首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
南岭山地高速公路雾区恶劣能见度研究   总被引:13,自引:8,他引:13  
使用2003年10月-2005年3月南岭山地京珠高速公路粤北段云岩雾区路段5套能见度仪的每分钟能见度资料和3套自动气象站的每分钟温度、湿度、风向、风速等气象要素资料, 分析研究了南岭山地高速公路雾区浓雾的能见度特征.结果表明, 南岭山地高速公路雾区各月雾日频率以1月最多, 近一半的天数都有雾; 3月次之, 7月最少.11月到次年5月雾日占全年雾日的80%以上, 形成明显的"雾季".南岭山地高速公路雾区浓雾存在日变化, 雾的频率在一天内凌晨最高, 午后最低, 明显比辐射雾的日变化小, 说明夜间辐射降温虽然不是南岭山地高速公路雾区起雾的主要原因, 但还是起到了一定的加强作用.虽然南岭山地雾区大气中含有丰富的凝结核, 南岭山地形成浓雾还是需要较高的相对湿度, 相对湿度至少要达到91%以上才能形成雾.在雾区出现5.2 m/s的大风时仍然有雾, 有雾时90%以上的风速在3 m/s以下, 有几乎一半的浓雾出现时风速在2 m/s左右, 这与辐射雾形成时大都是静小风的情况形成了鲜明对照.南岭山地高速公路雾区浓雾受地形影响比较大, 迎风坡出现雾的频率比背风坡高.  相似文献   

2.
利用京秦高速公路沿线交通气象监测站实况资料,通过对84个站次的浓雾雾生和雾消各气象要素变化特征进行分析,归纳出高速公路沿线浓雾和强浓雾天气雾生雾消的预报指标。爆发性强浓雾期间能见度少波动,在能见度爆发下降前,温度下降过程中的小幅上升对能见度突然下降有很好的指示作用;相对湿度在能见度爆发下降前1 h内达到80%以上。一般性强浓雾大多数出现在温度波动之后继续直线下降期间;在500 m浓雾出现15 h之前空气相对湿度达90%以上,能见度达50 m之前相对湿度基本达饱和状态。浓雾消散主要有两个方面,因冷空气造成的雾消,预报应着眼于冷空气前锋影响高速公路所在区域的时间;而由辐射升温造成的雾消,预报应着眼于对天空状况和升温速度的判断。  相似文献   

3.
2007—2010年北京自动站浓雾特征分析与临近预报初探   总被引:1,自引:0,他引:1  
邓长菊  丁德平  韩超  甘璐 《气象科技》2013,41(1):108-113
为探索北京地区浓雾天气特征和临近预报方法,分析了北京2007-2010年18个道面自动站能见度1000 m以下的天气资料.结果表明:①浓雾具有明显的日变化和年变化.05:00-09:00是高发时段,12:00-18:00是低发时段.全年浓雾主要集中在9-12月,6、7月最少.②空间分布上,呈现“东南多,城区少”的特征,统计80%以上的浓雾都发生在大兴和通州.③浓雾变化具有突发性和象鼻形先期振荡的特征.④浓雾能见度变化与气象要素变化关系密切.偏南风和偏东风最有利于浓雾生成发展,西北风最有利于浓雾的消散.风速减小,气温下降,湿度增大,能见度降低,浓雾生成和发展;风速增大,气温升高,湿度减小,能见度上升,浓雾减弱消散,但湿度的减小滞后于能见度的上升.浓雾维持阶段,要素变化都很小.  相似文献   

4.
利用河北省高速公路沿线交通气象站的观测资料,统计2013年和2014年秋冬季浓雾(能见度500 m)过程个例,分析高速公路沿线浓雾的时间分布特征和各气象要素变化。结果表明:(1)18:00—20:00(北京时,下同),浓雾开始出现的频率最高;(2)08:00—10:00,浓雾结束的频率最高;(3)浓雾过程持续时间在12~24 h的频率最高;(4)相对湿度在95%~100%之间,温度露点差在-1.0~2.0℃,风速在0~5.8 m·s~(-1),即相对湿度越大、温度露点差越低、风速越小,则出现低能见度的可能性越大。分析各气象要素与能见度的相关性,最后选定相对湿度、温度露点差、风速、风向、气压、气温、能见度7个气象因子作为网络输入建立BP神经网络模型,并以武强、衡水单站2次浓雾过程中能见度变化为例进行检验,取得较好的试验效果。  相似文献   

