首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The 1999, Ms=5.9, Athens earthquake caused serious structural damage to buildings in the western part of Athens, Greece. This paper presents the ground zoning against seismic hazard proposed shortly after the earthquake in order to aid reconstruction of the area. Existing engineering geological and geotechnical data were combined with local observations to provide a unified set of classification criteria, consistent with provisions of the Greek Seismic Code EAK. The accuracy and the possible limitations of this zoning procedure are addressed through comparison with observed damage distribution as well as results from seismic ground response analyses performed at sites with well established soil profiles. There is clear evidence that the proposed zones correspond to geological formations exhibiting grossly different seismic response with regard to the design of common engineering structures. However, the mostly qualitative nature of the guidelines for ground categorisation provided by EAK and the general lack of systematic, site-specific geotechnical data for the whole area induce uncertainties in the definition of the seismic design actions for the different zones. These objective uncertainties certainly demand increased conservatism but do not limit application of the proposed methodology for first aid, preliminary planning in the event of destructive earthquakes.  相似文献   

2.
India is prone to earthquake hazard; almost 65 % area falls in high to very high seismic zones, as per the seismic zoning map of the country. The Himalaya and the Indo-Gangetic plains are particularly vulnerable to high seismic hazard. Any major earthquake in Himalaya can cause severe destruction and multiple fatalities in urban centers located in the vicinity. Seismically induced ground motion amplification and soil liquefaction are the two main factors responsible for severe damage to the structures, especially, built on soft sedimentary environment. These are essentially governed by the size of earthquake, epicentral distance and geology of the area. Besides, lithology of the strata, i.e., sediment type, grain size and their distribution, thickness, lateral discontinuity and ground water depth, play an important role in determining the nature and degree of destruction. There has been significant advancement in our understanding and assessment of these two phenomena. However, data from past earthquakes provide valuable information which help in better estimation of ground motion amplification and soil liquefaction for evaluation of seismic risk in future and planning the mitigation strategies. In this paper, we present the case studies of past three large Indian earthquakes, i.e., 1803 Uttaranchal earthquake (Mw 7.5); 1934 Bihar–Nepal earthquake (Mw 8.1) and 2001 Bhuj earthquake (Mw 7.7) and discuss the role of soft sediments particularly, alluvial deposits in relation to the damage pattern due to amplified ground motions and soil liquefaction induced by the events. The results presented in the paper are mainly focused around the sites located on the river banks and experienced major destruction during these events. It is observed that the soft sedimentary sites located even far from earthquake epicenter, with low water saturation, experienced high ground motion amplification; while the sites with high saturation level have undergone soil liquefaction. We also discuss the need of intensifying studies related to ground motion amplification and soil liquefaction in India as these are the important inputs for detailed seismic hazard estimation.  相似文献   

3.
Albarello  D.  Francescone  M.  Lunedei  E.  Paolucci  E.  Papasidero  M. P.  Peruzzi  G.  Pieruccini  P. 《Natural Hazards》2016,86(2):401-416

We present a field procedure that has been extensively used in Italy to characterize local seismic response at accelerometric sites and to retrieve ground motion at reference soil conditions by deconvolution analysis. To allow a generalized application to large areas where borehole data are generally lacking or inadequate for the seismic characterization for soils down to the reference seismic bedrock, cost-effectiveness of the considered procedures is a main issue. Thus, major efforts have been devoted to optimize available information and exploit fast and cheap surface geophysical prospecting. In particular, geological/geomorphological survey and passive seismic prospecting (both in single- and multi-station configurations) were jointly considered to reconstruct seismo-stratigraphical site conditions. This information was then used to feed numerical modeling aiming at computing the local seismic response and performing a deconvolution analysis to reconstruct ground motion at reference soil conditions. Major attention was devoted to evaluate and manage uncertainty involved in the procedure and to quantify its effect on final outcomes. An application of this procedure to a set of sites included in the Italian Accelerometric Network is presented.

