首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In the present study, we report N_2 fixation rate(~(15)N isotope tracer assay) and the diazotroph community structure(using the molecular method) in the western tropical North Pacific Ocean(WTNP)(13°–20°N, 120°–160°E). Our independent evidence on the basis of both in situ N_2 fixation activity and diazotroph community structure showed the dominance of unicellular N_2 fixation over majority of the WTNP surface waters during the sampling periods.Moreover, a shift in the diazotrophic composition from unicellular cyanobacteria group B-dominated to Trichodesmium spp.-dominated toward the western boundary current(Kuroshio) was also observed in 2013. We hypothesize that nutrient availability may have played a major role in regulating the biogeography of N_2 fixation.In surface waters, volumetric N_2 fixation rate(calculated by nitrogen) ranged between 0.6 and 2.6 nmol/(L·d) and averaged(1.2±0.5) nmol/(L·d), with 10 μm size fraction contributed predominantly(88%±6%) to the total rate between 135°E and 160°E. Depth-integrated N_2 fixation rate over the upper 200 m ranged between 150 μmol/(m~2·d)and 480 μmol/(m~2·d)(average(225±105) μmol/(m~2·d). N_2 fixation can account for 6.2%±3.7% of the depthintegrated primary production, suggesting that N_2 fixation is a significant N source sustaining new and export production in the WTNP. The role of N_2 fixation in biogeochemical cycling in this climate change-vulnerable region calls for further investigations.  相似文献   

2.
A hybrid coordinate ocean model (HYCOM) is used to simulate the Kuroshio frontal eddies in the East China Sea (ECS). The research area is located (20°-32°N, 120°-132°E). Using the simulating data, it is figured out that the Kuroshio frontal eddies occur in summer as well as in the other season in this area. The life cycle of the Kuroshio and its frontal eddies is different with the position. The life-cycle of the Kuroshio frontal eddies of the northwest Diaoyu Islands is about 14 d; and the life cycle of the Kuroshio frontal eddies of southwest Yakushima about 20 d. This result extends the in situ researching results greatly. In addition, the vertical impact depth of the Kuroshio frontal eddies is also changing with the position. On the whole, in the ECS, the maximum impact depth of the Kuroshio frontal eddies of the northwest Taiwan Islands is about 75 m; the maximum impact depth of the Kuroshio frontal eddies of the northwest Diaoyu Islands is more than 125 m, but no more than 200 m; and the maximum impact depth of the Kuroshio frontal eddies of southwest Yakushima is up to 100 m.  相似文献   

3.
基于1993—2017年卫星高度计海面高度异常中尺度涡旋追踪数据集,对东海陆架区及从西北太平洋入侵东海的涡旋进行路径分类、季节变化及特征参量统计分析,并结合再分析流场资料,进行背景流场、涡度场分析。研究结果显示,近25 a,在东海追踪到318个气旋涡和276个反气旋涡。根据涡旋运动路径将其分为:东海陆架浅海生成往深海传播型(148个)、深海生成向东海陆架浅海传播型(35个)、沿等深线运动型(180个)、徘徊型(121个)、外来入侵到达东海陆架型(25个)及外来入侵到达东海深海型(85个)。6类涡旋的数量存在明显的季节分布,各个类型气旋与反气旋涡数量的季节分布也各不相同。其中,沿等深线运动型涡在春、夏季的数量高于秋、冬季。陆架浅海区生成往深海运动型涡的季节分布较为平均,气旋式涡在夏季数量最少,在春季和冬季数量较多。黑潮与涡旋数量的季节分布有关。徘徊型涡的平均生命周期最长,约为44 d;陆架浅海生成往深海运动型及外来入侵到达东海陆架的中尺度涡具有最大的平均振幅,为13.2 cm;外来入侵到达东海陆架型涡具有最大的直径,为122 km;外来入侵到达东海深海型涡在进入东海后的生命周期、振幅、直径在数值上均为最小。  相似文献   

