首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analysis of the Sea Surface Height (SSH) from satellite altimeters has shown that equatorially trapped Rossby waves exhibit asymmetric cross-equatorial structures; their northern extrema are much larger in magnitude than their southern counterparts. Such asymmetry is inconsistent with the classical theory for the first baroclinic, first meridional equatorially trapped Rossby mode, which predicts that SSH and zonal velocity are symmetric in latitude and the meridional velocity is latitudinally antisymmetric (Matsuno, 1966). Chelton et al. (2003) attributed the observed asymmetry to the mean-shear-induced modifications of first meridional mode Rossby waves. The present paper examines nonlinear rectification of cross-equatorial wave structures in the presence of different zonal mean currents. Nonlinear traveling Rossby waves embedded in shears are calculated numerically in a 1.5-layer model. Nonlinearity is shown to increase the cross-equatorial asymmetry substantially making the northern extrema even more pronounced. However, nonlinearity only slightly increases the magnitude of the westward phase speed.  相似文献   

2.
SomeAspectsoftheCharacteristicsofMonsoonDisturbancesUsingaCombinedBarotropic-BaroclinicModel¥N.R.ParijaandS.K.Dash(CentreforA...  相似文献   

3.
东亚-太平洋型季节内演变和维持机理研究   总被引:1,自引:1,他引:0  
利用850hPa的纬向风异常建立一个逐候东亚-太平洋(East Asian Pacific,EAP)型指数,研究其季节内演变特征,发现东亚-太平洋型经向波列是东亚夏季风季节内变化的主要模态.其演变过程为:扰动首先出现在北太平洋中部,并通过正压不稳定过程从基本气流中获得能量而发展,在高层罗斯贝波能量向南频散,激发热带对流异常和赤道罗斯贝波,并相互锁相,因赤道罗斯贝波受β效应影响而共同向西移动.热带对流和环流异常在菲律宾附近达到最强,此时在东亚沿岸出现经向三极型波列,此后中低纬度异常继续向西北方向移动,使降水异常在长江流域能维持较长时间.东亚-太平洋型在东亚发展和维持有以下原因:首先,菲律宾暖水上空的对流和低层环流之间存在正反馈;其次,由于海陆热力差异导致暖大陆和冷海洋之间存在特殊的纬向温度梯度和北风垂直切变,东亚-太平洋型在经向上有向北倾斜的斜压结构,能通过斜压能量转换从平均有效位能中获得能量,同时,也能从经向温度梯度的平均有效位能中获得能量.  相似文献   

4.
设计了一个热带赤道β-平面的两层海洋模式,在准长波近似下,应用最大截断模分析赤道波的基本形态,指出无论是正压模或斜压模Kelvin波、Rossby波及基本流所对应的“地形Rossby波”是最基本的波系,在基本流的一定切变条件下,它们之间可以耦合出一类不稳定波。在浅混合层近似和“快波近似”下,正压模和斜压模是可以分离的,因此可以分别分析它们的色散特征,由于它们的特征量不同,在同样波长(扰动的纬向尺度)下,扰动的增长率也不同,通过分析得出在一定参数下,斜压模扰动增长率为正压模的2倍。近似分析表明,混合层中流场的增长要快于温跃层,但温跃层的温度增长要比混合层明显。  相似文献   

5.
We have determined free Rossby waves in the North Pacific Current by numerical methods. We have found only two stable solutions — the barotropic and first-order baroclinic Rossby shear modes. The influence of the current on the dispersion features of these waves is small for the barotropic shear mode, but is significant for the baroclinic shear mode. An explicit comparison of the dispersion relations for the baroclinic wave in case of vanishing and non-vanishing current is given. We have found at most one unstable solution per wave number. The unstable wave with largest growth rate has an e-folding time of 1.1 year. We have calculated vertical profiles of the stream function and the temperature for the various shear modes at various wave numbers. The temperature shear modes have been calculated for later usage in a Rossby wave model to be fitted to observed temperature data from the North Pacific Current area.  相似文献   