  相似文献   

4.
We present a field procedure that has been extensively used in Italy to characterize local seismic response at accelerometric sites and to retrieve ground motion at reference soil conditions by deconvolution analysis. To allow a generalized application to large areas where borehole data are generally lacking or inadequate for the seismic characterization for soils down to the reference seismic bedrock, cost-effectiveness of the considered procedures is a main issue. Thus, major efforts have been devoted to optimize available information and exploit fast and cheap surface geophysical prospecting. In particular, geological/geomorphological survey and passive seismic prospecting (both in single- and multi-station configurations) were jointly considered to reconstruct seismo-stratigraphical site conditions. This information was then used to feed numerical modeling aiming at computing the local seismic response and performing a deconvolution analysis to reconstruct ground motion at reference soil conditions. Major attention was devoted to evaluate and manage uncertainty involved in the procedure and to quantify its effect on final outcomes. An application of this procedure to a set of sites included in the Italian Accelerometric Network is presented.  相似文献   

5.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

6.
远场大地震作用下大尺度深软场地的非线性地震效应分析   总被引:1,自引:0,他引:1  
战吉艳  陈国兴  刘建达  李小军 《岩土力学》2013,34(11):3229-3238
基于ABAQUS软件自行研制的并行计算显式算法集群平台,针对苏州城区典型地层剖面,建立了大尺度深软场地的二维精细化非线性有限元分析模型,对人工地震波和大地震远场地震动作用下深软场地的非线性地震效应进行了比较研究。研究结果表明:(1)与人工地震波作用时深软场地的地表峰值加速度放大效应相比,大地震远场地震波作用时的放大效应尤为显著,由于土介质的横向不均匀性及其非线性,使不同地表的峰值加速度放大效应存在明显的变异性。(2)深软场地对周期小于0.3 s的高频地震波均具有显著的滤波效应;大地震远场地震波作用时,深软场地对周期0.85~1.65 s的长周期地震波的放大效应非常显著,但对2.5~7.0 s的长周期地震波呈现出明显的滤波效应。(3)地震动峰值加速度PGA值沿土层深度和横向的分布形态呈现出明显的高低起伏现象,在不同成因的土层更迭面附近及土介质横向不均匀性显著的区域,地震波的局部聚焦放大和过滤减小现象尤为明显,且大地震远场地震动作用时,20 m以浅土层的PGA值呈现出非常显著的放大效应。(4)地震波的频谱特性、土层的横向不均匀性对深软场地地表加速度反应谱? 谱的谱形有显著影响;给出了描述加速度反应谱沿土层深度变化特征的三维谱形曲线,可以直观地展示出深软场地中细长地下结构地震反应可能存在类共振现象的土层深度。  相似文献   

7.
A probabilistic procedure was applied to assess seismic hazard for the sites of five Greek cities (Athens, Heraklion, Patras, Thessaloniki and Volos) using peak ground acceleration as the hazard parameter. The methodology allows the use of either historical or instrumental data, or a combination of both. It has been developed specifically for the estimation of seismic hazard at a given site and does not require any specification of seismic sources or/and seismic zones. A new relation for the attenuation of peak ground acceleration was employed for the shallow seismicity in Greece. The computations involved the area- and site-specific parts. When assessing magnitude recurrence for the areas surrounding the five cities, the maximum magnitude, mmax, was estimated using a recently derived equation. The site-specific results were expressed as probabilities that a given peak ground acceleration value will be exceeded at least once during a time interval of 1, 50 and 100 years at the sites of the cities. They were based on the maximum peak ground acceleration values computed by assuming the occurrence of the strongest possible earthquake (of magnitude mmax) at a very short distance from the site and using the mean value obtained with the help of the attenuation law. This gave 0.24 g for Athens, 0.53 g for Heraklion (shallow) and 0.39 g Heraklion (intermediate-depth seismicity), 0.30 g for Patras, 0.35 g for Thessaloniki and 0.30 g for Volos. In addition, the probabilities of exceedance of the estimated maximum peak ground acceleration values were calculated for the sites. The standard deviation of the new Greek attenuation law demonstrates the uncertainty and large variation of predicted peak ground acceleration values.  相似文献   

