首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution swath bathymetry of shallow water (< 200 m) oceanic seamounts is a relatively rare issue. During the recent Gorringe_2003 cruise over the Gorringe Bank (Eastern Atlantic) we collected multibeam bathymetry on the bank’s two shallow summits, Gettysburg and Ormonde in the –25/–400m depth range at a resolution rarely achieved over an oceanic seamount. We also carried out bottom samplings and ROV dives in the same bathymetric interval. The acquisition parameters and the characteristics of the echosounder employed allowed to generate a Digital Terrain Model (DTM) with metric spatial resolution upto 75–100 m depths. To ensure proper tidal corrections a tide-gauge was deployed at sea-bottom during the survey. DTM reveals for the Gettysburg Seamount an almost perfectly circular summit resulting from the blanket of bioclastic sediments over an igneous ‘core’ consisting of sheared and foliated serpentinites. The core is dissecated by N 10° W trending ridges elevating some tens of metres and filled in between by bioclastic sands. Both foliation and ridge patterns seem related to primary igneous fabric rather than later structural deformation. The overall circular shape confirms the origin of the seamount as a mantle serpentinite diapir in analogy with similar, but subduction-related, circular seamounts observed in the Bonin Trench (western Pacific). In contrast the Ormonde elongated summit follows the regional tectonic trend with a N 60° E active (seismogenic?) fault on its southeastern flank. Its basement morphology corresponds to the outcrops of igneous rocks chiefly consisting of gabbros, volcanic rocks and dyke intrusions. On both seamounts topographic profiles show that the ‘shelf’ area is somewhat convex rather than flat like that of ‘Pacific type’ guyots and is bordered by a depositional, locally erosional shelf break, located between –170 and –130 m. Various terraced surfaces and some geological evidence confirm previous observations and indicate relative sea-level oscillations with partial emersion of the two summits that seem occurred during the last glacial cycle (past 120 ka).  相似文献   

2.
Seamounts and knolls are ‘undersea mountains’, the former rising more than 1000 m from the seafloor. These features provide important habitats for aquatic predators, demersal deep-sea fish and benthic invertebrates. However most seamounts have not been surveyed and their numbers and locations are not well known. Previous efforts to locate and quantify seamounts have used relatively coarse bathymetry grids. Here we use global bathymetric data at 30 arc-sec resolution to identify seamounts and knolls. We identify 33,452 seamounts and 138,412 knolls, representing the largest global set of identified seamounts and knolls to date. We compare estimated seamount numbers, locations, and depths with validation sets of seamount data from New Zealand and Azores. This comparison indicates the method we apply finds 94% of seamounts, but may overestimate seamount numbers along ridges and in areas where faulting and seafloor spreading creates highly complex topography. The seamounts and knolls identified herein are significantly geographically biased towards areas surveyed with ship-based soundings. As only 6.5% of the ocean floor has been surveyed with soundings it is likely that new seamounts will be uncovered as surveying improves. Seamount habitats constitute approximately 4.7% of the ocean floor, whilst knolls cover 16.3%. Regional distribution of these features is examined, and we find a disproportionate number of productive knolls, with a summit depth of <1.5 km, located in the Southern Ocean. Less than 2% of seamounts are within marine protected areas and the majority of these are located within exclusive economic zones with few on the High Seas. The database of seamounts and knolls resulting from this study will be a useful resource for researchers and conservation planners.  相似文献   

