首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
三角洲体系是指河流携带着陆源碎屑注入海洋或海湾时。在河口处堆积形成的沉积体。它和成煤关系密切。三角洲沉积受河流影响,也受海洋中波浪、潮汐、岸流、海平面升降等因素影响。以河流作用为主时,自河流带入的沉积物不断堆积,使三角洲不断向海方向进积,这个时期形成的三角洲称为建设期三角洲。以波浪、潮汐等作用为主时,对已堆积的三角洲沙体进行改造,即为三角洲侵蚀期,形成破坏期三角洲。实际上,三角洲的成因是复杂的。   相似文献   

2.
南海北部琼东南盆地中的众多凹陷均有海陆过渡相沉积,沉积相类型包括海湾辫状河三角洲和河口湾-潮坪。本次研究以高分辨率层序地层学理论为指导,将崖13-1气田古近系渐新统陵水组三段及二段各划分为1个长期基准面旋回,并在其内部进一步识别出10个中期基准面旋回(S1-S10)。在等时地层格架内,对陵水组三段及陵水组二段发育的沉积相特征及演化进行深入的探讨。陵水组三段沉积时期,研究区主要发育海湾辫状河三角洲沉积,其具有独特的层理构造、富含泥质纹层以及遗迹化石丰富。该沉积体系自下而上潮汐作用越来越强,早期以河流作用为主(S1-S4),中期为河流和潮汐混合作用(S5-S6),晚期逐渐过渡到以潮汐作用占主导(S7-S8)。陵水组二段沉积时期,研究区发生全面海侵,沉积作用方式及沉积特征更加复杂,生物成因构造更加独特,本次研究将其解释为河口湾-潮坪沉积(S9-S10)。研究表明,区域海平面的不断上升是研究区沉积相从海湾辫状河三角洲演化到河口湾-潮坪的主要控制因素。  相似文献   

3.
黄乃和  潘永信 《沉积学报》1992,10(4):111-118
古河口湾沉积环境的恢复主要根据下列证据进行:1.淡化水证据:小个体薄壳生物组合和沉积物中低的硼含量;2.古地理位置处于古河流入海部位;3.潮汐能量大于河流能量,潮汐作用控制了主要沉积过程;4.沉积层序与现代河口湾层序可以类比。虽然河口湾生命短暂,沉积物常被改造,但一个时期的古代河口湾沉积物仍是可以被识别的。  相似文献   

4.
滨岸相混控碎屑岩沉积体系是指发育在滨岸带,受河流、波浪和潮汐混合水动力作用产生的复合碎屑岩沉积体系。受区域构造、物源、古地貌、海平面变化和滨岸水动力控制,塔里木盆地沙雅隆起区在志留纪—泥盆纪—石炭纪时期发育了辫状河三角洲、潮汐和波浪作用相互交替的滨岸相碎屑岩复合沉积体系。本文基于野外露头、钻井和测井等资料,开展了沙雅隆起区志留系—石炭系沉积层序、沉积相和沉积模式的综合研究,建立复合沉积体系的沉积学模式,包括:① 志留系—泥盆系的浪控- 潮控海湾沉积体系;② 下石炭统巴楚组的台地- 蒸发潟湖- 潮坪沉积体系;③ 下石炭统卡拉沙依组的河控- 浪控- 潮控三角洲沉积体系。下志留统柯坪塔格组滨岸滩坝和潮坪砂体、上泥盆统东河塘组冲积平原、海湾滩坝砂体和下石炭统卡拉沙依组辫状河三角洲砂体在塔北地区大面积分布,其冲积平原、三角洲前缘、水下分流河道砂体被后期潮汐和波浪作用改造后,形成潮汐水道砂体、河口坝砂体和滨岸滩坝砂体,物性条件明显改善,有利于形成优质储层区带。目前,滨岸混合水动力碎屑岩沉积体系已获得重大油气勘探突破,其沉积学模式可为塔北地区古生界碎屑岩油气勘探提供理论基础。  相似文献   