8.
Any earthquake event is associated with a rupture mechanism at the source, propagation of seismic waves through underlying rock and finally these waves travel through the soil layers to the particular site of interest. The bedrock motion is significantly modified at the ground surface due to the presence of local soil layers above the bedrock beneath the site of interest. The estimation of the amplifications in ground response due to the local soil sites is a complex problem to the designers and the problem is more important for mega cities like Mumbai in India, where huge population may get affected due to devastations of earthquake. In the present study, the effect of local soil sites in modifying ground response is studied by performing one dimensional equivalent-linear ground response analysis for some of the typical Mumbai soil sites. Field borelog data of some typical sites in Mumbai city viz. Mangalwadi site, Walkeswar site, BJ Marg near Pandhari Chawl site are considered in this study. The ground responses are observed for range of input motions and the results are presented in terms of surface acceleration time history, ratio of shear stress to vertical effective stress versus time, acceleration response spectrum, Fourier amplitude ratio versus frequency etc. The typical amplifications of ground accelerations considering four strong ground motions with wide variation of low to high MHA, frequency contents and durations are obtained. Results show that MHA, bracketed duration, frequency content have significant effects on the amplification of seismic accelerations for typical 2001 Bhuj motion. The peak ground acceleration amplification factors are found to be about 2.50 for Mangalwadi site, 2.60 for Walkeswar site and 3.45 for BJ Marg site using 2001 Bhuj input motion. The response spectrum along various soil layers are obtained which will be useful for designers for earthquake resistant design of geotechnical structures in Mumbai for similar sites in the absence of site specific data.  相似文献   

9.
This article presents a geographical information system (GIS) which manages geotechnical data obtained from detailed geotechnical surveys as well as from in situ observations in Athens, Greece. Thoroughly examined data from more than 2,000 exploratory boreholes and trial pits located in the wider area of Athens have been incorporated using a relational database system. From the analysis of these results, thematic maps are compiled to illustrate the distribution of engineering geological information (e.g. the depth of the “Athens schist” head). In addition, a methodology for an automated GIS-aided seismic microzonation study is outlined and is being employed taking into account the aforementioned geotechnical and engineering geological information, as well as existing seismological data to estimate the variability of seismic ground motion for the southern part of Athens.  相似文献   

10.
陈国兴  金丹丹  朱姣  李小军 《岩土力学》2015,36(6):1721-1736
针对基岩明显起伏、土层非均匀分布的典型河口盆地场地,考虑土体非线性特征,采用黏弹性人工边界模拟无限域对地震波动的影响,建立大尺度精细化二维有限元模型,分析了盆地地表地震动幅值、频谱、持时、传递函数特征,探讨了基岩起伏土层的地震动聚集效应及盆地边缘效应。结果表明:(1)盆地近地表土层表现出不同程度的地震动放大效应,且随土层深度增加呈非单调递减特征,基岩突变处地震动聚集效应明显,盆地两侧产生较为显著的边缘效应;场地中、长周期地震动的放大作用显著;(2)多遇地震、偶遇地震和罕遇地震水平时,场地卓越周期依次介于0.35~0.65 s、0.40~0.75 s和0.50~1.05 s之间;给出了盆地地表PGA(地表峰值加速度)、卓越周期均值等值线图及地表加速度反应谱放大因子建议值,地表设计地震动参数amax(地震影响系数)与Tg(特征周期)明显大于现行《建筑抗震设计规范》取值;(3)盆地特殊位置地表地震动持时得到不同幅度增长,且与输入地震动特性相关;(4)该盆地对0.5~2.0 Hz频段基岩地震动的放大效应比较显著,对小于0.2 Hz或大于2.5 Hz的基岩地震动,该盆地地震动放大效应不明显;(5)福州城区及其邻近区域地震动放大效应普遍较大。大尺度二维非线性分析一定程度上能合理反映微地形起伏、土层分布及土体非线性对地震波传播过程的影响。  相似文献   

