首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
We present photometric analysis of deep mid-infrared (mid-IR) observations obtained by Spitzer /IRAC covering the fields Q1422+2309, Q2233+1341, DSF2237a,b, HDFN, SSA22a,b and B20902+34, giving the number counts and the depths for each field. In a sample of 751 Lyman-break galaxies (LBGs) lying in those fields, 443, 448, 137 and 152 are identified at 3.6-, 4.5-, 5.8-, 8.0-μm IRAC bands, respectively, expanding their spectral energy distribution to rest-near-IR and revealing that LBGs display a variety of colours. Their rest-near-IR properties are rather inhomogeneous, ranging from those that are bright in IRAC bands and exhibit  [ R ]−[3.6] > 1.5  colours to those that are faint or not detected at all in IRAC bands with  [ R ]−[3.6] < 1.5  colours and these two groups of LBGs are investigated. We compare the mid-IR colours of the LBGs with the colours of star-forming galaxies and we find that LBGs have colours consistent with star-forming galaxies at   z ∼ 3  . The properties of the LBGs detected in the 8-μm IRAC band (rest-frame K band) are examined separately, showing that they exhibit redder  [ R ]−[3.6]  colours than the rest of the population and that although in general, a multiwavelength study is needed to reach more secure results, IRAC 8-μm band can be used as a diagnostic tool, to separate high z , luminous AGN-dominated objects from normal star-forming galaxies at   z ∼ 3  .  相似文献   

2.
We present confusion-limited submillimetre (submm) observations with the Submillimetre Common-User Bolometer Array (SCUBA) camera on the James Clerk Maxwell Telescope of the   z = 2.83  Lyman-break galaxy (LBG), Westphal–MM8, reaching an 850 μm sensitivity even greater than that achieved in the SCUBA map of the Hubble Deep Field region. The detection of MM8  ( S 850 μm= 1.98 ± 0.48 mJy)  , along with the literature submm detections of lensed LBGs, suggests that the LBG population may contribute significantly to the source counts of submm-selected galaxies in the 1–2 mJy regime. Additionally, submm-luminous LBGs are a viable progenitor population for the recently discovered evolved galaxies at   z ∼ 2–2.5  . These observations represent an important baseline for SCUBA2 observations which will regularly map large regions of the sky to this depth.  相似文献   

3.
The first observations to detect a population of distant galaxies directly in the submillimetre waveband have recently been made using the new Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT). The results indicate that a large number of distant galaxies are radiating strongly in this waveband. Here we discuss their significance for source confusion in future millimetre/submillimetre-wave observations of both distant galaxies and cosmic microwave background radiation (CMBR) anisotropies. Earlier estimates of such confusion involved significant extrapolation of the results of observations of galaxies at low redshifts; our new estimates do not, as they are derived from direct observations of distant galaxies in the submillimetre waveband. The results have important consequences for the design and operation of existing and proposed millimetre/submillimetre-wave telescopes: the Planck Surveyor survey will be confusion-limited at frequencies greater than 350 GHz, even in the absence of Galactic dust emission; a 1σ confusion noise limit of about 0.44 mJy beam−1 is expected for the JCMT/SCUBA at a wavelength of 850 μm; and the subarcsecond resolution of large millimetre/submillimetre-wave interferometer arrays will be required in order to execute very deep galaxy surveys.  相似文献   

4.
Galaxy source counts that simultaneously fit the deep mid-infrared surveys at 24 microns and 15 microns made by the Spitzer Space Telescope and the Infrared Space Observatory ( ISO ), respectively, are presented for two phenomenological models. The models are based on starburst and luminous infrared galaxy dominated populations. Both models produce excellent fits to the counts in both wavebands and provide an explanation for the high-redshift population seen in the longer Spitzer 24-micron band supporting the hypothesis that they are luminous–ultraluminous infrared galaxies at   z = 2–3  , being the mid-infrared counterparts to the submillimetre galaxy population. The source counts are characterized by strong evolution to redshift unity, followed by less drastic evolution to higher redshift. The number–redshift distributions in both wavebands are well explained by the effect of the many mid-infrared features passing through the observation windows. The sharp upturn at around a millijansky in the 15-μm counts in particular depends critically on the distribution of mid-infrared features around 12 μm, in the assumed spectral energy distribution.  相似文献   