5.
末次盛冰期以来长江三角洲地区的沉积相和古地理   总被引:16,自引:6,他引:10       下载免费PDF全文
末次盛冰期低海平面期间,长江三角洲地区可划分为2个古地理单元:古河谷和古河间地。下切河谷底部侵蚀面和古河间地顶面构成了冰后期海侵沉积旋回的底界面,它相当于层序地层学中的层序界面。位于河口湾-浅海相中的最大海侵面将冰后期海侵沉积旋回分为其下的海侵层序和其上的海退层序。随着δ18O 3期的海平面下降,长江开始下切,至δ18O 2期低海面时形成巨大的下切河谷。冰后期海平面上升引发的海侵造成了长江古河谷系的充填和河床、河漫滩-河口湾和部分河口湾-浅海相的形成,尔后的进积产生了部分河口湾-浅海相及三角洲相等。溯源堆积是产生下部河流沉积单元的主要过程,其中河漫滩沉积中出现的潮汐层理和少量小个体有孔虫说明了海洋因素的影响,河口湾-浅海相泥质沉积主要形成于最大海侵之时,三角洲的进积则产生了具有多期河口坝的三角洲。古河间地表面的硬粘土层经历了沉积和成壤作用交替、持续成壤作用和早期成岩作用,它们大致分别对应于δ18O 3期、δ18O 2期和δ18O 1期,硬粘土层中留下了这3种作用的烙印。长江三角洲古河间地的古土壤母质属河漫滩相。持续成壤阶段河流基面和地下水位均较低,年降雨量约为500~800 mm,相当于现今的温带地区,干湿周期变化明显,地下水升降频繁。所有这些表明,当时并非干旱气候。  相似文献   

6.
本文根据杭州湾沿海平原大量的钻井、静力触探井和分析化验等资料,研究了下切河谷(钱塘江和太湖下切河谷)充填物的沉积建造和沉积相,以及浅层生物气藏分布特征。研究表明,末次冰期以来,随着海平面变化,杭州湾地区下切河谷演化经历了深切、快速充填和埋藏三个阶段。末次冰盛期,海平面下降的幅度大,增加了河流梯度、加强了下切作用,本区形成了钱塘江和太湖下切河谷,随后在冰后期被充填和埋藏,下切河谷的两侧为暴露地表的古河间地。根据岩石学、沉积结构和沉积构造特征,本区下切河谷充填沉积物表现为向上变细的沉积层序,可以划分为4个沉积相类型,有河床滞留沉积物到部分曲流河沉积体系的边滩沉积、河漫滩-河口湾沉积、河口湾-浅海沉积和河口湾沙坝沉积。在河漫滩-河口湾相沉积期间,由于海平面上升、潮流体系、沉积物供给和可容空间条件适合一个潮流沙脊体系的发育,该相中砂质透镜体可能代表下切河谷内发育的潮流沙脊。对于河口湾-浅海沉积和河口湾沙坝沉积而言,由于沉积条件不再有利,没有形成沙脊沉积。所有的商业性生物气都存储在下切河谷内河漫滩-河口湾砂质透镜体中。  相似文献   

7.
塔里木盆地志留纪沉积层序构成及充填响应特征   总被引:9,自引:2,他引:7  
塔里木盆地志留系是由角度不整合面所限定的一个区域性(二级)的沉积层序,其内可划分出5个三级沉积层序。总体上显示一个从水进到水退的沉积旋回,可识别出曲流河三角洲—辫状河三角洲、滨外陆棚及较深水盆地、无障壁碎屑滨岸—无障壁碎屑潮坪沉积体系组合,它们代表了二级沉积层序中相对低位、海侵和高位的3个沉积体系组合。研究区构造、沉积、古生物和古气候资料表明,层序1底界面和层序5顶界面是塔里木周缘板块构造挤压、盆地隆升作用的结果;层序2底界面是周缘板块强烈挤压、盆地挠曲下降作用结果,同期全球海平面快速上升;层序3、层序4和层序5的底界面是在构造作用稳定、全球海平面下降背景之上由相对海平面次一级旋回变化形成的,是古气候变化、沉积物供给及构造沉降共同作用的结果。  相似文献   