11.
场地土对基岩峰值加速度放大效应分析   总被引:1,自引:2,他引:1  
通过实际土层地震反应结果的统计分析和强震加速度观测结果的对比, 讨论了不同场地条件对基岩峰值加速度的放大效应及其特点。该分析可为地震动参数区划图编制和地震安全性评价中场地效应的估计、由基岩地震动估算场地地面地震动提供参考。  相似文献   

12.
Estimation of seismic spectral acceleration in Peninsular India   总被引:6,自引:0,他引:6  
Peninsular India (PI), which lies south of 24°N latitude, has experienced several devastating earthquakes in the past. However, very few strong motion records are available for developing attenuation relations for ground acceleration, required by engineers to arrive at rational design response spectra for construction sites and cities in PI. Based on a well-known seismological model, the present paper statistically simulates ground motion in PI to arrive at an empirical relation for estimating 5% damped response spectra, as a function of magnitude and source to site distance, covering bedrock and soil conditions. The standard error in the proposed relationship is reported as a function of the frequency, for further use of the results in probabilistic seismic hazard analysis.  相似文献   

13.
The Nishinomiya Built Environment Database, which can be used to analyze the disaster process of the 1995 Hanshin-Awaji Earthquake Disaster in Nishinomiya City, has been expanded with new data entries. The database contains the following very detailed datasets: (1) the urbanization area base map, (2) casualty data, (3) three sets of building damage data surveyed by the Nishinomiya City, the Architectural Institute of Japan and the City Planning Institute of Japan, and the Kobe University, (4) building property data based on the real estate tax roll, (5) photographs of the damaged buildings with the information on the place and orientation of the picture, and (6) the estimated distribution of the seismic ground motion. The seismic ground motion was simulated for the southern part of Nishinomiya City and two verification sites in Kobe City and Amagasaki City. In the simulation, the borehole data of public facilities were used to model the surface soils as one-dimensional layers, taking into consideration the fact that the spatial distribution of the sediment/basement interface forms a slope. The model of the fault rupture process simulated the characteristics of the seismic motion at basement level, and amplification effects of the surface layers were evaluated based on multiple reflection theory. The distribution of peak ground acceleration and peak ground velocity was estimated from acceleration response spectra at each borehole point. In addition, the relationship between simulated seismic ground motion and building damage was studied based on newly proposed band-passed spectrum intensity using the expanded database. This confirmed that detailed categorization is necessary in order to evaluate the fragility functions, especially for reinforced concrete structures. The database should provide fundamental information for identifying the relationship between the ground motions and the extent and pattern of building damage, or the pattern of the occurrence of casualties.Presently  相似文献   

14.
A recent development in strong motion instrumentation in Japan provides an opportunity to collect valuable data sets, especially after moderate and large magnitude events. Gathering and modeling these data is a necessity for better understanding of regional ground motion characteristics. Estimations of the spatial distribution of earthquake ground motion plays an important role in early-stage damage assessments for both rescue operations by disaster management agencies as well as damage studies of urban structures. Subsurface geology layers and local soil conditions lead to soil amplification that contributes to the estimated ground motion parameters of the surface. We present a case study of the applicability of the nationally proposed GIS-based soil amplification ratios [J. Soil Dyn. Earthqu. Eng. 19 (2000) 41–53] to the October 6, 2000 Tottori-ken Seibu (western Tottori Prefecture) and the March 24, 2001 Geiyo earthquakes in Japan. First, ground motion values were converted to those at a hypothetical ground base-rock level (outcrop) using an amplification ratio for each 1×1 km area, based on geomorphological and subsurface geology information. Then a Kriging method, assuming an attenuation relationship at the base-rock as a trend component, is applied. Finally, the spatial distribution of ground motion at ground surface is obtained by applying GIS-based amplification factors for the entire region. The correlation between the observed and estimated ground motion values is reasonable for both earthquakes. Thus, the proposed method is applicable in near real-time early-damage assessments and seismic hazard studies in Japan.  相似文献   

