. We now propose an improved maser mechanism based on amplification of the original molecular line emission by stimulated emission in Rydberg Matter (RM) clouds in HII regions, containing clusters H N and (H2) N . This mechanism will amplify the molecular lines, depending on the position, velocity, cluster size and state of excitation of the clusters in the RM cloud. RM will only support certain frequencies, corresponding to rotational transitions of the clusters. The bond lengths in the RM clusters are known within 1% from radio frequency emission measurements in the laboratory, and it is now shown that all the commonly studied maser lines agree well with stimulated emission transitions in several types of RM clusters simultaneously. This may explain the strongly varying intensities of neighboring or related maser lines, an important effect that is not well understood previously. It is also pointed out that the magnetic field due to RM is of the same order of magnitude as observed from the Zeeman splitting in maser lines; thus, the molecules that are the original sources of the lines may be embedded in the RM clouds, for example in dense HII regions that are likely to be RM regions.  相似文献   

18.
19.
We report on the discovery of an optical jet-Rosette HH2-in the Rosette Nebula. The jet system bears unique features for residing at the center of a giant HII region, and its energy source is visible with apparently very low extinction along the line of sight. Unlike most other Herbig-Haro jets, this jet indicates a high-excitation origin, and its extended portion shows a seemingly intact structure, instead of normally a shocked working surface, which is attributed to photoablation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号