4.
2009年2月在南海北部海域现场观测粒度分级叶绿素a质量浓度和初级生产力(PP)的分布。结果表明,调查海域水柱平均叶绿素a质量浓度的变化范围为0.11~8.37 mg/m3,平均为(1.28±2.23) mg/m3,高值区出现在珠江口及近岸海域;初级生产力的范围为344.8~1 222.5 mgC/(m2·d),平均为(784.2±351.4) mgC/(m2·d),高值区位于近岸及陆架海域。浮游植物粒度分级测定结果表明,在生物量较高的近岸海域,叶绿素a的粒级结构以小型浮游植物占优势,其贡献率为40.9%,微型和微微型浮游植物对总叶绿素a的贡献率分别为34.6%和24.5%;而在生物量较低的陆坡和开阔海域,各粒级浮游植物对叶绿素a的贡献率由大到小依次为微微型浮游植物(78.9%),微型浮游植物(17.2%)和小型浮游植物(3.9%)。相关性分析结果表明,调查海域分级叶绿素a的区域化分布特征与洋流运动下营养盐的分布密切相关,同时叶绿素a又高度影响着此区域PP的分布。此外,我们将调查海域实测所得浮游植物最佳光合作用速率与采用垂向归一化初级生产力模型估算的数据进行对比,发现后者明显低于前者,这说明通过水温估算最佳光合作用速率的算法在冬季南海北部可能存在低估。  相似文献   

5.
As a fundamental study to evaluate the contribution of the Kuroshio to primary production in the East China Sea (ECS), we investigated the seasonal pattern of the intrusion from the Kuroshio onto the continental shelf of the ECS and the behavior of the intruded Kuroshio water, using the RIAM Ocean Model (RIAMOM). The total intruded volume transport across the 200m isobath line was evaluated as 2.74 Sv in winter and 2.47 Sv in summer, while the intruded transport below 80m was estimated to be 1.32 Sv in winter and 1.64 Sv in summer. Passive tracer experiments revealed that the main intrusion from the Kuroshio to the shelf area of the ECS, shallower than 80m, takes place through the lower layer northeast of Taiwan in summer, with a volume transport of 0.19 Sv. Comparative studies show several components affecting the intrusion of the Kuroshio across the 200 m isobath line. The Kuroshio water intruded less onto the shelf compared with a case without consideration of tide-induced bottom friction, especially northeast of Taiwan. The variations of the transport from the Taiwan Strait and the east of Taiwan have considerable effects on the intrusion of the Kuroshio onto the shelf.  相似文献   

6.
于2006年4月至2007年1月对桑沟湾海域进行了4个航次的调查,采集表层海水样品,研究了该海域表层海水中溶解N_2O的分布特征及海气交换通量的季节变化,结果表明:桑沟湾表层海水中溶解N_2O浓度和饱和度存在一定的季节性变化,浓度表现为冬季最高而饱和度为夏季最高.利用Liss和Merlivat公式(LM86)以及Wanninkhof公式(W92)估算了该海湾海水中N_2O的年平均海-气交换通量,分别为0.2 μmol/(m~2·d)±0.1 μmol/(m~2·d)和1.5 μmol/(m~2·d)±1.0 μmol/(m~2·d).  相似文献   

7.
利用AVISO数据集的卫星高度计资料,分析了中国台湾以东中尺度涡的时空特征,通过具体的中尺度涡实例探讨了其对台湾以东黑潮路径的影响。研究表明气旋式中尺度涡在春夏季节的数目要少于反气旋式中尺度涡,在秋冬季节气旋式涡旋个数则多于反气旋涡;并且台东以东区域涡旋传播存在多种路径,涡旋的存在对台湾东北部黑潮入侵东海的路径具有重大影响,特别是2004年夏季台湾以东区域存在多个涡旋,相应的吕宋海峡黑潮主轴向东偏移明显,台湾东北黑潮入侵东海的路径发生了显著变化。  相似文献   