5.
利用四川省153个气象观测站点的逐时能见度和相对湿度资料,根据水平能见度将雾分为大雾、浓雾、强浓雾和特强浓雾四个等级,分析了四川不同等级雾的时空分布、持续时间及生消时间,结果表明:四川地区,雾在冬季最多,夏季最少,特强浓雾在4~9月比较罕见;各等级雾均在后半夜到早上(03~09时)最为频发,午后到晚上最少,强浓雾和特强浓雾几乎不会在午后到晚上(13~20时)发生;四川盆地是雾的多发区,川西高原和攀西地区雾较少,四川大部地区没有强浓雾和特强浓雾发生;四川大雾和浓雾持续时间短,一般为1~3h;强浓雾和特强浓雾一旦形成,便不容易在短时间内消散;成雾时间主要在夜间到日出前,消雾时间主要在日出后。   相似文献   

6.
雾和霾都是低能见度天气,生成条件相似。利用安徽78个地面站逐时观测资料,基于雾、霾发生物理条件,建立了不同等级雾日和重度霾日的观测诊断方法,重建了不同等级雾和重度霾的时序资料。根据各站强浓雾发生的同步性,将安徽分为5个雾、霾分布特征不同的区域,探讨了各区域不同等级雾及重度霾出现时地面气象条件的异同。结果表明:(1)安徽省强浓雾主要是辐射雾。强浓雾、浓雾和大雾空间分布形势大体一致,淮河以北东、西部和江南都属于强浓雾高发区,但各地强浓雾的时、空分布特征和影响系统不同;重度霾有明显的北多、南少、山区最少的分布特征。(2)强浓雾年变化呈双峰型分布,峰值在1月和4月,日变化为单峰型,峰值在06时;而重度霾年变化为单峰型,峰值在1月,日变化为双峰型。(3)在强浓雾的高发时段(02—08时),强浓雾时降温幅度最大,比重度霾平均高1℃,风速显著偏低,超过75%的样本风速低于1.5 m/s,且无明显主导风向;而重度霾时,风速比雾时明显要大,个别区域有超过75%的样本风速大于1.5 m/s,且以西北风到东北风为主。说明重度霾能否演变为强浓雾的关键地面气象因子是风速、风向和降温幅度。   相似文献   

7.
利用榆林市12个国家气象观测站2016—2020年逐小时地面观测资料,统计分析了榆林地区雾的变化特征及地面气象条件。结果表明:(1)榆林地区各等级雾中强浓雾出现时数最多,特强浓雾鲜少出现;各等级雾都呈现显著的季节变化和日变化特征,多出现于秋季,10月最多,日变化呈单峰型,07:00前后达到峰值。(2)雾整体呈现“东多西少”的空间分布,大雾和浓雾主要出现在东南部的吴堡、绥德、清涧等地,西部的定边、靖边出现最少,强浓雾和特强浓雾主要出现在东南部的绥德、米脂等地,北部的府谷次之。(3)大雾和浓雾天气过程持续时间短,大多为1 h,强浓雾一旦生成,很难在短时间内消散;雾主要在夜间到凌晨生成,在日出后消散,强浓雾的生成和消散时段均比大雾和浓雾偏早且集中。(4)雾强度越强,对应地面相对湿度越高,温度露点差越低,气温和露点温度的降幅越大,风速越小;雾在地面各风向均可出现,但较盛行东南风和西北风。(5)强浓雾由于发生时数多、持续时间长,是榆林市影响最严重的大雾天气,95%强浓雾出现条件为相对湿度大于95%和温度露点差小于1℃,风速基本小于2 m/s,这对强浓雾的预报具有很好的指示意义。  相似文献   