8.
林春明  张霞  黄舒雅 《地质论评》2022,68(1):2022010006-2022010006
下切河谷的研究不仅可以正确划分地层、确立年代地层格架、判定沉积环境演变、探讨海平面变化规律,对碳氢化合物勘探开发、地质工程等重大国民经济建设也有重要意义。本文介绍了下切河谷体系概念、特征、划分类型、研究历程和科学意义,着重论述了晚第四纪下切河谷的形成演化、层序地层格架和控制因素。晚第四纪下切河谷体系主要是海平面下降、河流向盆地扩展并侵蚀下伏地层的下切河流体系,在海平面上升时期被充填的长条状负向地形,以区域性的地层不整合面为底界。浪控型与潮控型下切河谷体系模式有许多不同之处:① 前者存在河口砂坝、中央盆地、湾顶三角洲,后者则没有这些沉积单元;② 前者浅海沉积较薄,后者较厚;③ 前者代表了贫砂的小河河口湾,由于泥砂量少,河口湾在最大海侵线附近,后者河流作用较强,泥砂量相对大,现代河口湾不断向海扩展,较下切河谷范围要大的多;④ 前者涉及溯源堆积在下切河谷充填中的作用,但对其强度估计不足。下切河谷体系的形成演化的影响因素众多,海平面变化、沉积物供应、沉积过程、下切河谷形态和气候变化等是主要控制因素。  相似文献   

9.
以剖面和测井资料为依据,在研究了库车地区古近系地层的岩性组合、相序特征、沉积构造等岩性特征基础上,认为该区古近纪时期总体上为河流--湖泊沉积环境.库车地区构造运动、海平面变化、气候条件和物源供给等因素相互作用,共同控制了该区的沉积演化格局,分别发育了冲积扇、扇三角洲、辫状河三角洲、曲河流三角洲、滨浅湖和海湾、泻湖等沉积...  相似文献   

10.
依据钻孔资料和已发表的文献,对全新世长江三角洲的形成和发育及其对相邻沉积体系的影响作了综合和概括.在末次冰期低海平面时,现今长江三角洲地区可分为下切河谷和两侧的河间地两个古地貌单元.冰后期海平面上升,下切河谷被淹,并转化为河口湾,海水随之扩展到两侧的古河间地.全新世最大海侵时形成以镇江-扬州为顶点的古河口湾.7000~7500年以来,当沉积速率超过海平面上升速度时,长江带来的物质大量沉积,河口湾被充填,并逐渐转变为潮汐平原和三角洲.河口湾被充填之后,长江带来的河流泥沙随之溢出河口湾,进入相邻的河口海岸地区,影响相邻沉积体系的形成和发育.长江泥沙向南进入钱塘江河口湾,在湾顶形成沙坎;向北输运,成为苏北南黄海潮成沙脊的重要物源,影响该潮成体系的形成和发展.舟山群岛海蚀平台上直接覆盖泥质沉积是以退积为主的河口湾向进积的三角洲环境转变的又一证据.长江输沙量在不断减少,而河口滩涂围垦力度在增加,这将导致相邻的河口海岸沉积体系增长速度减缓,出现侵蚀或侵蚀加剧.  相似文献   

11.
This paper proposes a new classification for clastic coastal environments which includes the full range of major depositional settings including deltas, strand plains, tidal flats, estuaries and lagoons. This classification includes both morphologic and evolutionary components and is based on dominant coastal processes. It has the potential to predict responses in geomorphology, facies and stratigraphy. The significance of this classification is its evolutionary capability, and its inclusion of all major clastic coastal depositional environments, making it more comprehensive than previous classifications.

We employ a ternary process classification with two axes. The first (horizontal axis) is defined as the relative power of wave versus tidal processes. The second (vertical) axis represents relative fluvial power (increasing upward). A ternary diagram defined by these axes can be used to illustrate the genetic process-response relationships between major coastal environments. The evolutionary classification combines the concept of two sediment sources (river and marine) with a relative sea-level parameter to classify embayed as well as linear and elongate/lobate shorelines. This approach identifies the evolutionary relationships between coastal sedimentary environments.

The new ternary approach to process classification can be applied to estuaries and lagoons to define wave and tide end-member facies models, each consisting of a tripartite facies zonation. The evolutionary classification is compatible with sequence stratigraphy because sediment supply and relative sea level are included, and serves as a starting point for more refined coastal stratigraphic analyses.  相似文献   