3.
Seamounts are habitats of considerable interest in terms of conservation and biodiversity, and in terms of fisheries for bentho-pelagic and pelagic species. Twenty previously compiled datasets including seamount/underwater feature lists, bathymetric maps and emerged feature maps from different sources (ship-derived and satellite altimetry-derived) at different spatial scales (from individual cruise to worldwide satellite data) were gathered in order to compile an enhanced list of underwater features for parts of the western and central Pacific Ocean (WCPO). The KL04 dataset [Kitchingman, A., and Lai, S., 2004. Inferences on potential seamount locations from mid-resolution bathymetric data. Fisheries Centre Research Reports 12 (5), 7–12], listing seamount positions and depths as calculated from satellite altimetry-derived bathymetry, provided the baseline data for this study as it covered the entire region of interest and included summit depth information. All KL04 potential seamounts were cross-checked with other datasets to remove any atolls and islands that had been incorrectly classified as seamounts, to add seamounts undetected by KL04, to update the overall database (geolocation, depth, elevation, and name) and to compile a 12-class typology of the different types of underwater features. Of the 4626 potential seamounts identified in KL04, 719 were multiple identifications of the same large underwater features and 373 (10%) were actually emerged banks, atolls and islands, leaving 3534 actual underwater features. Conversely, 487 underwater features were documented in other datasets but not registered by KL04. The screening of all the potential WCPO seamounts produced a final list of 4021 underwater features with agreed upon position and information. This enhanced list should have many applications in oceanography, biodiversity conservation and studies of the influence of seamounts on pelagic ecosystems and fisheries.  相似文献   

4.
Seamounts are prominent features of the world's seafloor, and are the target of deep-sea commercial fisheries, and of interest for minerals exploitation. They can host vulnerable benthic communities, which can be rapidly and severely impacted by human activities. There have been recent calls to establish networks of marine protected areas on the High Seas, including seamounts. However, there is little biological information on the benthic communities on seamounts, and this has limited the ability of scientists to inform managers about seamounts that should be protected as part of a network. In this paper we present a seamount classification based on "biologically meaningful" physical variables for which global-scale data are available. The approach involves the use of a general biogeographic classification for the bathyal depth zone (near-surface to 3500 m), and then uses four key environmental variables (overlying export production, summit depth, oxygen levels, and seamount proximity) to group seamounts with similar characteristics. This procedure is done in a simple hierarchical manner, which results in 194 seamount classes throughout the worlds oceans. The method was compared against a multivariate approach, and ground-truthed against octocoral data for the North Atlantic. We believe it gives biologically realistic groupings, in a transparent process that can be used to either directly select, or aid selection of, seamounts to be protected.  相似文献   

5.
中西太平洋海山形态类型与钴结壳资源分布关系   总被引:4,自引:1,他引:3       下载免费PDF全文
通过对中西太平洋海山形态剖面的山体高度、山顶直径、基底直径、山顶直径与基底直径之比、山体坡度、山体高度与基底直径比值六个参数多元统计分析,发现可以根据山体高度与基底直径的比值对海山形态类型进行分类:比值小于0.10的为平顶海山(Ⅰ类),大于0.10的为尖顶海山(Ⅱ类),对于等于0.10的海山需参考平坦度和山体坡度,平坦度大和山体坡度缓的为Ⅰ类,反之为Ⅱ类。西太平洋的麦哲伦海山区、马绍尔群岛基本以平顶海山为主,介于中西太平洋之间的威克—马尔库斯海山区和中太平洋海山区、莱恩群岛平顶海山与尖顶海山共同发育。对各种类型海山上钴结壳分布研究发现,无论是在尖顶海山还是在平顶海山,板状结壳均比较发育,但砾状结壳在平顶海山比在尖顶海山的发育。中太平洋尖顶海山的结壳比平顶海山的发育,但由于山顶面积小,钴结壳资源量不大。仅从平顶海山看,在麦哲伦海山区、威克—马尔库斯海山区板状结壳比中太平洋海山区、马绍尔群岛、莱恩群岛的板状结壳发育,前者的板状结壳平均厚度大于3 cm,后者的板状结壳平均厚度小于3 cm,总体上是西太平洋平顶海山钴结壳比中太平洋平顶海山的发育。两种类型海山各方向上的资源分布明显不同,在平顶海山的西部山坡的资源比东部山坡的丰富,尖顶海山的则刚好相反。  相似文献   

6.
The volumes and ages of small isolated seamounts from both fracture zone and normal crust settings are related to the chemical composition of their lavas. Small volcanoes on or near ridge crests are composed of LIL-depleted ocean ridge tholeiite and are later capped successively by alkalic basalt and alkalic differentiated lavas as they drift away from the ridge. In addition, it appears that contemporaneous seamount volcanism is tholeiitic near the ridge crest and alkalic on the ridge flanks. No significant differences are found between the chemical compositions of lavas from small seamounts located on fracture zones and those on normal oceanic crust.  相似文献   