5.
We present basic observational strategies for ASTRO-F [also known as the Infra-Red Imaging Surveyor (IRIS) ] to be launched in 2004 by the Japanese Institute of Space and Astronautical Science (ISAS). We examine two survey scenarios, a deep ∼1 deg2 survey reaching sensitivities an order of magnitude below all but the deepest surveys performed by ISO in the mid-IR, and a shallow ∼18  deg2 mid-IR (7–25μm in six bands) covering an area greater than the entire area covered by all ISO mid-IR surveys. Using two cosmological models, the number of galaxies predicted for each survey is calculated. The first model uses an enhancement of a classical (1+ z )3.1 pure luminosity evolution model by Pearson & Rowan-Robinson. The second model incorporates a strongly evolving ultraluminous infrared galaxy component. For the deep survey, between 20 000 and 30 000 galaxies should be detected in the shortest wavebands, and ≈5000 in the longest (25-μm) band. It is predicted that the shallow survey will detect of the order of 100 000–150 000 sources. We find that for both ASTRO-F and other small-aperture space telescopes, confusion due to faint sources may be severe, especially at the longest mid-IR wavelengths. Using the exceptional range of observational options provided by ASTRO-F (nine wavelength filters and spectroscopic ability from 2.2 to 25 μm), we show that by combining the mid-IR observations with the near-IR camera on ASTRO-F , both the different galaxy populations and rough photometric redshifts can be distinguished in the colour–colour plane. In its role as a surveyor (plus near-IR spectroscopic ability) ASTRO-F will complement well the SIRTF space observatory mission.  相似文献   

6.
We present results and source counts at 90 μm extracted from the preliminary analysis of the European Large Area ISO Survey (ELAIS). The survey covered about 12 deg2 of the sky in four main areas and was carried out with the ISOPHOT instrument onboard the Infrared Space Observatory ( ISO ). The survey is at least an order of magnitude deeper than the IRAS 100-μm survey and is expected to provide constraints on the formation and evolution of galaxies. The majority of the detected sources are associated with galaxies on optical images. In some cases the optical associations are interacting pairs or small groups of galaxies, suggesting that the sample may include a significant fraction of luminous infrared galaxies. The source counts extracted from a reliable subset of the detected sources are in agreement with strongly evolving models of the starburst galaxy population.  相似文献   

7.
We present optical spectra and near-infrared imaging of a sample of 31 serendipitous X-ray sources detected in the field of Chandra observations of the A 2390 cluster of galaxies. The sources have  0.5–7 keV  fluxes of  (0.6–8)×10-14 erg cm-2 s-1  and lie around the break in the  2–10 keV  source counts. They are therefore typical of sources dominating the X-ray Background in that band. 12 of the 15 targets for which we have optical spectra show emission lines at a range of line luminosities, and half of these show broad lines. These active galaxies and quasars have soft X-ray spectra. Including photometric redshifts and published spectra, we have redshifts for 17 of the sources, ranging from   z ∼0.2  up to   z ∼3  , with a peak between   z =1–2  . 10 of our sources have hard X-ray spectra indicating a spectral slope flatter than that of a typical unabsorbed quasar. Two hard sources that are gravitationally lensed by the foreground cluster are obscured quasars, with intrinsic  2–10 keV  luminosities of  (0.2–3)×1045 erg s-1  , and absorbing columns of   N H>1023 cm-2  . Both of these sources were detected in the mid-infrared by ISOCAM on the Infrared Space Observatory , which when combined with radiative transfer modelling leads to the prediction that the bulk of the reprocessed flux emerges at ∼100 μm.  相似文献   

8.
We investigate the infrared/radio correlation using the technique of source stacking, in order to probe the average properties of radio sources that are too faint to be detected individually. We compare the two methods used in the literature to stack sources and demonstrate that the creation of stacked images leads to a loss of information. We stack infrared sources in the Spitzer Extragalactic First Look Survey (xFLS) field, and the three northern Spitzer Wide-area Infrared Extragalactic survey (SWIRE) fields, using radio surveys created at 610 MHz and 1.4 GHz, and find a variation in the absolute strength of the correlation between the xFLS and SWIRE regions, but no evidence for significant evolution in the correlation over the 24-μm flux density range 150 μJy to 2 mJy. We carry out the first radio source stacking experiment using 70-μm-selected galaxies, and find no evidence for significant evolution over the 70-μm flux density range 10–100 mJy.  相似文献   

