首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
杨亭  傅容珊  黄川  班磊 《地球物理学报》2014,57(4):1049-1061
在地球表层存在着占地表面积约30%的具有低固有密度、高黏度的大陆岩石圈.由于其特殊的物理化学性质,大陆岩石圈通常不直接参与下方的地幔对流,但其与地幔对流格局有着重要的相互影响.大量研究显示,在中太平洋和非洲的下地幔底部,存在着两块占核幔边界(CMB)面积约20%的高密度热化学异常体(由于其剪切波速度较低,常称作低剪切波速度省(LSVPs)).LSVPs的演化既受地幔对流的影响,同时也影响地幔物质运动的格局和动力学过程.本文系统研究了存在大陆岩石圈,下地幔LSVPs的地幔对流模型.模拟结果显示:(1)当大陆体积较小时,其边缘常伴随着俯冲,大陆区域地幔常处于下涌状态,其上地幔温度较低,大陆岩石圈在水平方向处于压应力状态.随着大陆体积的增大,大陆边缘的俯冲逐渐减弱,大陆区域地幔由下涌转为上涌,其上地幔温度较高,大陆岩石圈水平方向处于拉应力状态.(2) 岩石圈与软流圈边界(LAB)在大陆下方较深,温度较低;在海洋区域较浅,温度较高.随着大陆体积的增大,陆洋之间LAB深度、温度的差异逐渐减小.(3)大陆区域地幔底部LSVPs物质的丰度与大陆的体积呈正相关.当大陆体积较小时,大陆下方的LSVPs丰度比海洋区域少.随着大陆体积的增大,大陆下方LSVPs的丰度逐渐增大.(4)海洋地区地表热流高,且随时间波动大,大陆地区地表热流低,随时间波动较小;LSVPs区域的核幔边界热流低.  相似文献   

2.
华南陆缘是我国重要的矿产、地热资源区.晚中生代以来,在太平洋板块西向俯冲,地幔热对流活动共同作用下,该区出现多期岩浆-热事件和大规模爆发式成矿作用.在前人研究基础上,本文利用地表热流观测资料、地震剪切波资料、重力位球谐系数,计算了壳-幔温度结构,分析了动力学背景.计算结果表明:华南陆缘东南沿海地带,地壳10 km以浅温度达200℃以上,居里点温度475℃,莫霍面平均温度550℃.地壳浅层较热,花岗岩中放射性元素衰变放热是地壳浅层地下水热活动的重要热源,但地壳总体温度不高,为"冷壳热幔"型热结构.地幔中,90 km深度,温度950~1250℃;120 km深度,温度1050~1400℃;150 km深度,温度1200~1450℃;220 km深度,温度1500~1700℃."热"岩石圈底界深度在110~150 km之间,西深东浅.岩石圈内,地幔应力场为挤压-伸展相间格局;岩石圈之下,地幔应力场为一个以南昌为中心、长轴NE-SW向的椭圆.分析认为,晚中生代以来,太平洋板块的西向俯冲,导致华南陆缘在区域性SE向地幔对流背景上叠加局域性不稳定热扰动,在175~85Ma期间,上地幔物质向上流动,形成不同的岩浆活动高峰期.同时,岩石圈地幔受俯冲洋壳流体的影响,含水量高,黏度小,在地幔流切向应力场作用下,岩石圈底界由西向东"波浪"状减薄.现今岩石圈之下仍具备地幔小尺度热对流温度条件,但除地表浅层外,地壳整体温度不高,岩石圈构造稳定.  相似文献   