6.
In this paper, we investigate the meridional propagation of a forced Rossby wave packet towards a critical layer in a zonal shear flow by solving the linearized barotropic vorticity equation. The forcing is applied north of the critical layer. Two approaches are employed for solving this problem. First, an analytic solution valid for large time is derived, using Fourier and Laplace transform techniques and asymptotic approximations. This solution exhibits the modification due to the wave packet of the solution obtained by Warn and Warn (1976) [Warn, T., Warn H., 1976. On the development of a Rossby wave critical level. J. Atmos. Sci., 33, 2021–2024.] in the monochromatic case. A numerical investigation is then carried out using a finite difference scheme and a time-dependent radiation condition. It is found that the forced wave packet is absorbed at the critical layer and the total momentum transferred to the mean flow as a result of the absorption is observed to be proportional to the length scale of the wave packet. We also consider the case of a north–south mean flow with a longitudinally propagating wave packet forced to the east or west of the critical layer. The monochromatic version of this problem has been used before (Geisler, J.E., Dickinson, R.E., 1975. Critical level absorption of barotropic Rossby waves in a north–south flow. J. Geophys. Res., 80, 3805–3811.) to examine the interaction of western boundary currents and oceanic Rossby waves.  相似文献   

7.
Chen  Lilan  Fang  Jiabei  Yang  Xiu-Qun 《Climate Dynamics》2020,55(9-10):2557-2577

While recent observational studies have shown the critical role of atmospheric transient eddy (TE) activities in midlatitude unstable air-sea interaction, there is still a lack of a theoretical framework characterizing such an interaction. In this study, an analytical coupled air-sea model with inclusion of the TE dynamical forcing is developed to investigate the role of such a forcing in midlatitude unstable air-sea interaction. In this model, the atmosphere is governed by a barotropic quasi-geostrophic potential vorticity equation forced by surface diabatic heating and TE vorticity forcing. The ocean is governed by a baroclinic Rossby wave equation driven by wind stress. Sea surface temperature (SST) is determined by mixing layer physics. Based on detailed observational analyses, a parameterized linear relationship between TE vorticity forcing and meridional second-order derivative of SST is proposed to close the equations. Analytical solutions of the coupled model show that the midlatitude air-sea interaction with atmospheric TE dynamical forcing can destabilize the oceanic Rossby wave within a wide range of wavelengths. For the most unstable growing mode, characteristic atmospheric streamfunction anomalies are nearly in phase with their oceanic counterparts and both have a northeastward phase shift relative to SST anomalies, as the observed. Although both surface diabatic heating and TE vorticity forcing can lead to unstable air-sea interaction, the latter has a dominant contribution to the unstable growth. Sensitivity analyses further show that the growth rate of the unstable coupled mode is also influenced by the background zonal wind and the air–sea coupling strength. Such an unstable air-sea interaction provides a key positive feedback mechanism for midlatitude coupled climate variabilities.

  相似文献   

8.
从含非绝热项的准地转运动方程组出发,分析了青藏高原大尺度热力作用下非绝热Rossby波的一些性质,从理论上证明当背景西风气流为正压时,冬季高原冷却作用有利于Rossby波的经向传播,夏季高原大尺度热力作用不利于波动的经向传播。非绝热Rossby波的频率方程说明冬季高原的热力作用是中纬季节内振荡的重要激发机制。同时,在背景西风气流为纯斜压条件下,求解了高原热力作用下非绝热Rossby波的频率,并由频率方程说明冬季高原热力作用有利于波动向不稳定方向发展,而夏季高原的大尺度热力作用对波动稳定性的影响存在临界值。  相似文献   

9.
吕克利 《气象学报》1988,46(4):412-420
基本气流的经向切变对Rossby孤立波的形成具有重要的作用,不同强度的切变形成不同的孤立波流型;可变坡度地形也是形成Rossby孤立波的重要因子。弱切变基本气流和坡度变化不大的地形形成的主要是经向波数为1和2的孤立波。  相似文献   

10.
王永中  夏友龙 《气象学报》1995,53(4):406-413
利用由两层准地转模式简化的低谱模式,得知相当正压结构Rrossby波为平衡态,讨论了具有相当正压结构的Rossby波存在所需条件;并以定常Rossby波(相当正压结构)为基态,导出反映高低层Rossby波位相变化的振荡方程,指出高低层位相差的变化与垂直切交流的扰动、平均层上流函数和热成风流函数波动部分振幅扰动(A’和B’)的关系,说明相当正压结构和斜医结构的Rossby波是相互转换的。  相似文献   