7.
High-resolution seismic reflection profiles and multibeam bathymetry data collected in 2006 and 2008 around Pantelleria Island show the widespread occurrence of contourite drifts and erosional elements ~30?km from the narrowest part (~145?km) of the Sicily Channel, where water masses from the Eastern Mediterranean flow towards the Western Mediterranean. The contourite drifts are rather small (up to 10?km long and 3.3?km wide), at water depths of ~250?C750?m. Most are elongated separated drifts with quite well-developed moats and crests, aligned roughly parallel to the regional bathymetric contours. Erosional elements include abraded surfaces, moats, scours and sub-circular depressions. In addition, a wide sector of the seafloor adjacent to a seamount located SW of Pantelleria Island is characterized by numerous biogenic build-ups colonized by deep-water corals (Madrepora oculata). The spatial distribution of sediment drifts, erosional features and biogenic build-ups suggests an origin from a north-westward-flowing bottom current, in this case the outflow of Levantine Intermediate Water and transitional Eastern Mediterranean Deep Water via the Sicily Channel. These findings for the Pantelleria offshore sector demonstrate that contourite processes are able to concentrate a high variety of closely spaced depositional and erosional features even in small areas (in this case, about 2,000?km2). This Pantelleria focusing can plausibly be related to a particular configuration of the prevailing bottom-current regime in complex interaction with an uneven bathymetry shaped mainly by tectonic and volcanic activity. The distribution of bottom currents seems to be strongly influenced by morphological features ranging from major seabed obstacles, such as the Pantelleria volcanic complex and the so-called southwest seamount, to smaller-scale escarpments and banks. This is consistent with previous findings for Mediterranean and other settings characterized by neotectonics and large topographic features.  相似文献   

8.
Most of the Southeast Atlantic Ocean is abyssal, and global bathymetries suggest that only ~3.2% of the areas beyond national jurisdiction (ABNJ; also known as the high seas, as defined in the United Nations Convention on the Law of the Sea [UNCLOS]) are shallower than 2 500 m. This study mapped bathymetry and characterised substrates in selected seamount summit areas, including several that have been or may become fishing areas. The southernmost location, the Schmitt-Ott Seamount, has exposed volcanic bedrock with surrounding flats covered by thin biogenic sediments and/or coral rubble that appears ancient. At Wüst, Vema, Valdivia and Ewing seamounts the basaltic base appears to be overlain by coral caps and other coral substrates (sheets, rubble). Adjacent summit plains have biogenic sediments of varying thickness. Vema has a flat, roughly circular summit, <100 m deep, with the shallowest point being a 22-m-deep summit knoll; the upper slopes have ancient coral framework, but the summit has a mixture of coralline and volcanic rock and coarse sediments, including extensive areas with coralline algae and kelp forests. Valdivia Bank is a 230-m-deep, flat, rocky area (~11 × 5 km), protruding steeply from the extensive multi-summit Valdivia subarea of the Walvis Ridge. The distribution of past fisheries in the Convention Area of the South East Atlantic Fisheries Organisation (SEAFO) was considered in relation to the new information on bathymetry and substrate.  相似文献   

9.
A seamount chain with an approximately WNW trend is observed in the northeastern Ulleung Basin. It has been argued that these seamounts, including two islands called Ulleung and Dok islands, were formed by a hotspot process or by ridge related volcanism. Many geological and geophysical studies have been done for all the seamounts and islands in the chain except Anyongbok Seamount, which is close to the proposed spreading ridge. We first report morphological characteristics, sediment distribution patterns, and the crustal thickness of Anyongbok Seamount using multibeam bathymetry data, seismic reflection profiles, and 3D gravity modeling. The morphology of Anyongbok Seamount shows a cone shaped feature and is characterized by the development of many flank cones and flank rift zones. The estimated surface volume is about 60 km3, and implies that the seamount is smaller than the other seamounts in the chain. No sediments have been observed on the seamount except the lower slope, which is covered by more than 1,000 m of strata. The crustal structure obtained from a 3D gravity modeling (GFR = 3.11, SD 3.82 = mGal) suggests that the seamount was formed around the boundary of the Ulleung Plateau and the Ulleung Basin, and the estimated crustal thickness is about 20 km, which is a little thicker than other nearby seamounts distributed along the northeastern boundary of the Ulleung Basin. This significant crustal thickness also implies that Anyongbok Seamount might not be related to ridge volcanism.  相似文献   

