首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
A four‐antenna GPS attitude determination system was used to estimate roll, pitch, and heading parameters of a 52‐meter surveying vessel in an operational marine environment. The least squares algorithm for platform attitude estimation using multiple baseline vector observables is presented. An efficient on‐the‐fly carrier phase ambiguity searching method is derived, which utilizes the Cholesky decomposition method and the known baseline constraints between the GPS antennas to construct the potential ambiguity sets on the sphere. The accuracy of the estimated attitude parameters from the GPS multi‐antenna system was assessed with an independent inertial navigation system (INS). Results from sea trials show that the proposed GPS multi‐antenna system and processing algorithms delivered a satisfactory performance under various ship maneuvers. The accuracy of GPS estimated ship attitude parameters is better than 0.06 degrees at an output rate of 10 Hz. Such a performance demonstrates a new alternative means to provide accurate, reliable, and cost‐effective ship attitude information for hydrographic applications.  相似文献   

2.
鲁洋为  王振杰  聂志喜  王毅 《海洋测绘》2014,34(6):43-45,48
GPS姿态确定的精度不仅与单历元基线解算精度有关,还受基线长度和天线布设结构的影响。探讨了GPS姿态测量系统中基线长度和天线布设结构与姿态测量精度的关系。仿真结果表明:增加航向基线长度,能够提高航向角和俯仰角的精度,增加横向基线长度,能提高横滚角的精度;当基线长度一定时,将两基线正交布设,横滚角的精度最高。  相似文献   

3.
Chirp sub-bottom profilers are marine acoustic devices that use a known and repeatable source signature (1–24 kHz) to produce decimetre vertical resolution cross-sections of the sub-seabed. Here the design and development of the first true 3D Chirp system is described. When developing the design, critical factors that had to be considered included spatial aliasing, and precise positioning of sources and receivers. Full 3D numerical modelling of the combined source and receiver directivity was completed to determine optimal source and receiver geometries. The design incorporates four source transducers (1.5–13 kHz) that can be arranged into different configurations, including Maltese Cross, a square and two separated pairs. The receive array comprises 240 hydrophones in 60 groups whose group-centres are separated by 25 cm in both horizontal directions, with each hydrophone group containing four individual elements and a pre-amplifier. After careful consideration, it was concluded that the only way to determine with sufficient accuracy the source–receiver geometry, was to fix the sources and receivers within a rigid array. Positional information for the array is given by a Real Time Kinematic GPS and attitude system incorporating four antennas to give position, heading, pitch and roll. It is shown that this system offers vertical positioning accuracy with a root-mean-square (rms) error less than 2.6 cm, while the horizontal positioning rms error was less than 2.0 cm. The system is configured so that the Chirp source signature can be chosen by software aboard the acquisition vessel. The complete system is described and initial navigational and seismic data results are presented. These data demonstrate that the approach of using fixed source-receiver geometry combined with RTK navigation can provide complete 3D imaging of the sub-surface.  相似文献   

4.
GNSS船姿测量以其观测误差不随时间累积的特点得到了广泛研究和应用,本文基于三天线GNSS船姿测量方式,构建了波束脚印误差与姿态误差间的关系模型,设计仿真实验分析了基线长度对姿态误差的影响,以及不同水深环境下姿态误差与GNSS定位误差的关系。为突破传统RTK在测量距离上的限制,本文采用PPP、PPK、MBD (动态参考站差分)三种方法进行GNSS船姿计算,并通过海上实验与高精度惯性导航系统进行对比分析,结果表明使用MBD测姿结果要优于PPK和PPP模式,得到的航偏角、横摇角、纵摇角标准差均在0.1°左右,可满足通常情况下多波束测深对姿态精度的要求。  相似文献   

5.
多波束测深系统作业的基本前提是测船保持匀速直线运动状态,而实际作业中非匀速运动状态下的多波束测量普遍存在,此时常用的基于加速度测量原理的测姿设备会受到影响。为此,在多波束测姿误差分析的基础上,针对直线加速、U型转弯两种情况下的测姿误差进行研究,通过INS测姿与GNSS三天线测姿的数据比较,对非匀速直线运动状态下姿态误差的影响特点及程度进行了分析。实验证明当测船做直线加速运动时,会使纵摇角产生较大误差;当测船转弯时,会使横摇角产生较大误差,这对指导多波束实际测量具有一定的参考价值。  相似文献   