8.
Three warm currents, the Kuroshio, its shelf intrusion branch in the northeast of Taiwan and the Taiwan Warm Current (hereafter TWC), dominate the circulation pattern in the East China Sea (hereafter ECS). Their origination, routes and variation in winter and summer are studied. Their relationship with four major high and low temperature centers is analyzed. Differing from the previous opinion, we suggest that the four major centers are generated to a great extent by the interaction of the currents in the ECS. In summer, a cold water belt in the northeast of Taiwan is preserved from winter between the Kuroshio and the TWC. The shelf intrusion branch of the Kuroshio separates the water belt, and two low temperature centers generate in the northeast of Taiwan. In the southern ECS, the TWC transports more heat flux northward to form a warm pool. But it is separated in the lower layer by the cold water driven by the intrusion branch of the Kuroshio. So the TWC and the intrusion branch of the Kuroshio play a dominating role to generate the high temperature center. The interaction among the eastward TWC, the northward Tsushima Warm Current (hereafter TSWC) and the southward Su Bei Coastal Flow (hereafter SBCF) generates the low temperature center in the northern ECS. In winter, the strengthening of the shelf intrusion branch of the Kuroshio obscures the two low temperature centers in the northeast of Taiwan. For the weakening of the TWC, the high temperature center in the southern ECS vanishes, and the low temperature center in the northern ECS shifts to south.  相似文献   

9.
Surface maps of nitrate, phosphate and silicate of the East China Sea (ECS) have been constructed and are described. Reports on exchanges of material between the ECS and the South China Sea (SCS) through the Taiwan Strait are reviewed. Recent advances seem to have reversed the earlier view that the SCS exports nutrients to the ECS through the Taiwan Strait. This is because the northward flow of seawater in the summer carries little nutrient. On the other hand, the waters flowing southward along the coast of China in winter carry orders of magnitude higher nutrient concentrations. The outflow of subsurface waters from the SCS, however, is the major source of new nutrients to the ECS continental shelves because these subsurface waters flow out of the Luzon Strait, join the northwardly flowing Kuroshio and enter the Okinawa trough. Around 10% of the nutrients exported from the SCS through the Luzon Strait upwell onto the ECS shelf. These inputs are larger than the aggregate of all the rivers that empty into the ECS, contributing 49% of the externally sourced nitrogen, 71% of the phosphorous, and 54% of the silica for the ECS.  相似文献   

10.
透明胞外聚合颗粒物(Transparent exopolymer particles,TEPs)在海洋中分布广泛,其沉降被认为是海洋中生物碳沉降的途径之一。本研究于2011年春季和夏季调查了长江口邻近海域TEPs的浓度和沉降速率,并且估算了其碳沉降通量。研究发现,TEPs浓度春季介于40.00~1040.00 μg Xeq L-1,平均值为209.70±240.93 μg Xeq L-1;夏季介于56.67~1423.33 μg Xeq L-1,平均值为433.33±393.02 μg Xeq L-1。两个季节,TEPs在水华站位的浓度明显高于非水华站位。相关性分析表明,TEPs与水体叶绿素a浓度呈显著正相关性,表明在调查区浮游植物是TEPs的主要生产者。TEPs沉降速率在春季介于0.08~0.57 m d-1,平均值为0.28±0.14 m d-1;夏季介于0.10~1.08 m d-1,平均值为0.34±0.31 m d-1。经估算,TEPs碳沉降通量春季介于4.95~29.40 mg C m-2 d-1,平均值为14.66±8.83 mg C m-2 d-1;夏季介于6.80~30.45 mg C m-2 d-1,平均值为15.71±8.73 mg C m-2 d-1。TEPs的碳沉降通量可以占到浮游植物碳沉降通量的17.81%~138.27%。水华站位TEPs的碳沉降通量明显高于非水华站位,这是由于水华站位较高的TEPs浓度及沉降速率所致。本研究表明,TEPs的沉降在长江口邻近海域是碳沉降的有效途径,在相应的碳沉降相关研究中应该被考虑进来。  相似文献   