10.
The Early Cretaceous separation of Newfoundland from Iberia–Ireland is a classic example of a magma-poor continental margin with hyperextension and with widespread minor magmatism resulting in seamounts. This study defines the distribution of seamounts east of Orphan Knoll, and documents and interprets the geochemical character of the one recovered lava sample. Video imagery of lava outcrops, and the sample, were obtained by ROV from Orphan seamount, one of a linear series of small seamounts overlying transitional thinned continental crust on the seaward side of Orphan Knoll. New multibeam bathymetry and legacy seismic data show several seamounts that extend irregularly along the fault-bound NE margin of Orphan Knoll. Whole rock geochemistry shows the sample to be highly alkaline basanite or possibly tephrite. Diopside–hedenbergite, kaersutite and K-feldspar phenocrysts were analyzed by electron microprobe and scanning electron microscope, and alteration minerals including kaolinite were identified by X-ray diffraction. The highly alkaline character of the basanite is similar only to Early Cretaceous volcanic and sub-volcanic rocks erupted through thick continental crust of the Mesoproterozoic Grenville Orogeny. The location of the linear set of seamounts is related to margin-parallel faults on the seaward side of Orphan Knoll that provided a pathway for magma, although ENE-trending lineaments in individual seamounts or seamount groups suggest the influence of oceanic fracture zones. A lower gradient crest to Orphan seamount above 2,200 m suggests subaerial erosion, consistent with the presence of kaolinite as an alteration product and the absence of lava pillows at and above this depth.  相似文献   

11.
Approximately 200 seamounts of different dimensions have been identified, from multibeam bathymetry maps of the Central Indian Ocean Basin (CIOB) (9°S to 16°S and 72°E to 80°E), of which 61% form eight chains that trend N-S. The seamounts are clustered above and below 12°S latitude. Area II (9°–12°S) shows a concentration of smaller seamounts (≤400 m height), and area I (12°–15°S) has a mixed population (including both less and more than 400 m height). Inspite of the differences in their height, the seamounts of these eight chains are morphologically (slope angle, flatness, basal width) corelatable. Furthermore, we suggest that height-width ratio could be useful in identifying the style of seamount eruption. The seamount chains in the CIOB probably originated from propagative fractures and were produced between 61 and 52 Ma (chrons A26 to A23) as a result of the interaction between the conjugate crusts of the Central Indian and Southeast Indian Ridges during the Indo-Eurasian collision event.  相似文献   

12.
Approximately 200 seamounts of different dimensions have been identified, from multibeam bathymetry maps of the Central Indian Ocean Basin (CIOB) (9°S to 16°S and 72°E to 80°E), of which 61% form eight chains that trend N-S. The seamounts are clustered above and below 12°S latitude. Area II (9°-12°S) shows a concentration of smaller seamounts (≤400 m height), and area I (12°-15°S) has a mixed population (including both less and more than 400 m height). Inspite of the differences in their height, the seamounts of these eight chains are morphologically (slope angle, flatness, basal width) corelatable. Furthermore, we suggest that height-width ratio could be useful in identifying the style of seamount eruption. The seamount chains in the CIOB probably originated from propagative fractures and were produced between 61 and 52 Ma (chrons A26 to A23) as a result of the interaction between the conjugate crusts of the Central Indian and Southeast Indian Ridges during the Indo-Eurasian collision event.  相似文献   