9.
We present results from a deep mid-infrared survey of the Hubble Deep Field South (HDF-S) region performed at 6.7 and 15 μm with the ISOCAM instrument on board the Infrared Space Observatory ( ISO ). The final map in each band was constructed by the co-addition of four independent rasters, registered using bright sources securely detected in all rasters, with the absolute astrometry being defined by a radio source detected at both 6.7 and 15 μm. We sought detections of bright sources in a circular region of radius 2.5 arcmin at the centre of each map, in a manner that simulations indicated would produce highly reliable and complete source catalogues using simple selection criteria. Merging source lists in the two bands yielded a catalogue of 35 distinct sources, which we calibrated photometrically using photospheric models of late-type stars detected in our data. We present extragalactic source count results in both bands, and discuss the constraints that they impose on models of galaxy evolution, given the volume of space sampled by this galaxy population.  相似文献   

10.
High-redshift submillimetre-bright galaxies identified by blank field surveys at millimetre and submillimetre wavelengths appear in the region of the Infra Red Array Camera (IRAC) colour–colour diagrams previously identified as the domain of luminous active galactic nuclei (AGNs). Our analysis using a set of empirical and theoretical dusty starburst spectral energy distribution (SED) models shows that power-law continuum sources associated with hot dust heated by young (≲100 Myr old), extreme starbursts at z > 2 also occupy the same general area as AGNs in the IRAC colour–colour plots. A detailed comparison of the IRAC colours and SEDs demonstrates that the two populations are distinct from each other, with submillimetre-bright galaxies having a systematically flatter IRAC spectrum (≳1 mag bluer in the observed [4.5]–[8.0] colour). Only about 20 per cent of the objects overlap in the colour–colour plots, and this low fraction suggests that submillimetre galaxies powered by a dust-obscured AGN are not common. The red infrared colours of the submillimetre galaxies are distinct from those of the ubiquitous foreground IRAC sources, and we propose a set of infrared colour selection criteria for identifying SMG counterparts that can be used even in the absence of radio or Multiband Imaging Photometer for Spitzer (MIPS) 24 μm data.  相似文献   

11.
We identify eight   z > 1  radio sources undetected at 850 μm but robustly detected at 70 μm, confirming that they represent ultraluminous infrared galaxies (ULIRGs) with hotter dust temperatures  (〈 T d〉= 52 ± 10 K)  than submillimetre galaxies (SMGs) at similar luminosities and redshifts. These galaxies share many properties with SMGs: ultraviolet spectra consistent with starbursts, high stellar masses and radio luminosities. We can attribute their radio emission to star formation since high-resolution Multi-Element Radio Linked Interferometer Network (MERLIN) radio maps show extended emission regions (with characteristic radii of 2–3 kpc), which are unlikely to be generated by active galactic nucleus (AGN) activity. These observations provide the first direct confirmation of hot, dusty ULIRGs which are missed by current submillimetre surveys. They have significant implications for future observations from the Herschel Space Observatory and Submillimetre Common-User Bolometer Array 2 (SCUBA2), which will select high-redshift luminous galaxies with less selection biases.  相似文献   

12.
We measure the local galaxy far-infrared (FIR) 60 to 100 μm colour–luminosity distribution using an all-sky IRAS survey. This distribution is an important reference for the next generation of FIR–submillimetre surveys that have and will conduct deep extragalactic surveys at 250–500 μm. With the peak in dust-obscured star-forming activity leading to present-day giant ellipticals now believed to occur in submillimetre galaxies near   z ∼ 2.5  , these new FIR–submillimetre surveys will directly sample the spectral energy distributions of these distant objects at rest-frame FIR wavelengths similar to those at which local galaxies were observed by IRAS . We have taken care to correct for the temperature bias and the evolution effects in our IRAS 60-μm-selected sample. We verify that our colour–luminosity distribution is consistent with the measurements of the local FIR luminosity function, before applying it to the higher redshift Universe. We compare our colour–luminosity correlation with recent dust–temperature measurements of submillimetre galaxies and find evidence for pure luminosity evolution of the form  (1 + z )3  . This distribution will be useful for the development of evolutionary models for Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and Spectral and Photometric Imaging Receiver (SPIRE) surveys as it provides a statistical distribution of the rest-frame dust temperatures for galaxies as a function of luminosity.  相似文献   

13.
A follow-up survey using the Submillimetre High-Angular Resolution Camera (SHARC-II) at 350 μm has been carried out to map the regions around several 850-μm-selected sources from the Submillimetre HAlf Degree Extragalactic Survey (SHADES). These observations probe the infrared (IR) luminosities and hence star formation rates in the largest existing, most robust sample of submillimetre galaxies (SMGs). We measure 350-μm flux densities for 24 850-μm sources, seven of which are detected at ≥2.5σ within a 10 arcsec search radius of the 850-μm positions. When results from the literature are included the total number of 350-μm flux density constraints of SHADES SMGs is 31, with 15 detections. We fit a modified blackbody to the far-IR (FIR) photometry of each SMG, and confirm that typical SMGs are dust-rich  ( M dust≃ 9 × 108 M)  , luminous  ( L FIR≃ 2 × 1012 L)  star-forming galaxies with intrinsic dust temperatures of ≃35 K and star formation rates of  ≃400 M yr−1  . We have measured the temperature distribution of SMGs and find that the underlying distribution is slightly broader than implied by the error bars, and that most SMGs are at 28 K with a few hotter. We also place new constraints on the 350-μm source counts, N 350(>25 mJy) ∼ 200–500 deg−2.  相似文献   