8.
根据强浓雾发生的同步性,可将安徽分为5个不同的区域。为了解安徽区域性强浓雾的演变规律及成因,首先利用1980—2019年安徽省68个资料完整的国家级气象观测站08时能见度、相对湿度和天气现象资料,探讨了各区域区域性强浓雾的判定标准,建立各区域40 a的区域性强浓雾日时序资料,分析了区域性强浓雾的年际和年代际变化趋势;然后利用2016—2019年77个国家级气象观测站逐时资料分析了不同区域区域性强浓雾的年变化、日变化及持续时间分布等特征;最后,探讨了冬季区域性强浓雾年际变化的成因。结果表明:(1)1980—2019年,沿淮淮北3个区域区域性强浓雾日数都有先升后降的变化趋势,转折点在2006/2007年;1980—2007年区域性强浓雾日数呈明显的上升趋势,应归因于气溶胶粒子浓度升高。年代际比较,各区域区域性强浓雾日数都是20世纪90年代或21世纪最初10年最多,21世纪第2个10年最少;各区域区域性强浓雾出现日数年际变化大,最少的年份0—1 d,最多年份可超过10 d。(2)2016—2019年,各区域年均区域性强浓雾日数14—17 d,主要集中在仲秋到仲春;持续1 h的强浓雾日占比最高,持续3 h的样本是另一个峰值;淮河以北2个区域年均区域性强浓雾日数最多、且持续时间达到3 h及以上的区域性强浓雾占比最高。(3)淮河以北冬季区域性强浓雾日数与降水日数、降水量、相对湿度和08时气温均呈较为显著的正相关,而与风速和小风日数相关不显著;沿江地区冬季区域性强浓雾日数主要受地面风速影响;而江南冬季强浓雾日数与各地面因子均不存在明显相关。(4)以1月为例,各区域区域性强浓雾日数都与纬向环流指数呈正相关,沿淮淮北3个区域区域性强浓雾日数都与东亚槽位置呈正相关,而与东亚槽强度相关不明显。说明纬向型环流、东亚槽位置偏东有助于安徽沿淮淮北形成强浓雾。进一步分析发现,雾多的1月海平面气压中40°N以北的1030 hPa等值线位置偏东(如在120°E以东),近地层偏东风较强,地面湿度偏高。   相似文献   

9.
黄继雄  张庆红 《湖北气象》2014,33(3):208-216
利用2000—2011年北京首都机场每分钟的自动观测资料,对影响首都机场的52次浓雾过程进行分析,发现浓雾的形成、发展和消散过程中能见度演变具有突发性和振荡性的特征。浓雾中的能见度振荡可分为前导振荡、中间振荡和后位振荡,三者所占比例分别为86.5%、62.5%和79.2%。冷季浓雾比暖季浓雾具有更明显的温度振荡,在影响首都机场的34次冷季浓雾中,有61.8%的个例具有温度的振荡。辐射雾中温度振荡超前于能见度振荡,而平流雾来临前有温度振荡,雾发生时温度振荡不明显。根据统计结果本文定义了浓雾振荡指数DFOI,并发现DFOI为±0.2可以作为首都机场浓雾临近预报的阈值,使用该阈值可以将首都机场2000—2011年的浓雾预警平均提前1~2 h。根据2012年1月的实际预警测试,发现单独使用该指数无法区分浓雾、降雪和霾过程,今后在雾的预警过程中还需要引入其他指数。  相似文献   

10.
《气象》2017,(8)
<正>该书针对我国城市环境气象特点,采用野外观测和现有方法的集成,开展了关键大气成分(PM_(10)、PM_(2.5)、PM_1)的监测分析;研究了其时空分布的物理、化学特征;分析了可吸入颗粒物与气象要素(风速、风向、温度、湿度、雾及能见度等)之间的关系;研究了浓雾、低能见度天气及可吸入颗粒物污染等环境气象因子对大气环境的影响;研制了城市环境气象监测评价预警业务系统,为城市环境气象研究奠定了基础。  相似文献   

11.
刘新超  曹锐  朱克云 《气象科技》2016,44(1):111-117
利用2006—2013年四川高速公路强浓雾封道资料及气象资料,分析了造成四川高速公路封道的强浓雾特征,并通过天气环流条件和气象要素特征分析,研究了形成封道强浓雾的气象成因。结果表明:四川高速公路强浓雾封道主要出现在11月至次年1月,主要在清晨05:00—08:00开始,08:00—11:00结束,持续时间一般为0~9h。均压场是封道强浓雾的地面环流条件,低层为高压环流控制,高空环流条件为西北气流型和平直西风气流型。夜间辐射降温明显,地面到近地层风速弱、湿度大及存在逆温层,有利于封道强浓雾的出现。  相似文献   