15.
In the present paper we analyze the effect of local geology on ground motion by means of numerical calculations (numerical models) using total (TS) and effective stress (ES) methods. These numerical calculations have been applied to the site of Itea, Corinth Gulf, which was chosen based on liquefaction susceptibility criteria and field inspection. Data from seismic refraction experiments and cone penetration test N-values as well as selected records of ground motion in nearby areas were used to construct the input file for the numerical model. By means of␣dynamic analysis such characteristics of ground motion as acceleration time histories, response spectra, and amplification function were evaluated. A one-dimensional soil amplification effect was clearly shown. Liquefaction probability at the Itea site was predicted based on the safety factor and the calculation of the induced settlement at the test site. Results of the TS and ES modeling lead us to conclude: (1) the presence of soft soil at Itea caused significant amplification (almost 2.5-fold higher magnitude) of the underlying bedrock motion and, therefore, can contribute to damage; (2) the area of Itea is highly susceptible to liquefaction due to presence of silty sand deposits at depths between 2.48 m (the position of the water table) and 12 m that demonstrate the rapid growth of the excess pore water pressure (EPWP) ratio with an increase in peak ground acceleration values.  相似文献   

16.
The influence of local geologic and soil conditions on the intensity of ground shaking is addressed in this study. The amplification of the ground motion due to local site effects resulted in severe damage to dwellings in the Bam area during the 2003 Bam Earthquake. A unique set of strong motion acceleration recordings was obtained at the Bam accelerograph station. Although the highest peak ground acceleration recorded was the vertical component (nearly 1 g), the longitudinal component (fault-parallel motion) clearly had the largest maximum velocity as well as maximum ground displacement. Subsurface geotechnical and geophysical (down-hole) data in two different sites have been obtained and used to estimate the local site condition on earthquake ground motion in the area. The ground response analyses have been conducted considering the nonlinear behavior of the soil deposits using both equivalent linear and nonlinear approaches. The fully nonlinear method embodied in FLAC was used to evaluate the nonlinear soil properties on earthquake wave propagation through the soil layer, and compare with the response from the equivalent linear approach. It is shown that thick alluvium deposits amplified the ground motion and resulted in significant damage in residential buildings in the earthquake stricken region. The comparison of results indicated similar response spectra of the motions for both equivalent and nonlinear analyses, showing peaks in the period range of 0.3–1.5 s. However, the amplification levels of nonlinear analysis were less than the equivalent linear method especially in long periods. The observed response spectra are shown to be above the NEHRP building code design requirements, especially at high frequencies.  相似文献   

17.
为了研究地震动特性对液化场地高桩码头抗震性能的影响,本文依托高桩码头工程实例,建立了液化场地全直桩高桩码头地震反应分析数值模型,系统分析了地震作用下高桩码头的关键动力响应特征,确定了高桩码头各抗震性能需求指标,揭示了地震动特性对各抗震性能需求指标的影响规律。研究表明:地震作用下高桩码头桩基受弯、受剪和受压薄弱环节分别出现在持力层与上部粉质黏土层交界处、岸坡标高处和砂层与上部粉质黏土层交界处;峰值加速度、频谱特性和地震动输入方向均会显著影响高桩码头各项性能指标的抗震需求;高桩码头桩基的抗弯、抗剪和抗压性能需求分别由最靠陆侧桩桩顶处弯矩、各薄弱环节剪力和砂层与上部土层交界处轴力控制,抗震延性需求均由最靠海侧桩桩顶处水平位移需求控制。  相似文献   

18.
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.  相似文献   

19.
A previous analysis [Improta, L., G. Di Giulio, and A. Rovelli (2005). Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings, J. Seism. 9, 191–210.] of small magnitude earthquakes recorded at 12 sites within the city of Benevento has stressed the significant role played by near-surface geology in causing variability of the ground motion. In this paper, we extend the study of the seismic response from 12 sites to the entire urban area. Based on inferences from the comparison at the 12 sites between earthquake and ambient vibration results, we have collected ambient noise at about 100 sites within the city, intensifying measurements across the main shallow geological variations. We use borehole data to interpret ambient noise H/V spectral ratios in terms of near-surface geology comparing H/V curves to theoretical transfer functions of 1D models along five well-constrained profiles.