11.
Several numerical experiments are conducted to examine the influence of mesoscale, bottom topography roughness on the inertial circulation of a wind-driven, mid-latitude ocean gyre. The ocean model is based on the quasi-geostrophic formulation, and is eddy-resolving as it features high vertical and horizontal resolutions (six layers and a 10 km grid). An antisymmetrical double-gyre wind stress curl forces the baroclinic modes and generates a strong surface jet. In the case of a flat bottom, inertia and inverse energy cascade force the barotropic mode, and the resulting circulation features strong, barotropic, inertial gyres. The sea-floor roughness inhibits the inertial circulation in the deep layers; the barotropic component of the flow is then forced by eddy-topography interactions, and its energy concentrates at the scales of the topography. As a result, the baroclinicity of the flow is intesified: the barotropic mode is reduced with regard to the baroclinic modes, and the bottom flow (constrained by the mesoscale sea-floor roughness) is decoupled from the surface flow (forced by the gyre-scale wind). Rectified, mesoscale bottom circulation induces an interfacial form stress at the thermocline, which enhances horizontal shear instability and opposes the eastward penetration of the jet. The mean jet is consequently shortened, but the instantaneous jet remains very turbulent, with meanders of large meridional extent. The sea-floor roughness modifies the energy pathways, and the eddies have an even more important role in the establishment of the mean circulation: below the thermocline, rectification processes are dominant, and eddies transfer energy toward permanent mesoscale circulations strongly correlated with topography, whereas above the thermocline mean flow and eddy generation are influenced by the mean bottom circulation through interfacial stress. The topography modifies the vorticity of the barotropic and highest baroclinic modes. Vorticity accumulates at the small topographic scales, and the vorticity content of the highest modes, which is very weak in the flat-bottom case, increases significantly. Few changes occur in surface-intensified modes. In the deep layers of the model, the inverse correlation between relative vorticity and topography at small scales ensures the homogenization of the potential vorticity, which mainly retains the largest scales of the bottom flow and the scale of β.  相似文献   

12.
The KdV equation with topography included in an N-level model is derived. It is shown that if the topography ex-ists. the KdV equation may describe the solitary Rossby waves in the case of basic current without vertical shear, and itis no necessary to introduce the MKdV equation. The results of calculations show that the change of horizontal shearpattern of basic flow may cause an important change of the streamline pattern of the solitary waves with the oddmeridional wavenumber m, and has no effect for the even meridional wavenumber m. The vertical shear increases thesteepness of the barotropic solitary modes, and it has a complicated effect on the baroclinic modes. The influences oftopographic slope on the solitary waves are very great. The southern and northern slopes of topography may cause dif-ferent solitary wave patterns, with the effect of northern slope greater. The effect of Froude number on the solitarywaves is generally to steepen the solitary waves, however, the effect also depends on the meridional wavenumber m andthe modes of solitary wave.  相似文献   

13.
Based on a barotropic vortex model, generalized energy-conserving equation was derived and two necessary conditions of basic flow destabilization are gained. These conditions correspond to generalized barotropic instability and super speed instability. They are instabilities of vortex and gravity inertial wave respectively. In order to relate to practical situation, a barotropic vortex was analyzed, the basic flow of which is similar to lower level basic wind field of tropical cyclones and the maximum wind radius of which is 500 km. The results show that generalized barotropic instability depending upon the radial gradient of relative vorticity can appear in this vortex. It can be concluded that unstable vortex Rossby wave may appear in barotropic vortex.  相似文献   

14.
台风麦莎的正压特征波动结构及其稳定性   总被引:1,自引:1,他引:0  
利用中尺度WRF模式对2005年8月西北太平洋台风麦莎(Matsa)进行了精细的数值模拟。使用模式输出资料,对正压浅水方程组进行了数值差分计算,分析它在最大强度时刻的正压特征波动结构和稳定性。结果表明,台风麦莎内部包含有沿逆时针方向传播的重力惯性外波和涡旋Ross-by波,两种波动的结构和稳定性存在显著性差异。前者主要存在于台风外围,增长率随波长的减小而增加,台风外围的波动相速度为48.9~68.5m/s;后者主要位于距离台风中心200km内,表现为3波最不稳定,半径100km处相速度约为5m/s。此外,重力惯性外波的扰动风场与高度场基本相垂直,扰动散涡比值大于3倍,甚至达到10^3倍,运动以辐合、辐散为主;涡旋Rossby波的扰动风场基本平行于高度场,扰动散涡比值为10^-1~10^-2,涡旋运动是其主要运动,与内螺旋雨带沿着切向圆周方向的传播具有密切关系。  相似文献   