11.
南海环流动力机制研究综述   总被引:40,自引:9,他引:31  
南海的环流复杂,但通过近20 a来的研究工作,国内外学者对此已取得了不少的成果.本文就南海环流框架性的问题,综述了有关的文献,认为对南海上层海洋三方面的环流分量的驱动机制已有了初步的认识.这三方面分别是:(1)准季节性风场;(2)黑潮向南海的净输运;(3)黑潮向南海的涡度平流输送.但是对这些驱动的时空变化仍相当不清楚.三者皆增强了南海北部的海盆尺度气旋式环流,其强化的西南向西边界流靠近东沙群岛,建议称为“东沙海流”.没有水文证据显示黑潮水是以分支形式进入南海,其向南海的输运也不可能主要通过中尺度涡过程,具体机制有待研究.每年在南海生成的中尺度涡平均约有10个,风场与沿岸地形所生成的强风应力旋度可能是其主要的驱动机制.作为框架性的认识,也有三方面的工作进行得较少,即:(1)吕宋海峡的上层水交换;(2)南海的中尺度涡生成机制,虽然强风应力旋度及前述的第三种环流驱动机制也有中尺度涡伴生;(3)自吕宋海峡进入的深层水对南海上层海洋环流的影响.  相似文献   

12.
Plankton respiration is an important part of the carbon cycle and significantly affects the balance of autotrophic assimilation and heterotrophic production in oceanic ecosystems. In the present study, respiration rates of the euphotic zone plankton community(CR_(eu)), size fractionated chlorophyll a concentration(Chl a), bacterial abundance(BAC), and dissolved oxygen concentration(DO) were investigated during winter and summer in the northern South China Sea(n SCS). The results show that there were obvious spatial and temporal variations in CR_(eu) in the n SCS(ranging from 0.03 to 1.10 μmol/(L·h)), CR_(eu) in winter((0.53±0.27) μmol/(L·h)) was two times higher than that in summer((0.26±0.20) μmol/(L·h)), and decreased gradually from the coastal zone to the open sea. The distribution of CR_(eu) was affected by coupled physical-chemical-biological processes, driven by monsoon events. The results also show that CR_(eu) was positively correlated with Chl a, BAC, and DO, and that BAC contributed the highest CR_(eu) variability. Furthermore, the results of the stepwise multiple linear regression suggest that bacteria and phytoplankton were the dominant factors in determining CR_(eu)(R~2 = 0.82, p0.05) in the n SCS. Based on this relationship, we estimated the integrated water column respiration rate(CRint) within 100 m of the investigated area, and found that the relationship between the biomass of the plankton community and respiration may be nonlinear in the water column.  相似文献   

13.
综述东海和琉球群岛以东海域若干气旋型和反气旋型涡旋的研究.对东海陆架、200m以浅海域,主要讨论了东海西南部反气旋涡、济州岛西南气旋式涡和长江口东北气旋式冷涡.东海两侧和陆坡附近出现了各种不同尺度的涡旋,其动力原因之一是与东海黑潮弯曲现象有很大关系,其次也与地形、琉球群岛存在等有关.东海黑潮有两种类型弯曲:黑潮锋弯曲和黑潮路径弯曲.黑潮第一种弯曲出现了锋面涡旋,评述了锋面涡旋的存在时间尺度与空间尺度和结构等;也指出了黑潮第二种弯曲,即路径弯曲时在其两侧出现了中尺度气旋式和反气旋涡,讨论了它们的变化的特性.特别讨论了冲绳北段黑潮弯曲路径和中尺度涡的相互作用,着重指出,当气旋式涡在冲绳海槽北段成长,并充分地发展,其周期约在1~3个月时,它的空间尺度成长到约为200km(此尺度相当于冲绳海槽的纬向尺度)时,黑潮路径从北段转移到南段.也分析了东海黑潮流量和其附近中尺度涡的相互作用.最后指出在琉球群岛以东、以南海域,经常出现各种不同的中尺度反气旋式和气旋式涡,讨论了它们在时间与空间尺度上变化的特征.  相似文献   