12.
The area of coastal rivers with a combination of fluvial, tidal and wave processes is defined as the fluvial to marine transition zone and can extend up to several hundreds of kilometres upstream of the river mouth. The aim of this study is to improve the understanding of sediment distribution and depositional processes along the fluvial to marine transition zone using a comprehensive dataset of channel bed sediment samples collected from the Mekong River delta. Six sediment types were identified and were interpreted to reflect the combined action of fluvial and marine processes. Based on sediment‐type associations, the Mekong fluvial to marine transition zone could be subdivided into an upstream tract and a downstream tract; the boundary between these two tracts is identified 80 to 100 km upstream of the river mouth. The upstream tract is characterized by gravelly sand and sand and occasional heterolithic rhythmites, suggesting bed‐load supply and deposition mainly controlled by fluvial processes with subordinate tidal influence. The downstream tract is characterized by heterolithic rhythmites with subordinate sand and mud, suggesting suspended‐load supply and deposition mainly controlled by tidal processes with subordinate fluvial influence. Sediment distributions during wet and dry seasons suggest significant seasonal changes in sediment dynamic and depositional processes along the fluvial to marine transition zone. The upstream tract shows strong fluvial depositional processes with subordinate tidal influence during the wet season and no deposition with weak fluvial and tidal processes during the dry season. The downstream tract shows strong coexisting fluvial and tidal depositional processes during the wet season and strong tidal depositional processes with negligible fluvial influence during the dry season. Turbidity maxima are present along the downstream tract of the fluvial to marine transition zone during both wet and dry seasons and are driven by a combination of fluvial, tidal and wave processes.  相似文献   

13.
Short term variability in delta form and process can be partly explained by the relative strength of hydraulic parameters such as river discharge, discharge variability, wave energy flux and tidal range. However, the calibre or grain size is also important. The amount, mode of transport and grain size of the sediment load delivered to a delta front have a considerable effect on the facies, formative physical processes, related depositional environments and morphology of the deltaic depositional system. The available grain size influences (1) the gradient and channel pattern of the fluvial system on the delta plain; (2) the mixing behaviour of sediment as it discharges into the ambient basin waters at the river mouth; (3) the type of shoreline, whether reflective or dissipative, and its response to both wave energy and tidal regime; and (4) the deformation and resedimentation processes on the subaqueous delta front. Long term aspects of deltaic sedimentation, including a few generalized relationships between sediment supply and physiographic setting, are briefly introduced. The need for further detailed research on modern and ancient deltaic dispersal systems is emphasized, and specific suggestions are given for future research.  相似文献   

14.
Tide‐dominated deltas have an inherently complex distribution of heterogeneities on several different scales and are less well‐understood than their wave‐dominated and river‐dominated counterparts. Depositional models of these environments are based on a small set of ancient examples and are, therefore, immature. The Early Jurassic Gule Horn Formation is particularly well‐exposed in extensive sea cliffs from which a 32 km long, 250 m high virtual outcrop model has been acquired using helicopter‐mounted light detection and ranging (LiDAR). This dataset, combined with a set of sedimentological logs, facilitates interpretation and measurement of depositional elements and tracing of stratigraphic surfaces over seismic‐scale distances. The aim of this article is to use this dataset to increase the understanding of depositional elements and lithologies in proximal, unconfined, tide‐dominated deltas from the delta plain to prodelta. Deposition occurred in a structurally controlled embayment, and immature sediments indicate proximity to the sediment source. The succession is tide dominated but contains evidence for strong fluvial influence and minor wave influence. Wave influence is more pronounced in transgressive intervals. Nine architectural elements have been identified, and their internal architecture and stratigraphical distribution has been investigated. The distal parts comprise prodelta, delta front and unconfined tidal bar deposits. The medial part is characterized by relatively narrow, amalgamated channel fills with fluid mud‐rich bases and sandier deposits upward, interpreted as distributary channels filled by tidal bars deposited near the turbidity maximum. The proximal parts of the studied system are dominated by sandy distributary channel and heterolithic tidal‐flat deposits. The sandbodies of the proximal tidal channels are several kilometres wide and wider than exposures in all cases. Parasequence boundaries are easily defined in the prodelta to delta‐front environments, but are difficult to trace into the more proximal deposits. This article illustrates the proximal to distal organization of facies in unconfined tide‐dominated deltas and shows how such environments react to relative sea‐level rise.  相似文献   