On the basis of geological, geotechnical, and seismic data, we identify three main typologies of seismic response in the city. Each type of response is associated to zones sharing common soil conditions and similar soil classes according to building codes for seismic design. Moreover, we find that the spatial variation of the seismic response in the ancient town area is consistent with the damage pattern produced by a very destructive, well-documented historical earthquake that struck the city in 1688, causing MCS intensity of IX–X in Benevento.

Finally, we use ground motions recorded during the experiment by Improta et al. [Improta, L., G. Di Giulio, and A. Rovelli (2005). Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings, J. Seism. 9, 191–210.] to generate synthetic seismograms of moderate to strong (Mw 5.7, Molise 2002 and Ms 6.9, 1980 Irpinia) earthquakes. We calibrate the random summation technique by Ordaz et al. [Ordaz, M., J. Arboleda, and S.K. Singh (1995). A scheme of random summation of an Empirical Green's Function to estimate ground motions for future large earthquakes, Bull. Seism. Soc. Am. 85, 1635–1647.] using recordings of these earthquakes available in Benevento. After a satisfactory fit between observed and synthetic seismograms, we compute response spectra at different sites and speculate on effects of the geology class at large level of shaking, including soil nonlinearity. We find that large discrepancies from design spectra prescribed by seismic codes can occur for a wide sector of Benevento, especially for periods < 0.5 s.  相似文献   


20.
Seismic hazard and site-specific ground motion for typical ports of Gujarat   总被引:3,自引:3,他引:0  
Economic importance of major ports is well known, and if ports are located in seismically active regions, then site-specific seismic hazard studies are essential to mitigate the seismic risk of the ports. Seismic design of port sites and related structures can be accomplished in three steps that include assessment of regional seismicity, geotechnical hazards, and soil structure interaction analysis. In the present study, site-specific probabilistic seismic hazard analysis is performed to identify the seismic hazard associated with four typical port sites of Gujarat state (bounded by 20°–25.5°N and 68°–75°E) of India viz. Kandla, Mundra, Hazira, and Dahej ports. The primary aim of the study is to develop consistent seismic ground motion for the structures within the four port sites for different three levels of ground shaking, i.e., operating level earthquake (72 years return period), contingency level earthquake (CLE) (475 year return period), and maximum considered earthquake (2,475 year return period). The geotechnical characterization for each port site is carried out using available geotechnical data. Shear wave velocities of the soil profile are estimated from SPT blow counts using various empirical formulae. Seismicity of the Gujarat region is modeled through delineating the 40 fault sources based on the seismotectonic setting. The Gujarat state is divided into three regions, i.e., Kachchh, Saurashtra, and Mainland Gujarat, and regional recurrence relations are assigned in the form of Gutenberg-Richter parameters in order to calculate seismic hazard associated with each port site. The horizontal component of ground acceleration for three levels of ground shaking is estimated by using different ground motion attenuation relations (GMAR) including one country-specific GMAR for Peninsular India. Uncertainty in seismic hazard computations is handled by using logic tree approach to develop uniform hazard spectra for 5% damping which are consistent with the specified three levels of ground shaking. Using recorded acceleration time history of Bhuj 2001 earthquake as the input time motion, synthetic time histories are generated to match the developed designed response spectra to study site-specific responses of port sites during different levels of ground shaking. It is observed that the Mundra and Kandla port sites are most vulnerable sites for seismic hazard as estimated CLE ground motion is in order of 0.79 and 0.48 g for Mundra and Kandla port sites, respectively. Hazira and Dahej port sites have comparatively less hazard with estimated CLE ground motion of 0.17 and 0.11 g, respectively. The ground amplification factor is observed at all sites which ranges from 1.3 to 2.0 for the frequency range of 1.0–2.7 Hz. The obtained spectral accelerations for the three levels of ground motions and obtained transfer functions for each port sites are compared with provisions made in Indian seismic code IS:1893-Part 1 (2002). The outcome of present study is recommended for further performance-based design to evaluate the seismic response of the port structures with respect to various performance levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号