14.
Seven-year(2005–2011) Synthetic Aperture Radar(SAR) images are applied to study oceanic eddies in the East China Sea. It is found that most of these eddies detected from the SAR images are less than 10 km, which are submesoscale eddies. Seasonal differences are evident in the distribution of eddies, with the highest and the lowest number of eddies noted in summer and winter, respectively. Since slick streaks in SAR images look dark, an eddy identified due to the slicks is referred to as "black eddy". As a result of wave-current interactions in the zones of current shear, it can be seen that an eddy exhibits a bright curve, the eddy is called "white eddy". During the seven years, 95 black eddies and 50 white eddies are identified in the study area. Black eddies are found in the whole study area while white eddies are mainly distributed in the vicinity of the Kuroshio Current. This study suggests that the distribution of the white eddy is denser around the Kuroshio because of the strong shear in the Kuroshio region. In terms of the eddy sizes, white eddies are generally smaller than black eddies.  相似文献   

15.
Basic patterns of the reversal of the Kuroshio water toward the shelf, intrusion of the shelf mixed waterinto the Kuroshio and uplifting of the near-bottom nutrient-rich water into the upper layer by the pumping of the frontal eddy are analyzed on the basis of satellite infrared images and hydrologic, chemical and biological observations. Results show that the Kuroshio frontal eddies play a very important role in the exchange between the shelf water and the Kuroshio water. The estimation of the average volume transports for three frontal eddy events indicates that the shelf mixed water entrained by an eddy into Kuroshio is 0.44×10~6 m3/s and the reversal Kuroshio water onto the shelf region only 0.04×10~6 m3/s. Along the whole shelf edge, the volume transport of the shelf mixed water entrained by the eddies into the Kuroshio is 1.8×10~6 m3/s. The nutrient (NO3-N) flux pumped to the euphotic zone and input to the continental shelf through a column with 1 m wide is 974 μmol/(s·m) when there is frontal eddy and only 79 μmol/(s·m) in the case of no frontal eddy. Yearly nutrient (NO3-N) flux input to the shelf area caused by the frontal eddy is 1.7×10~5 t/a.  相似文献   

16.
Researches on the currents in the South China Sea (SCS) and the interaction between the SCS and its adjacent seas are reviewed. Overall seasonal circulation in the SCS is cyclonic in winter and anticyclonic in summer with a few stable eddies. The seasonal circulation is mostly driven by monsoon winds, and is related to water exchange between the SCS and the East China Sea through the Taiwan Strait, and between the SCS and the Kuroshio through the Luzon Strait. Seasonal characteristics of the South China Sea Warm Current in the northern SCS and the Kuroshio intrusion to the SCS are summarized in terms of the interaction between the SCS and its adjacent seas.  相似文献   

17.
Nitrogen fixation is one of the most important sources of new nitrogen in the ocean and thus profoundly affects the nitrogen and carbon biogeochemical processes. The distribution, controlling factors, and flux of N2 fixation in the global ocean remain uncertain, partly because of the lack of methodological uniformity. The 15N2 tracer assay (the original bubble method → the 15N2-enriched seawater method → the modified bubble method) is the mainstream method for field measurements of N2 fixation rates (NFRs), among which the original bubble method is the most frequently used. However, accumulating evidence has suggested an underestimation of NFRs when using this method. To improve the availability of previous data, we compared NFRs measured by three 15N2 tracer assays in the South China Sea. Our results indicate that the relationship between NFRs measured by the original bubble method and the 15N2-enriched seawater method varies obviously with area and season, which may be influenced by incubation time, diazotrophic composition, and environmental factors. In comparison, the relationship between NFRs measured by the original bubble method and the modified bubble method is more stable, indicating that the N2 fixation rates based on the original bubble methods may be underestimated by approximately 50%. Based on this result, we revised the flux of N2 fixation in the South China Sea to 40 mmol/(m2·a). Our results improve the availability and comparability of literature NFR data in the South China Sea. The comparison of the 15N2 tracer assay for NFRs measurements on a larger scale is urgently necessary over the global ocean for a more robust understanding of the role of N2 fixation in the marine nitrogen cycle.  相似文献   