13.
Several types of sediment failures in the Gulf of Cadiz were observed using multibeam bathymetry, acoustic imagery and high-resolution seismic. These instabilities are mainly sediment failures and flows. Their width and length vary from 1 to more than 10 km. The failures are mainly related to high sedimentation rates, particularly in places where the Mediterranean Outflow Water (MOW) spills over, such as channel bends and the outer side of the giant contourite levee. Steep slopes are also a trigger for failure at the continental shelf-slope transition, on valley sides, on canyon flanks, and on the sides of bathymetric highs. Other mass movements are related to fluid escape (mud volcanoes) and earthquakes. In areas where the MOW flows along the seafloor, the constant shearing and related erosion can add to the overall stresses. The frequency of failures can be estimated using the deposits resulting of their distal transformations into turbidites.  相似文献   

14.
The canyon system, including 17 small slope-confined canyons in the Shenhu area, northern South China Sea, is significantly characterized by mounded or undulating features on the canyon flanks and canyon heads. However, the mechanism underlying the formation of these features has yet to be elucidated. In previous studies, most of them were interpreted as sediment deformation on the exploration seismic profiles. In this paper, we collected high-resolution bathymetric data, chirp profiles and geotechnical test data to investigate their detailed morphology, internal structures, and origin. The bathymetric data indicated that most mounded seismic units have smooth seafloors and are separated by grooves or depressions. The distance between two adjacent mounded units is only hundreds of meters. On chirp profiles, mounded seismic units usually exhibit chaotic reflections and wavy reflections, of which the crests migrate upslope. The slope stability analysis results revealed that the critical angle of the soil layers in the study area tends to be 9°, indicating that most mounded seismic units on the canyon flanks and heads are stable at present. The terrain characteristics and seismic configurations combined with the slope stability analysis results indicated that most mounded seismic units are not sediment deformation but depositional structures or mixed systems composed of deformation and depositional structures.  相似文献   

15.
大洋海山及其生态环境特征研究进展   总被引:1,自引:0,他引:1  
海山作为深海大洋独特地貌,尽管其研究可追溯到100多年前,但对大洋海山的形成、地质特征、动力学特性、生态环境等方面了解甚少。随着人们认识海洋程度的提升,特别是回声探测、无人潜水器和卫星技术等技术的应用,对大洋海山的系统探索已取得了前所未有的进展,大洋海山研究已成为当代人们所渴求探索的领域之一。本文对大洋海山的研究历程、分类、生物群落特征、水文环境特征以及维持海山区高生物量的机制进行了总结。目前全球海山主要有两种分类方式,其分类一是基于构造特征,可将海山分为板块内海山、大洋中脊海山和岛弧海山;二是基于山顶到海表面的距离,可将海山分为浅海山、中等深度海山和深海山。海山为生物提供了独特的栖息地,形成了高生物量、高生物多样性和高生物独有性等三种主要的生物群落特征,使海山成为世界海洋渔业的重点海域和生态环境研究的热点区域之一。海山突出的地形对大洋环流造成阻隔,因而在海山周围形成了其独特的水文环境,其中海山环流和上升流是其两种典型代表,这些独特的水文环境特征对生物群落的组成和分布具有重要影响。海山区的高生物量主要通过上升流输送、地形诱捕和海流水平输送三种机制维持,三种机制对支撑海山生态系统的物质循环和能量流动至关重要。  相似文献   

16.
A computer code that simulates multibeam echo‐sounding over realistic (three‐dimensional) bathymetry was used to compare available sounding systems. Two‐dimensional modeling dealt with the resolution of seafloor bathymetry and with the effect of postprocessing algorithms for some typical multibeam systems. The 2‐D bathymetric inputs were idealized bottom features. Three‐dimensional modeling dealt with the gross character of the seafloor, as detected by echo‐sounding systems. The 3‐D bathymetric inputs were realizations of terrain generated by a stochastic model of seafloor roughness. Three‐dimensional modeling indicated that the sounding system may slightly shift the location of peaks within the beam footprint. In addition, the simulated measurements were more sensitive to low‐wavenumber features (i.e., large‐scale roughness) than to high‐wavenumber features (i.e., small‐scale roughness). Resolution gradually decreased with increasing distance from centerline, due to the increasing footprint size of beams at increasing angular distance from the vertical. Lineated terrain was also smoothed by simulated echo‐sounding; lineations may indeed remain undetected if sounding system parameters are not properly selected. Inversion of the simulated measurements indicated that echo‐sounding measurements are dependent not only on the characteristics of the sounding system itself, but on other factors such as the character of the roughness and the orientation of the survey relative to the strike of lineations. The modeling technique provides a way to quantify the system response of a multibeam echo‐sounding system. This work resulted in recommendations as to the most appropriate system for an application in an area of rough bathymetry, and it led to the establishment of criteria for comparing multibeam systems in future applications.  相似文献   