3.
In the steady state, the convective boundary layer (CBL) (the transition from the lithosphere to the convecting mantle, the lithosphere-asthenosphere boundary) is on the verge of stability. This determines its depth, thickness, and the steady-state temperature distribution in the lithosphere. Had the mantle been homogeneous, the base of the lithosphere at the current potential temperature would lie globally at the same depth H rh of 50 to 70 km. Actually, the regime of interaction of the mantle convection with the lithosphere is determined by the relationship between this depth and the thickness H depl of the chemical boundary layer including the crust and the layer of the depleted rock. If the thickness of the chemical boundary layer is small H depl < H rh, as it is the case in the present-day oceanic mantle, the suboceanic regime is established with the mantle convection that does not reach the base of the chemical boundary layer. In this case, the top of CBL is located at depth H rh, while the oceanic heat flow and the depth of the seafloor only depend on the potential temperature T p and, within the areas where the crust is older than 60 to 70 Ma, are the same everywhere far from the disturbed territories (the hot points and the subduction zones). The absence of noticeable distinctions between the heat flow in the different oceanic basins suggests a global constancy of the potential temperature. If H depl > H rh, the subcontinental regime of the interaction of the mantle convection with the lithosphere is established. In this case, the CBL is immediately adjacent to the depleted lithosphere, its top is located at depth H depl, and the surface heat flow q(T p, H depl) not only depends on the potential temperature T p but also on the the thickness of the depleted lithosphere H depl; it decreases with increasing H depl and, therefore, with the age of the lithosphere. Given the potential temperature, the dependence q(T p, H depl) agrees well with the envelope of the results of kimberlite xenolith thermobarometry presented in the diagram of the deepest xenolith depth as a function of the heat flow. It is likely that in the lowest part of the continental lithosphere there is a zone of horizontal shear deformation, from where kimberlites entrain the strongly deformed and, at the same time, the deepest xenoliths. Besides, the azimuthal anisotropy of seismic velocities can be associated with this zone. The change in its direction with depth can be observed as the Lehmann discontinuity.  相似文献   

4.
南海深部地球动力学特征及其演化机制   总被引:20,自引:2,他引:20       下载免费PDF全文
利用地热学、流变学和重力学方法,计算了南海岩石层温度结构、流变特征及地幔对流格局.南海莫霍面温度在600-1000℃之间.岩石层底界面温度在1150-1300℃之间,有效粘滞系数为1020-1021Pa·s,与冰期回弹资料确定的地幔粘度吻合,表明南海深部具备产生地幔热对流的物理条件.研究认为地幔物质由北西向南东方向的运移以及印澳-欧亚板块的碰撞,导致南海北部大陆边缘向洋扩张、离散和断裂解体.在向洋离散过程中,陆-洋岩石层底部地幔局部对流使中央海盆扩张和北部陆缘发生差异性块断运动.  相似文献   

5.
Light continents and islands characterized by a crustal thickness of more than 30 km float over a convective mantle, while the thin basaltic oceanic crust sinks completely in subduction zones. The normal oceanic crust is 7 km thick. However, anomalously thick basaltic plateaus forming as a result of emplacement of mantle plumes into moving oceanic lithospheric plates are also pulled into the mantle. One of the largest basaltic plateaus is the Ontong Java plateau on the Pacific plate, which arose during the intrusion of a giant superplume into the plate ~100 Myr ago. Notwithstanding its large thickness (averaging ~30 km), the Ontong Java plateau is still experiencing slow subduction. On the basis of numerical modeling, the paper analyzes the oceanic crust subduction process as a function of the mantle convection vigorousness and the density, thickness, viscosity, and shape of the crust. Even a simplified model of thermocompositional convection in the upper mantle is capable of explaining the observed facts indicating that the oceanic crust and sediments are pulled into the mantle and the continental crust is floating on the mantle.  相似文献   

6.
增厚大陆岩石层热边界层对流剥离的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
用数值模拟方法模拟了增厚大陆岩石层热边界层被对流地幔剥离并为软流层物质替代的动力学过程.结果表明,在初始温度分层分布、侧向均匀但存在微小热扰动的流场中,80km厚的增厚岩石层热边界层约需60Ma才能被完全剥离,剥离的速率微弱地依赖扰动的强度;在已建立好的流场中,同样厚度的增厚热边界层只需约10Ma就可被剥离.模拟结果暗示青藏高原地壳及岩石层在岩石层增厚和剥离以前就很热,其下伏地馒中可能已存在建立好的上地幔小尺度对流系统,而该尺度的对流系统很可能是由特提斯海洋岩石圈俯冲和消减诱发的  相似文献   

7.
Lithosphere types in North China: Evidence from geology and geophysics   总被引:3,自引:0,他引:3  
Deep-seated materials from lithosphere are the ba- sic parameters and the foundation for geodynamic and continental dynamic studies. Division of lithosphere types and their deep-seated materials and structure can provide important evidence in interpreting the com- plex phenomena derived from the processes of forma- tion and evolution of continents, in evaluating the mineral resource potential, in predicting geological disasters and in the research of the continental dy- namic process. Huge lit…  相似文献   