12.
高速公路上霾雾演变及其对能见度的影响   总被引:4,自引:0,他引:4  
田小毅  袁成松  吴震 《气象科技》2010,38(6):673-678
沪宁高速公路沿线2006年11月2-3日26个交通气象自动监测站每分钟一次的要素监测表明:霾、雾对能见度都有影响,但在诸多方面存在着一些差异。条件适宜时,可以互相转化演变,其间有一个并存的阶段,认识这些差异及变化的条件对提高低能见度预报水平、做好交通气象服务是有益的。文章剖析了丘陵地区谷地霾抬升以及多雾和雾出现时间早、维持时间长的原因,有助于进一步认识浓雾的局地性和交通沿线能见度的差异。大范围连续数日的大雾大多与大范围的霾有关。在大范围霾雾共存的天气形势下,能见度恶劣现象往往持续数日,至强冷空气南下方能驱散,由于辐射降温,夜间能见度下降,白天略有好转。  相似文献   

13.
江苏省秋冬季强浓雾发展的一些特征   总被引:3,自引:2,他引:1  
朱承瑛  朱毓颖  祖繁  严文莲  王宏斌 《气象》2018,44(9):1208-1219
运用江苏省72个国家基本气象观测站和339个交通气象观测站资料,对2013年12月1-9日、2015年10月23日、12月22日及2016年2月12日出现的四次全省性的以辐射降温为主的强浓雾和特强浓雾过程进行分析,筛选出194个站例,对江苏省秋、冬季强浓雾生消的气候特征、雾爆发增强的微物理特征及雾爆发性增长的触发因子进行分析。结果表明:(1)雾爆发性增强的本质是雾在很短时间内雾滴增多增大,雾含水量呈几个数量级的增加,从而导致雾区能见度快速下降。(2)夜间辐射降温突然增强、底层弱冷空气入侵、日出后蒸发量加大及湖陆风效应是雾爆发性增长的触发因子。  相似文献   

14.
利用2011—2012年盖州市大气能见度和地面气象要素(相对湿度、风速、气温、气压)的观测资料,分析了盖州地区大气能见度月和日的变化特征及大气能见度与气象要素的相关性。结果表明:盖州市大气高能见度事件多出现在3月和10月,低能见度事件多出现在6—8月;夏季能见度最低,14时能见度最大,20时能见度比08时略小。大气能见度与相对湿度相关性最大,与风速和气温相关性次之,与气压相关性最差;当相对湿度80.0%时,能见度最低值为10.4±3.2km,大气能见度与气压、气温、相对湿度的相关系数分别为-0.52、0.51和-0.52;其中较高的气温、较大的相对湿度、较小的风速及较低的气压是盖州地区低能见度(10km)事件发生的主要气象条件。  相似文献   

15.
王博妮  濮梅娟  田力  张振东  吴建军 《气象》2016,42(2):192-202
文章对2012年6月至2014年6月期间发生于江苏省沿海高速公路的浓雾过程(能见度0.5 km)进行统计分析,探讨了低能见度浓雾的气候特征、气象要素变化以及主要环流形势背景。研究结果表明:(1)低能见度浓雾月分布次数有显著差异,3-6月、12月至次年2月雾发生次数最高,春、冬季高于夏、秋季;03:00-05:00为低能见度生成的高峰时段,08:00左右为消散峰值时段。(2)能见度低于0.5 km后,如果相对湿度继续增大到97%左右、温度处于0~4℃、风速在0~2 m·s~(-1)、风向在ENE-SSE,能见度可能继续下降到0.2 km以下。(3)对150366个样本的环流背景统计分析表明,中北部路段的低能见度天气大多数是由锋前雾引起的,主要出现在中低层暖区域内,地面为冷锋前部弱气压场的环流条件下。全路段大面积低能见度天气由辐射雾和平流雾造成,辐射雾天气形势主要是高层为下沉气流,配合地面受弱高压或高压南下;平流雾出现在中低层暖性系统,地面位于入海高压后部或低压倒槽东侧,低层盛行偏东风或东南风。(4)"象鼻型"先期振荡现象适用于沿海高速公路低能见度预报过程,尤其对能见度稳定维持0.2 km以下的浓雾过程有很好的预警和监测作用。  相似文献   