14.
The backward evolution approach to modelling galaxy source counts is re-visited in the wake of the numerous results and revelations from the Infrared Space Observatory ( ISO ), the Submillimetre Common User Bolometer Array (SCUBA) and the detections and measurements of the cosmic extragalactic background light. Using the framework of the Pearson & Rowan-Robinson galaxy evolution model, the observed source counts and background measurements are used to constrain the evolution in the galaxy population. It is found that a strong evolution in both density and luminosity of the high-luminosity tail of the infrared (IR) luminosity function, interpreted as the ultraluminous galaxies discovered first by IRAS and later elevated in status by SCUBA and ISO , can account for the source counts from 15 μm (where it matches the undulations in the integral counts and the hump in the differential counts extremely well) to the submillimetre region, as well as explain the peak in the cosmic infrared background at ∼140 μm. The submillimetre counts are interpreted as the superposition of two separate populations comprising ultraluminous infrared galaxies (ULIGs) at the brighter submillimetre fluxes and starburst galaxies at fluxes fainter than ∼2 mJy. In this scenario the high-redshift ULIGs are tenuously interpreted as the progenitors of today's giant elliptical (gE) galaxies.
All the source count models can be accessed via the world wide web at the URL http://www.ir.isas.ac.jp/~cpp/counts/  相似文献   

15.
We present the results of a deep 610-MHz survey of the 1 H XMM–Newton / Chandra survey area with the Giant Metre-wave Radio Telescope. The resulting maps have a resolution of ∼7 arcsec and an rms noise limit of 60 μJy. To a 5σ detection limit of 300 μJy, we detect 223 sources within a survey area of 64 arcmin in diameter. We compute the 610-MHz source counts and compare them to those measured at other radio wavelengths. The well-known flattening of the Euclidean-normalized 1.4-GHz source counts below ∼2 mJy, usually explained by a population of starburst galaxies undergoing luminosity evolution, is seen at 610 MHz. The 610-MHz source counts can be modelled by the same populations that explain the 1.4-GHz source counts, assuming a spectral index of −0.7 for the starburst galaxies and the steep spectrum active galactic nucleus (AGN) population. We find a similar dependence of luminosity evolution on redshift for the starburst galaxies at 610 MHz as is found at 1.4 GHz (i.e.  ' Q '= 2.45+0.3−0.4  ).  相似文献   

16.
We examine the infrared properties of 43 high-redshift (0.1 < z < 1.2), infrared-luminous galaxies in the Extended Groth Strip (EGS), selected by a deep 70 μm survey with the Multiband Imaging Photometer on Spitzer (MIPS). In addition and with reference to starburst-type spectral energy distributions (SEDs), we derive a set of equations for estimating the total infrared luminosity ( L IR) in the range 8–1000 μm using photometry from at least one MIPS band. 42 out of 43 of our sources' optical/infrared SEDs (λobserved < 160 μm) are starburst type, with only one object displaying a prominent power-law near-infrared continuum. For a quantitative analysis, models of radiation transfer in dusty media are fit on to the infrared photometry, revealing that the majority of galaxies are represented by high extinction, A v > 35, and for a large fraction (∼50 per cent) the SED turns over into the Rayleigh–Jeans regime at wavelengths longward of 90 μm. For comparison, we also fit semi-empirical templates based on local galaxy data; however, these underestimate the far-infrared SED shape by a factor of at least 2 and in extreme cases up to 10 for the majority (∼70 per cent) of the sources. Further investigation of SED characteristics reveals that the mid-infrared (70/24 μm) continuum slope is decoupled from various galaxy properties such as the total infrared luminosity and far-infrared peak, quantified by the L 160/ L 70 ratio. In view of these results, we propose that these high-redshift galaxies have different properties to their local counterparts, in the sense that large amounts of dust cause heavy obscuration and are responsible for an additional cold emissive component, appearing as a far-infrared excess in their SEDs.  相似文献   