18.
研究了夏季东海海水中和大气中一氧化碳(CO)的浓度分布、海-气通量和表层海水中CO的微生物消耗。夏季东海大气中CO的体积分数范围为63×10-9~120×10-9,平均值为87×10-9(SD=18×10-9,n=37),呈现出近岸高,远海低和北高南低的特点。夏季东海表层海水中CO的浓度范围为0.24~5.51nmol/L,平均值为1.48nmol/L(SD=1.46,n=37),CO的浓度受太阳辐射影响明显;CO在垂直分布上表现出浓度随深度增加迅速减小的特征,浓度最大值出现在表层。调查期间表层海水中CO相比大气处于过饱和状态,过饱和系数变化范围为3.65~113.55,平均值为23.63(SD=24.56,n=37),这表明调查海域是大气中CO的源。CO的海-气通量变化范围为0.25~78.50μmol/(m2·d),平均值为9.97μmol/(m2·d)(SD=14.92,n=37)。在CO的微生物消耗培养实验中,CO的浓度随时间增长呈指数降低,消耗过程表现出一级反应的特点,速率常数KCO范围为0.043~0.32/h,平均值为0.18/h(SD=0.088,n=9),KCO与盐度之间存在负相关关系。  相似文献   

19.
1 IntroductionThe carbon cycle in the ocean, related to theglobal warming and human food, is of great scientificsignificance. Studies for the carbon transfer and trans-formation in the ocean, including the assimilative andmetabolic capacity, have become one of key researchfoci in global biogeochemical studies (Tsunogai et al.,1997; Hu and Yang, 2001; Hansell et al., 2003; Wei etal., 2003; Yang et al., 2004; Yuan et al., 2004).As is known, POC is composed of living fractionsand organic debr…  相似文献   

20.
沉积物中的异化硝酸盐还原过程对于海洋氮循环起着至关重要的作用。基于15N标记的培养技术是目前测定沉积物异化硝酸盐还原的主要手段。准确快速测定15N标记的产物(29N2、 30N2)是量化异化硝酸盐还原各个过程速率的关键。本研究自行组装膜进样质谱系统用于29N2和30N2的测定,对其测量条件进行了优化。结果表明,进样蠕动泵进样流速0.80 mL/min,进样时间3~3.5 min,恒温槽温度20~25℃,同时铜还原炉温度在300~600℃的条件下,^29N2/^28N2和^30N2/^28N2的测试精密度分别可以控制在0.1%和1%以内,比较适合29N2和30N2的测定。利用自组装的膜进样质谱系统结合15N标记的培养技术研究了青岛石老人沙滩沉积物中的异化硝酸盐还原过程。石老人沙滩沉积物不存在将硝酸盐完全还原为氮气好氧的反硝化。厌氧铵氧化、厌氧反硝化和异化硝酸盐还原为铵(Dissimilatory Nitrate Reduction to Ammonium,DNRA)的潜在速率(以湿沉积物N计)分别为(0.05±0.01) nmol/(cm^3·h),(2.32±0.21) nmol/(cm^3·h)和(1.02±0.15) nmol/(cm^3·h)。厌氧反硝化是硝酸盐异化还原主要的贡献者,其比例接近70%,其次是DNRA,比例可达30%,而厌氧铵氧化的贡献最低,仅为1%。在N2产生过程中,主要贡献者是反硝化,厌氧铵氧化的贡献仅为2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号