15.
Analysis of Neogene cores from the Eastern Venezuela Basin along 65 km of a west–east trending shoreline allows characterization of the sedimentological and ichnological signatures of wave, river and tidal processes. The area displays deltas prograding northward from the Guyana Shield. Twenty‐three facies are defined and grouped into four categories (wave‐influenced, river‐influenced, tide‐influenced and basinal). Wave‐dominated deltaic deposits occur mostly in the Tácata Field. The delta plain was characterized by tide‐influenced distributary channels separated by interdistributary bays. Fluvial discharge in the delta front and prodelta was repeatedly interrupted by storm‐wave reworking and suspended sediment fallout. Delta‐front and prodelta deposits contain some ichnotaxa that typically do not occur in brackish water (for example, Chondrites and Phycosiphon). Amalgamated storm deposits are unburrowed or contain vertical Ophiomorpha. Lateral (especially on the updrift side) to the river mouths, waves caused nearly continuous accretion of the associated strandplains. These deposits are the most intensely bioturbated, and are dominated by the estenohaline echinoid‐generated ichnogenus Scolicia. River‐dominated deltaic deposits are present in the Santa Bárbara, Mulata, Carito and El Furrial Fields. Low‐sinuosity rivers characterized the alluvial plain, whereas the subaerial delta plain was occupied by higher‐sinuosity rivers. The subaqueous delta plain includes distributary channels and tide‐influenced interdistributary bays. Further seaward, successions are characterized by terminal distributary‐channel and distributary mouth‐bar deposits, as well as by delta‐front and prodelta deposits showing evidence of sediment gravity‐flow and fluid‐mud emplacement. Delta‐front and prodelta deposits are unbioturbated to sparsely bioturbated, suggesting extreme stress, mostly as a result of high fluvial discharge and generation of sediment gravity flows. Tidal influence is restricted to interdistributary bays, lagoons and some distributary channels. From an ichnological perspective, and in order of decreasing stress levels, four main depositional settings are identified: river‐dominated deltas, tide‐influenced delta plains, wave‐dominated deltas and wave‐dominated strandplain–offshore complexes.  相似文献   

16.
Sedimentation in a river dominated estuary   总被引:2,自引:0,他引:2  
The Mgeni Estuary on the wave dominated east coast of South Africa occupies a narrow, bedrock confined, alluvial valley and is partially blocked at the coast by an elongate sandy barrier. Fluvial sediment extends to the barrier and marine deposition is restricted to a small flood tidal delta. Sequential aerial photography, sediment sampling and topographical surveys reveal a cyclical pattern of sedimentation that is mediated by severe fluvial floods which exceed normal energy thresholds. During severe floods (up to 10x 103 m3 s?1), lateral channel confinement promotes vertical erosion ofbed material. Eroded material is deposited as an ephemeral delta in the sea. After floods the river gradient is restored within a few months through rapid fluvial deposition and formation of a shallow, braided channel. Over an extended period (approximately 70 years) the estuary banks and bars are stabilised by vegetation and mud deposition. Subsequent downcutting in marginal areas transforms the channel to an anastomosing pattern which represents a stable morphology which adjusts to the normal range of hydrodynamic conditions. This cyclical pattern of deposition produces multiple fill sequences in such estuaries under conditions of stable sea level. The barrier and adjacent coastline prograde temporarily after major floods as the eroded barrier is reformed by wave action, but excess sediment is ultimately eroded as waves adjust the barrier to an equilibrium plan form morphology. Deltaic progradation is prevented by a steep nearshore slope, and rapid sediment dispersal by wave action and shelf currents. During transgression, estuarine sedimentation patterns are controlled by the balance between sedimentation rates and receiving basin volume. If fluvial sedimentation keeps pace with the volume increase of a basin an estuary may remain shallow and river dominated throughout its evolution and excess fluvial sediments pass through the estuary into the sea. Only if the rate of volume increase of the drowned river valley exceeds the volume of sediment supply are deep water environments formed. Under such conditions an estuary becomes a sediment sink and infills by deltaic progradation and lateral accretion as predicted by evolutionary models for microtidal estuaries. Bedrock valley geometry may exert an important control on this rate of volume increase independently of variations in the rate of relative sea level change. If estuarine morphology is viewed as a function of the balance of wave, tidal and fluvial processes, the Mgeni Estuary may be defined as a river dominated estuary in which deltaic progradation at the coast is limited by high wave energy. It is broadly representative of other river dominated estuaries along the Natal coast and a conceptual regional depositional model is proposed. Refinement of a globally applicable model will require further comparative studies of river dominated estuaries in this and other settings, but it is proposed that river dominated estuaries represent a distinct type of estuarine morphology.  相似文献   