6.
An Ashtech GPS 3DF, a commercially available system for measuring ship's heading from an array of GPS antennas, was installed on RRS Discovery in August 1992. Data were collected during 8 days of ship trials, including periods in port and while on station or steaming. Headings from the GPS system have been compared with headings from the ship's gyrocompass, and residuals calculated. While in port, residuals had a standard deviation of 0.066°, suggesting satisfactory performance by both instruments. While at sea, time-averaged residuals varied with a range of nearly 3°, most of which is attributed to systematic errors in the ship's gyro. After correcting the gyro using 10-min averages of the GPS minus gyro headings, the residual GPS minus gyro differences had a standard deviation of 0.17°. This represents a likely limit on the use of GPS heading data to improve conventional gyro measurements.  相似文献   

7.
K. D. Do  J. Pan  Z. P. Jiang   《Ocean Engineering》2003,30(17):2201-2225
This paper addresses an important problem in ship control application—the robust stabilization of underactuated ships on a linear course with comfort. Specifically, we develop a multivariable controller to stabilize ocean surface ships without a sway actuator on a linear course and to reduce roll and pitch simultaneously. The controller adapts to unknown parameters of the ship and constant environmental disturbances induced by wave, ocean current and wind. It is also robust to time-varying environmental disturbances, time-varying change in ship parameters and other motions of the ship such as surge and heave. The roll and pitch can be made arbitrarily small while the heading angle and sway are kept to be in reasonably small bounds. The controller development is based on Lyapunov’s direct method and backstepping technique. A Lipschitz continuous projection algorithm is used to update the estimate of the unknown parameters to avoid the parameters’ drift due to time-varying environmental disturbances. Simulations on a full-scale catamaran illustrate the effectiveness of our proposed controller.  相似文献   

8.
Hsin-Hung Chen 《Ocean Engineering》2008,35(14-15):1448-1462
Positioning accuracy of an ultra short baseline (USBL) tracking system is significantly reduced with the increase of alignment errors in the installation of sensors. Although techniques for sensor alignment calibration have been developed, they are either complex or lacking in rigor. This study proposes an algorithm to estimate the angular misalignments of a USBL transceiver relative to attitude sensors. The numerical algorithm is based on the positioning errors caused by heading, pitch, and roll misalignments, respectively, when running a circular survey around a seabed transponder. The positioning errors introduced by the angular misalignments outline an iterative scheme of estimating the roll alignment error first, next the heading alignment error, and then finally the pitch alignment error. This makes possible the efficient estimation of all angular misalignments with a high degree of accuracy. With the consideration of measurement error and executing a non-centered and non-perfect circle around the true transponder position, numerical simulations are performed to validate the effectiveness of the proposed algorithm. The simulation results show that the proposed algorithm is robust to the effects of measurement error, non-centered circles, and non-perfect circles. Moreover, the estimates converge fairly quickly, and can be achieved with good accuracy in only a few iterations.  相似文献   

9.
Among the fastest‐growing applications of high‐precision GPS positioning are those which are kinematic in nature. Carrier phase‐based GPS positioning of a moving antenna—for example, attached to a ship, an aircraft, or a land vehicle—is now commonplace. Recent software innovations make use of advanced ambiguity resolution “on the fly” and real‐time kinematic data processing algorithms to emulate the ease of operation of conventional differential GPS (DGPS) based on transmitted pseudo‐range corrections. However, as much higher accuracy must now be assured compared to DGPS, greater attention must be focused on the quality control aspects of GPS positioning. This study describes two methods for detecting failures or changes of small magnitude in real time in GPS measurements. Examination of the overlap or disjointedness of robust and conventional confidence intervals and studentized normal variates have been used as failure detection tools. These methods are based on testing the performance of the differences between the conventional (nonrobust) Kalman state estimates and the robust Kalman filler estimates. Detection of cycle slips in carrier phase data, outliers in phase rate or in code ranges, or any other type of disorder in the measurements of the GPS system can be addressed with these failure detection methods. Application and evaluation of the algorithms has been carried out using raw carrier‐phase and phase‐rate GPS measurements. It has been demonstrated that these failure detection tools provide powerful and efficient diagnostics for detecting small changes in the measurements of the GPS system.  相似文献   