15.
正、斜压涡度拟能相互作用对乌拉尔阻塞过程的影响   总被引:1,自引:0,他引:1  
研究表明,正压涡度拟能的增强和减弱是乌拉尔山上空阻塞过程的重要特征,正压涡度拟能增强的主要机制是斜压涡度拟能向正压涡度拟能的转换,而斜压涡度拟能的来源则是阻塞区外斜压涡度拟能向阻塞区的净输送和阻塞区内斜压涡度拟能的净生成。正压涡度拟能减弱的主要机制足耗散机制和β效应。因此。阻塞过程是正、斜压涡度拟能相互作用的结果。纬向斜压风对斜压涡度的输送在阻塞的维持和崩溃中具有重要的作用,经向斜压风对斜压涡度的输送在阻塞环流的建立中具有重要的作用,经向正压风对正压涡度拟能的净输送和斜压风对涡度拟能的净输送也具有重要贡献。  相似文献   

16.
Changes in the normal mode energetics of the general atmospheric circulation are assessed for the northern winter season (DJF) in a warmer climate, using the outputs of four climate models from the Coupled Model Intercomparison Project, Phase 3. The energetics changes are characterized by significant increases in both the zonal mean and eddy components for the barotropic and the deeper baroclinic modes, whereas for the shallower baroclinic modes both the zonal mean and eddy components decrease. Significant increases are predominant in the large-scale eddies, both barotropic and baroclinic, while the opposite is found in eddies of smaller scales. While the generation rate of zonal mean available potential energy has globally increased in the barotropic component, leading to an overall strengthening in the barotropic energetics terms, it has decreased in the baroclinic component, leading to a general weakening in the baroclinic energetics counterpart. These global changes, which indicate a strengthening of the energetics in the upper troposphere and lower stratosphere (UTLS), sustained by enhanced baroclinic eddies of large horizontal scales, and a weakening below, mostly driven by weaker baroclinic eddies of intermediate to small scales, appear together with an increased transfer rate of kinetic energy from the eddies to the zonal mean flow and a significant increase in the barotropic zonal mean kinetic energy. The conversion rates between available potential energy and kinetic energy, C, were further decomposed into the contributions by the rotational (Rossby) and divergent (gravity) components of the circulation field. The eddy component of C is due to the conversion of potential energy of the rotational adjusted mass field into kinetic energy by the work realized in the eddy divergent motion. The zonal mean component of C is accomplished by two terms which nearly cancel each other out. One is related to the Hadley cell and involves the divergent component of both wind and geopotential, while the other is associated to the Ferrel cell and incorporates the divergent wind with the rotationally adjusted mass field. Global magnitude increases were found in the zonal mean components of these two terms for the warmer climate, which could be the result of a strengthening and/or widening of both meridional cells. On the other hand, the results suggest a strengthening of these conversion rates in the UTLS and a weakening below, that is consistent with the rising of the tropopause in response to global warming.  相似文献   

17.
利用1979—2013年ERA-interim再分析资料,通过均方差分析、功率谱分析、带通滤波及合成分析等统计方法系统地分析了东亚季风区冬季经向风的季节内变化及其可能机理。结果表明,东亚季风区冬季经向风异常在我国华南一带变化显著,振荡周期为10~20 d(准双周振荡)。在准双周尺度上,水平方向上,850 h Pa异常北风主要呈现从高纬向低纬传播的特点,60°N附近异常经向风向东南方向传播,副热带30°N附近弱的异常经向风向东传播,二者在华南汇合,随后分为两支中心,分别向南和向东继续传播,我国华南一带存在基本气流向准双周尺度波动的能量转换,因此异常经向风在华南会显著增强;垂直方向上,对流层上层、中层、下层的经向风呈现强—弱—强的异常中心特征,对流层下层850 h Pa和上层200~300 h Pa均存在经向风大值中心;我国东部上空300 h Pa上,副热带地区波动比850 h Pa更明显,60°N附近波动向东南方向移动,同样在我国东部地区合并,波动辐合导致波动能量增强。  相似文献   