17.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

18.
鄱阳湖浅水三角洲沉积体系三维定量正演模拟   总被引:1,自引:0,他引:1  
以鄱阳湖现代浅水三角洲沉积体系为例, 应用三维正演地层模拟软件Sedsim, 在参考前人研究的基础上, 首次将湖盆底部地形、湖(海)平面变化、沉积物注入量及注入方式、气候、沉积物供给速率等动力要素结合在一起, 对该浅水三角洲沉积体系的形成过程及1200年以来的演化进行定量正演模拟, 并采用历史和野外数据对鄱阳湖现代浅水三角洲沉积模型进行约束和校正.模拟结果表明, 鄱阳湖浅水三角洲沉积体系的发育是湖盆地形、湖平面变化、物源供给等多因素作用的综合结果.在该三角洲沉积体系中, 由于水体较浅、沉积底形坡度平坦且基准面变化频繁, 三角洲前缘发育的砂体基本上以席状砂为主, 并主要分布于湖区敞流通道附近.湖平面之上的三角洲平原河道发育与改道的现象主要受湖平面变化速率的影响, 即基准面缓慢上升期间和基准面快速下降期间, 河道发育的现象较明显.该模拟结果不仅能够对大型浅水三角洲的内部特征及形成过程有着更直观的认识, 而且也为今后研究不同地区相似的三角洲沉积体系的形成过程提供了可借鉴的分析模型与理论依据.   相似文献   

19.
Deltas are at the transition between fluvial and marine sedimentary environments where sediment density flows are often triggered during high river discharge events, forming submarine channels and sediment waves. On wave-influenced deltas, longshore currents are particularly efficient at transporting sediment alongshore, reducing the likelihood of sediment density flows from occurring at river mouths. This study describes four deltaic sedimentary systems at different stages of their evolution on a formerly glaciated continental inner shelf of eastern Canada in order to better understand the distribution of sediment density flows on wave-influenced deltas. Three types of settings are recognized as being prone to sediment density flows: (i) in the early stages of wave-influence and on large deltas, converging longshore currents can lead to offshelf sediment transport; (ii) on wave-influenced to wave-dominated deltas, a sandy spit can re-route the river mouth and sediment density flows form where the spit intersects the delta lip; (iii) in advanced stages of wave-dominated deltas and during their demise, rocky headlands are exposed and can intersect the slope, where off-shelf sediment transport occurs. These types of sediment density flows were all characterized by debris flows or surge-type turbidity currents which have limited offshore run-out. More rarely, hyperpycnal flows form at the river mouths, especially where the river incises glaciomarine clays prone to landsliding in the river, which increases fine-grained fluvial suspended sediment concentration. Overall, these results highlight the predominance of fluvial-dominated deltas during a phase of relative sea-level fall combined with high sediment supply. However, as soon as sediment supply diminishes, wave action remobilizes sediment alongshore modifying the distribution and types of sediment density flows occurring on wave-influenced deltas.  相似文献   

20.
Observations from ground-penetrating radar, sediment cores, elevation surveys and aerial imagery are used to understand the development of the Elwha River delta in north-western Washington, USA, which prograded as a result of two dam removals in late 2011. Swash-bar, foreshore and swale depositional elements are recognized within ground-penetrating radar profiles and sediment cores. A model for the growth and development of small mountainous river wave-dominated deltas is proposed based on observation of both the fluvial and deltaic settings. If enough sediment is available in the fluvial system, mouth-bars form after higher than average river discharge events, creating a large platform seaward of the subaqueous delta plain. Swash-bars form concurrently or within a month of mouth-bar deposition as a result of wave action. Fair-weather waves drive swash-bar migration landward and in the direction of littoral drift. The signature of swash-bar welding to the shoreline is landward-dipping reflections, as a result of overwash processes and slipface migration. However, most swash-bars are eroded by the river mouth, as only 10 of the 37 swash-bars that formed between August 2011 and July 2016 survived within the Elwha River delta. The swash-bars that do survive either amalgamate onto the shoreline or an earlier deposited swash-bar, forming a single larger barrier at the delta front. In asymmetrical deltas, the signature of swash-bar welding is more likely to be preserved on the downdrift side of the delta, where formation is more likely and accommodation behind newer swash-bars preserves older deposits. On small mountainous river deltas, welded swash-bars may be more indicative of a large sediment pulse to the system, rather than large hydrological events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号