10.
多波束测深技术是目前水下地形测量的主要技术手段,测量平台的瞬时姿态及方位是影响多波束测深系统最终成果准确度的重要因素。GNSS方位辅助惯性导航系统,作为目前应用较为广泛的方位、姿态、及位置综合测量系统,不仅能够提供高精度位置信息,同时也能提供测量平台的瞬时姿态及方位数据,而且因为具有GNSS方位辅助测量,使得最终方位测量结果比传统方位测量精度大大提高,这对于多波束最终测量成果精度提高具有重要意义。文中从GNSS方位辅助惯性导航系统原理及技术优势出发,结合Trimble RTX后处理技术,从姿态测量、方位测量及辅助高程测量方面分析了在多波束水下地形测量中的应用,并以实际测量成果来展现其在水下地形精密测量技术方面的优势,结果显示,定位精度可以达到优于2 cm级别,方位精度可以优于0.01°(依赖于双GNSS天线之间的基线长度),该技术对水下地形测量准确度提升作用显著。  相似文献   

11.
Two 12.2 m-high towers for mounting Global Positioning System (GPS) receiver antennas were designed and constructed to provide millimeter-level stability while maintaining portability and accessibility to satellites and deck spaces. A combination of guys and a 3-m horizontal strut provide roll and pitch stability of 2–3 mm observed from 0.1 seconds to 12 days using a combination of GPS and optical/laser devices. The shipboard antenna mounts connect sub-aerial GPS positioning to underwater acoustic ranging that determine the centimeter-level location of seafloor transponders. Observed annually, these seafloor geodetic positions measure seafloor crustal motion for geophysical studies.  相似文献   

12.
This paper proposes the use of change‐in‐phase measurements of a multiple‐satellite‐tracking NAVSTAR Global Positioning System (GPS) receiver and an antenna periodically moving in a platform's plane to determine the platform's orientation. Available test data are used to demonstrate the orientation‐determination capability of GPS using the proposed procedure. The expected accuracy using satellite multiplexing receivers currently completing development is also discussed.  相似文献   

13.
The towfish location and orientation problems that arise in using side-scan sonar to detect objects on the sea bottom are treated separately. Data which locate the towfish relative to the ship are usually deteriorated by multipath receptions and other effects. In order to overcome this serious degradation in the location measurements, a modified Kalman filter is proposed. An estimate of the state transition matrix for this filter is derived, and a means of switching between two Kalman gains is suggested. The feasibility of the proposed filter is justified by a case study. Improved estimates of towfish pitch and heading measurements are obtained by a separate system employing model identification and subsequent Kalman filtering. Application of these methods to data from similar towed side-scan sonar systems should yield significant gains in object location accuracy  相似文献   

14.
A new method for field calibration of multibeam echo sounders is presented. The method applies least-squares adjustment computation of static offsets in parameters such as roll, pitch, heading and the horizontal shift of the transducer relative to the reference point of the positioning system. All the parameters are derived simultaneously. An investigation demonstrates the precision and the flexibility of the method. Flexibility is here related to the design of calibration lines, i.e., their number, their direction and length. The strength of the method is its ability to utilize all the depth measurements in an optimal way. The variance of the parameters can be derived directly from least-squares adjustment, but limited knowledge of the stochastic properties of the observations can lead to optimistic precision estimates. An alternative method to compute quality estimates is proposed and demonstrated.  相似文献   

15.
The accuracy of GPS/Acoustic positioning is crucial for monitoring seafloor crustal deformation. However, the slant range residual is currently the only indicator used to evaluate the precision of positioning seafloor transponders. This study employs a unique Seafloor Acoustic Transponder System (SATS) to evaluate the accuracy of GPS/Acoustic seafloor positioning. The SATS has three transponders and an attitude sensor in a single unit, which provides true lengths of transponder baselines and true attitude of the SATS to ensure assessment reliability and validity. The proposed approach was tested through a GPS/Acoustic experiment, in which an off-the-shelf acoustic system was used to collect range measurements. Using GPS/Acoustic geodetic observations, the positions of three transponders on the SATS were estimated by an optimization technique combined with ray-tracing calculations. The accuracy of the GPS/Acoustic seafloor positioning is assessed by comparing the true baselines and attitude with the results derived from the position estimates of the three transponders. A sensitivity analysis is conducted to investigate the robustness of the GPS/Acoustic positioning results to changes of sound speed. Experimental results demonstrate that the use of the SATS can help to assess the validity of the GPS and acoustic travel time measurements in the GPS/Acoustic seafloor positioning.  相似文献   