16.
江苏地区一次罕见持续性强浓雾过程的成因分析   总被引:5,自引:1,他引:4  
2013年11月30日—12月9日,江苏出现持续10 d的强浓雾天气。利用秒级探空资料、能见度资料、江苏省高速公路沿线高时空密度的交通气象观测站资料以及NCEP/NCAR的1°×1°的分析资料,结合天气形势、气象要素、物理量场,对这次持续性强浓雾的特点和形成、维持机制进行分析。结果表明,(1)此次雾过程持续时间长、范围广、强度大、污染重。(2)在大陆高压控制下,江苏长时间处于高压带的均压区内是这次连续性强浓雾过程的重要天气条件。(3)地面辐射冷却、低空下沉气流以及东南暖湿气流是强浓雾形成的重要原因。(4)双层逆温和深厚的逆温层是出现强浓雾的重要热力条件。(5)弱冷空气入侵,是雾体爆发增强的促发因子。   相似文献   

17.
利用乌鲁木齐市L波段雷达系统探空资料,对2014—2016年冬季12月至次年2月乌鲁木齐机场雾日、非雾日,雾日中持续浓雾日和非持续浓雾日的低空温、湿、风等气象要素特征进行了对比分析,结果表明:(1)雾日较之非雾日,近地层湿润层更厚,贴地逆温更厚更强(顶高950 m,强度0.55 ℃/100 m)。风速普遍略小于非雾日,地面为西南风,低空东南风厚度大,起始高度低于500 m,最大风速层低于1200 m。(2)持续浓雾日较非持续浓雾日,贴地逆温或悬垂逆温的第一逆温层底高和顶高更低,平均逆温强度更强,地面西南和近地层偏南风频数大,低空型东南风较强。第一逆温顶高低于600 m,悬垂逆温底高低于100 m,逆温强度大于0.55 ℃/100 m,低空型东南风起始高度高低于300 m,600 m高度以上东南风风速大于等于8 m/s等条件有利于持续浓雾的发生。  相似文献   

18.
根据桃仙机场气象观测资料,运用统计学相关方法对2014-2021年桃仙机场的雾天气进行统计分析。结果表明:统计时段内桃仙机场年雾频次总体呈下降趋势,7-9月是雾的重点高发期,3-6月则是雾的低发期。平均起雾时间为02-05时,平均雾散时间为06-11时并表现出由冬至夏变早,由夏至冬变晚的规律。桃仙机场浓雾占比最高,其次是强浓雾,同时研究发现最低能见度与持续时间具有较好的幂函数相关性。要素分析指出风速为2-3 m·s-1时有利于雾的发生;春季起雾应重点关注本地水汽含量的增加,雾散则与升温密切相关;夏季起雾具有突发性,雾散时转风概率较小;秋季雾强度大,应重点关注系统性影响;冬季起雾时风速会有所减小,雾散时要重点考虑冷空气的介入和湍流混合作用的影响。  相似文献   

19.
利用南阳市1995-2005年大气能见度和地面气象要素的观测资料及南阳市环境检测站提供的近3 a空气污染物监测数据,统计分析了近10 a南阳市大气能见度变化特征及其与气象要素和空气污染物的关系,结果表明:南阳市能见度年际变化呈缓慢波动上升趋势,夏秋季节2001年之后呈波动下降趋势;冬季能见度最低,春季最高;能见度月变化呈双峰型,第一个峰值在5月份,第二个峰值在9月份;一日之中,08时能见度最差,14时最好.能见度与同期气象要素及污染物浓度的相关分析表明,能见度与相对湿度、空气污染物PM10浓度呈显著性负相关,与NO2、SO2浓度负相关性较弱,与风速和气压呈弱的正相关,与温度的相关性较为复杂,雾是影响能见度的主要天气现象之一.  相似文献   

20.
基于乌鲁木齐站(城南)和米东站(城北)2016—2020年冬季(11月—次年2月)的雾、雾日最小能见度、逐时能见度和月平均风速、月平均静风频次、月平均相对湿度等资料,利用统计学方法,分析乌鲁木齐城区冬季雾的分布特征,探讨城南和城北雾分布差异的主要影响因素。结果显示:近5 a冬季城南平均雾日44.6 d,少于城北54.2 d,两地均为1月最多,11月最少;雾日平均最小能见度城南和城北分别为335 m和390 m,城南雾总体强于城北;城南雾高发于17时—19时,常在11时和05时消散;城北雾主要在09时和20时—22时开始,大都在14时前后结束;城南和城北的雾均以持续24 h以内为主,分别占比93.5 %和86.3 %,其中持续3 h内的雾分别占37.2 %和33.3 %,城北的雾持续时间总体长于城南。风速较小、静风较多、相对湿度较大和地理环境是城北冬季雾多于城南的主要影响因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号