17.
We present a multicolour catalogue of faint galaxies situated close to bright stars,   V ≲ 15  , with the aim of identifying high-redshift galaxies suitable for study with adaptive optics-equipped near-infrared imagers and spectrographs. The catalogue is constructed from archival calibration observations of the United Kingdom Infrared Telescope (UKIRT) Faint Standard stars with the UKIRT Fast Track Imager (UFTI) camera on UKIRT. We have analysed the deepest 16 fields from the archive to provide a catalogue of galaxies brighter than   K ∼ 20.3  lying between 3 and 25 arcsec of the guide stars. We identify 111 objects in a total survey area of  8.7 arcmin2  . Of these, 87 are classified as galaxies based on their light profiles in our ∼0.5 arcsec median seeing K -band images. 12 of the galaxies have  ( J − K ) ≥ 2.0  consistent with them lying at high redshifts,   z ≳ 2  . These 12 very red galaxies have K -band magnitudes of   K = 18.1–20.1  and separations from the guide stars of 4–20 arcsec and hence are very well suited to adaptive optics studies to investigate their morphologies and spectral properties on sub-kpc scales. We provide coordinates and JHK photometry for all catalogued objects.  相似文献   

18.
The radio counterparts to the 15-μm sources in the European Large Area ISO Survey southern fields are identified in 1.4-GHz maps down to ∼80 μJy. The radio–mid-infrared correlation is investigated and derived for the first time at these flux densities for a sample of this size. Our results show that radio and mid-infrared (MIR) luminosities correlate almost as well as radio and far-infrared (FIR), at least up to   z ≃ 0.6  . Using the derived relation and its spread together with the observed 15-μm counts, we have estimated the expected contribution of the 15-μm extragalactic populations to the radio source counts and the role of MIR starburst galaxies in the well-known 1.4-GHz source excess observed at sub-mJy levels. Our analysis demonstrates that IR emitting starburst galaxies do not contribute significantly to the 1.4-GHz counts for strong sources, but start to become a significant fraction of the radio source population at flux densities ≲0.5–0.8 mJy. They are expected to be responsible for more than 60 per cent of the observed radio counts at ≲0.05 mJy. These results are in agreement with the existing results on optical identifications of faint radio sources.  相似文献   

19.
We present results from a multiwavelength study of 29 sources (false detection probabilities <5 per cent) from a survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field at 1.1 mm using the Astronomical Thermal Emission Camera (AzTEC). Comparing with existing 850 μm Submillimetre Common-User Bolometer Array (SCUBA) studies in the field, we examine differences in the source populations selected at the two wavelengths. The AzTEC observations uniformly cover the entire survey field to a 1σ depth of ∼1 mJy. Searching deep 1.4 GHz Very Large Array (VLA) and Spitzer 3–24 μm catalogues, we identify robust counterparts for 21 1.1 mm sources, and tentative associations for the remaining objects. The redshift distribution of AzTEC sources is inferred from available spectroscopic and photometric redshifts. We find a median redshift of   z = 2.7  , somewhat higher than   z = 2.0  for  850 μm  selected sources in the same field, and our lowest redshift identification lies at a spectroscopic redshift   z = 1.1460  . We measure the 850 μm to 1.1 mm colour of our sources and do not find evidence for '850 μm dropouts', which can be explained by the low signal-to-noise ratio of the observations. We also combine these observed colours with spectroscopic redshifts to derive the range of dust temperatures T , and dust emissivity indices β for the sample, concluding that existing estimates   T ∼ 30 K  and  β∼ 1.75  are consistent with these new data.  相似文献   

20.
We use Spitzer IRAC 3.6 and 4.5 μm near-infrared data from the Spitzer Infrared Nearby Galaxies Survey (SINGS), optical B, V and I and Two-Micron All-Sky Survey K s-band data to produce mass surface density maps of M81. The IRAC 3.6- and 4.5-μm data, whilst dominated by emission from old stellar populations, are corrected for small-scale contamination by young stars and polycyclic aromatic hydrocarbon emission. The I -band data are used to produce a mass surface density map by a   B − V   colour correction, following the method of Bell and de Jong. We fit a bulge and exponential disc to each mass map, and subtract these components to reveal the non-axisymmetric mass surface density. From the residual mass maps, we are able to extract the amplitude and phase of the density wave, using azimuthal profiles. The response of the gas is observed via dust emission in the 8-μm IRAC band, allowing a comparison between the phase of the stellar density wave and gas shock. The relationship between this angular offset and radius suggests that the spiral structure is reasonably long-lived and allows the position of corotation to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号