17.
Newly collected, high resolution multi-beam sonar data are combined with previous bathymetry data to produce an improved bathymetric map of Shatsky Rise oceanic plateau. Bathymetry data show that two massifs within Shatsky Rise are immense central volcanoes with gentle flank slopes declining from a central summit. Tamu Massif is a slightly elongated, dome-like volcanic edifice; Ori Massif is square shaped and smaller in area. Several down-to-basin normal faults are observed on the western flank of the massifs but they do not parallel the magnetic lineations, indicating that these faults are probably not related to spreading ridge faulting. Moreover, the faults are observed only on one side of the massifs, which is contrary to expectations from a mechanism of differential subsidence around the massif center. Multi-beam data show many small secondary cones with different shapes and sizes that are widely-distributed on Shatsky Rise massifs, which imply small late-stage magma sources scattered across the surface of the volcanoes in the form of lava flows or explosive volcanism. Erosional channels occur on the flanks of Shatsky Rise volcanoes due to mass wasting and display evidence of down-slope sediment movement. These channels are likely formed by sediments spalling off the edges of summit sediment cap.  相似文献   

18.
为了改善多波束声纳的分辨率,提出了一种基于相干原理的测深新算法,对每一个波束脚印内的信号进行相干处理,获得了大量的海底深度值。在此基础上,采用新算法对仿真数据和某型号多波束测深声纳湖上实验数据进行处理。结果表明,相对于传统多波束测深算法,该算法可显著提高声纳海底测量的分辨率,获得大量的海底深度测量值。  相似文献   

19.
多波束水深测量中受潮汐因素的影响,测量垂直基准是变化的,具有瞬时性。传统多波束测量,需在测区内设立一个或多个验潮站进行同步水位观测,最终将水深归算到深度基准面上。针对多波束水深测量中垂直基准转换的复杂性问题,文中基于地球重力场模型,结合测区内实测的GNSS/水准数据,通过插值算法建立了测区范围内似大地水准面精化模型,构建了多波束无验潮水深测量的垂直基准转换模型。通过实例表明,该方法有效地消除了潮汐、动态吃水及涌浪等因素影响,直接获取深度基准面的水深值,提高工作效率,可满足近岸多波束水深测量的工作需求。  相似文献   

20.
Recent habitat suitability models used to predict the occurrence of vulnerable marine species, particularly framework building cold-water corals, have identified terrain attributes such as slope and bathymetric position index as important predictive parameters. Due to their scale-dependent nature, a realistic representation of terrain attributes is crucial for the development of reliable habitat suitability models. In this paper, three known coral areas and a noncoral control area off the west coast of Ireland were chosen to assess quantitative and distributional differences between terrain attributes derived from bathymetry grids of varying resolution and information content. Correlation analysis identified consistent changes of terrain attributes as grain size was altered. Response characteristics and dimensions depended on terrain attribute types and the dominant morphological length-scales within the study areas. The subsequent effect on habitat suitability maps was demonstrated by preliminary models generated at different grain sizes. This study demonstrates that high resolution habitat suitability models based on terrain parameters derived from multibeam generated bathymetry are required to detect many of the topographical features found in Irish waters that are associated with coral. This has implications for marine spatial planning in the deep sea. Supplemental materials are available for this article. Go to the publisher's online edition of Marine Geodesy to view the free supplemental file.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号