16.
Estimation of ship rotational motions induced by ocean waves plays a central role in many navigation and fire control applications. Inertial-type instruments are available which give good measurements of the attitude, but some form of signal processing is necessary to obtain angular rates or predict attitudes. Using optimal moving-average (or transversal) filters, we can obtain very good estimates of attitude rates as well as predictions of these values. Filter parameters can be changed adaptively to maintain good performance as the ship changes heading or velocity. The problem of designing these optimal filters is examined in detail and numerical results are given for a particular set of conditions. Two implementations of the adaptive filter are discussed. One is based on a recursive estimation of the process autocorrelations with the filter coefficients being recomputed at periodic intervals or whenever nonstationary conditions are detected. The second implementation is based on Widrow's LMS algorithm. Both alternatives for the adaptive filter implementation are quite reasonable in terms of their computational requirements. The steady-state performance analysis can be considered to be a lower bound on the errors incurred by an adaptive filter.  相似文献   

17.
Buoy azimuth, pitch, and roll, when used with measurements of buoy vertical acceleration, can provide directional wave spectra. Earlier work, which considered effects of buoy hull magnetism, showed that azimuth can be determined from magnetic field measurements (K.E. Steele and J.C. Lau, 1986). This work is extended to show that buoy pitch and roll, and thus buoy slopes, can also be determined from the same measurements. These slopes can be determined from measurements of the magnetic field components inside the hull along two orthogonal axes parallel to the deck of a buoy. Algorithms are developed for estimation of azimuth, pitch, and roll angles using these measurements. The algorithms account for residual and induced hull magnetism. Azimuth, pitch, roll, and estimates of directional wave spectra are determined both from the magnetic field measurements and from a conventional wave measurement system on the same buoy. Comparisons show that estimates of directional spectra based on magnetometer-derived pitch and roll agree well  相似文献   

18.
Metin Taylan   《Ocean Engineering》2007,34(7):1021-1027
This work deals with parametric resonance which poses a great danger especially for container ships sailing in following or head seas. Important parameters that are effective in roll resonance are pointed out. For this purpose, a containership is taken as an example to analyze its stability in longitudinal waves based on the method worked out by American Bureau of Shipping (ABS). Unfavorable sailing conditions such as heading and speed, which directly depend on the environmental conditions, have been determined for this particular ship. These conditions may be reported to the master to guide him to keep his ship out of parametric resonance zones. Numerical details of the procedure have been worked out and provided as well.  相似文献   

19.
GPS/IMU用于航空遥感直接对地定位的原理与方法   总被引:1,自引:0,他引:1       下载免费PDF全文
阐述了GPS/IMU系统进行位置与姿态测量的基本原理,推导了利用GPS/IMU的导航解计算遥感器瞬时外方位元素的数学模型,并利用机载三线阵影像验证了GPS/IMU辅助直接对地定位的精度潜力。三组ADS40数据直接定位的试验结果表明,GPS/IMU提供的外方位元素具有较高的定位精度,平面精度优于2.5个像元,高程优于5.1个像元,但存在系统性的测量误差,在大比例尺遥感测绘作业中引入少量控制点参与平差仍是必须的。  相似文献   

20.
The best way of reducing roll motion is by increasing roll damping. Bilge keels are the most common devices for increasing roll damping. If more control is required, anti-roll tanks and fins are used. Tanks have the advantage of being able to function when the ship is not underway. Our objective is to develop design procedures for passive tanks for roll reduction in rough seas. This paper focuses on the design of passive U-tube tanks. The tank-liquid equation of motion is integrated simultaneously with the six-degree-of-freedom (6DOF) equations of the ship motion. The coupled set of equations is solved by using the Large Amplitude Motion Program ‘LAMP’, which is a three-dimensional time-domain simulation of the motion of ships in waves. The unstabilized and stabilized roll motions of a S60-70 ship with forward speed and beam waves have been analyzed. For high-amplitude waves, the unstabilized roll angle exhibits typical nonlinear phenomena: a shift in the resonance frequency, multi-valued responses, and jumps. The performance of a S60-70 ship with a passive tank is investigated in various sea states with different encounter wave directions. It is found that passive anti-roll tanks tuned in the linear or nonlinear ranges are very effective in reducing the roll motion in the nonlinear range. The effect of the tank damping, frequency, and mass on the tank performance is studied. Also, it is found that passive anti-roll tanks are very effective in reducing the roll motion for ships having a pitch frequency that is nearly twice the roll frequency in sea states 5 and 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号