18.
Development and propagation of equatorial waves are investigated with the model which includes convection -wave convergence feedback and convection-frictional convergence feedback. Two experiments with an initial Kelvin wave (Exp. K) and with an initial Rossby wave (Exp. R) are carried out. The equatorial waves in Exp. R grow much faster than those in Exp. K. The equatorial waves in both experiments follow zonal (eastward / westward) and meridional (poleward) propagation. The equatorial waves can be partitioned into two meridional modes using Parabolic Cylinder Function. An equa?tor mode denotes a wave component with a positive precipitation center at the equator and an off-equator mode rep?resents a wave component with positive precipitation centers off the equator. The equator mode dominates in Exp. K whereeas the off-equator mode dominates in Exp. R. The rapid wave growth in Exp. R is interpreted by analyzing the eddy available potential energy (EAPE) generation. Stronger off-equator mode in Exp. R obtains more EAPE through convection-frictional convergence feedback which results in more rapid wave growth. The relative vorticity tendency is determined by interactions between Earth’s vorticity and lower-troposphere convergence (divergence effect) and between the meridional gradient and lower-troposphere circulation (beta effect). The eastward and poleward propagation of equatorial waves is a result of the divergence effect, and the westward movement is caused by the beta effect.  相似文献   

19.
采用1979—2020年观测和再分析资料,研究了年际时间尺度上初夏(5—6月)东北亚气温异常月际转折的基本特征,以及欧洲东部土壤湿度异常对其的影响及可能物理过程。结果表明,年际时间尺度上东北亚初夏气温异常月际演变的主导模态为转折模态,即5月偏暖(冷)则6月偏冷(暖);转折模态的形成直接源于东北亚地区环流异常的转折。进一步分析发现,5月欧洲东部土壤湿度偏低往往导致东北亚5月偏暖而6月偏冷,可能的物理过程如下:5月土壤湿度偏低导致局地土壤温度和对流层低层增温,进而造成地中海地区(欧洲北部)对流层低层经向温度梯度和大气斜压性减弱(增强),相应地高频瞬变波活动减弱(增强),并通过瞬变涡度强迫有利于欧洲中东部形成异常高压和Rossby波波源;相关的Rossby波沿极锋急流东传,导致东北亚为准正压的异常高压,地表升温。土壤湿度异常可持续到6月,但强度减弱;类似地,其可通过瞬变涡度强迫有利于异常高压和Rossby波波源的形成,但中心西移至欧洲西部;相关Rossby波活动导致东北亚为准正压的异常低压,地表降温。5月和6月欧洲东部土壤湿度异常相关的 Rossby波的活动特征(波源、活动中心和传播路径)存在明显差异,这与两个月欧亚北部大气平均态的差异密切相关。当5月欧洲东部土壤湿度偏高时,上述物理过程则大致相反。  相似文献   

20.
The Indian Ocean has a particularity, its width is close to half the wavelength of a Rossby wave of biannual frequency, this coincidence having been capitalized on by several authors to give the observations a physical basis. The purpose of this article is to show that this is not the case since the resonance of tropical baroclinic waves occurs in all three oceans. This is because the westward-propagating Rossby wave is retroflexed at the western boundary to form off-equatorial Rossby waves dragged by countercurrents before receding and turning back as a Kelvin wave. Thus a quasi-stationary baroclinic wave is formed, whose mean period is tuned to the forcing period. Two independent basin modes resonantly forced are highlighted – 1) a nearly symmetric zonal 1/2-yr period Quasi-Stationary Wave (QSW) that is resonantly forced by the biannual monsoon. It is formed from first baroclinic mode equatorial-trapped Rossby and Kelvin waves and off-equatorial Rossby waves at the western antinode. This QSW controls the Equatorial Counter Current at the node. The Indian Ocean Dipole (IOD) results from a subharmonic mode locking resulting from the coupling of this QSW and the 2nd, 3rd and 4th baroclinic modes - 2) a 1-yr period QSW formed from an off-equatorial baroclinic Rossby wave, which is induced from the southernmost current of the Indonesian Throughflow through the Timor passage, propagating in the southern and northern hemispheres: the drivers are south-easterlies in the southern hemisphere and monsoon wind in the northern hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号