8.
We provide new petrological evidence for the strong influence of water on the formation of the oceanic lithospheric mantle, the subcontinental mantle above, and the continental lithosphere. Our analysis throws new light on the hypothesis that new continental lithosphere was formed by the passage of silicate-rich aqueous fluid through the sub-continental mantle. In order to investigate this hypothesis, we analyzed a representative collection of lherzolite and harzburgite xenoliths from the sample volcano known as “The Thumb”, located in the center of the Colorado Plateau, western United States. The studied sample collection exhibits multi-stage water enrichment processes along point, line and planar defect structures in nominally anhydrous minerals and the subsequent formation of the serpentine polymorph antigorite along grain boundaries and in totally embedded annealed cracks. Planar defect structures act like monomineralic and interphase grain boundaries in the oceanic lithosphere and the subcontinental mantle beneath the North American plate, which was hydrated by the ancient oceanic Farallon plate during the Cenozoic and Mesozoic eras. We used microspectroscopical, petrological, and seismological techniques to confirm multi-stage hydration from a depth of ∼150 km to just below the Moho depth. High-resolution mapping of the water distribution over homogeneous areas and fully embedded point, line and planar defects in olivine crystals of lherzolitic and harzburgitic origin by synchrotron infrared microspectroscopy enabled us to resolve local wet spots and thus reconstruct the hydration process occurring at a depth of ∼150 km (T  1225 °C). These lherzolites originated from the middle part of the Farallon mantle slab; they were released during the break up of the Farallon mantle slab, caused by the instability of the dipping slab. The background hydration levels in homogeneous olivines reached ∼138 ppm wt H2O, and the water concentration at the planar defects could reach up to ∼1000 ppm wt H2O. However, the formation of antigorite in grain boundaries was found to be the primary hydration mechanism for harzburgitic samples originating from the subcontinental mantle (for hydration, T  600 °C). Additionally, the formation of antigorite in lherzolites could be found in annealed cracks. From these observations, we conclude that hydration induces multi-stage water enrichment of the mantle wedge by a process that is dominated by the growth and movement of ubiquitous cracks, which acts as planar defects. Cracks in the mantle seem to be the an important feature in both the water cycle of the subduction zone and the formation of the continental lithosphere.  相似文献   

9.
俯冲板片形貌特征和活动大陆边缘演化体制的关系   总被引:7,自引:1,他引:7  
当大洋板块向大陆板块下俯冲时,上覆板块的边缘可以以沟—弧—盆体制发育,也可以不发育弧后拉伸盆地.为什么同属上覆板块边缘但可以这二种完全不同的体制演化是现代地球科学研究的一个热点.本文在查阅大量最新文献的基础上认为造成这二种不同演化体制除了与俯冲作用的年代学特征有关外还可能主要与俯冲板片的形貌不同所导致局部地幔对流方式不一有关.由于俯冲的倾角,俯冲达到的最大深度以及俯冲板片在670km上下地幔过渡带处保存的形态等因素不同,造成仰冲板块边缘之下软流圈对流方式不一.从而,造成弧体近陆一侧是否将发生岩石圈拉伸的动力学过程.  相似文献   

10.
The subduction channel is defined as a planar to wedge-like area of variable size,internal structure and composition,which forms between the upper and lower plates during slab subduction into the mantle.The materials in the channel may experience complex pressure,temperature,stress and strain evolution,as well as strong fluid and melt activity.A certain amount of these materials may subduct to and later exhume from100 km depth,forming high to ultra-high pressure rocks on the surface as widely discovered in nature.Rock deformation in the channel is strongly assisted by metamorphic fluids activities,which change composition and mechanical properties of rocks and thus affect their subduction and exhumation histories.In this study,we investigate the detailed structure and dynamics of both oceanic and continental subduction channels,by conducting highresolution petrological-thermomechanical numerical simulations taking into account fluid and melt activities.The numerical results demonstrate that subduction channels are composed of a tectonic rock melange formed by crustal rocks detached from the subducting slab and the hydrated mantle rocks scratched from the overriding plate.These rocks may either extrude sub-vertically upward through the mantle wedge to the crust of the upper plate,or exhume along the subduction channel to the surface near the suture zone.Based on our numerical results,we first analyze similarities and differences between oceanic and continental subduction channels.We further compare numerical models with and without fluid and melt activity and demonstrate that this activity results in strong weakening and deformation of overriding lithosphere.Finally,we show that fast convergence of orogens subjected to fluid and melt activity leads to strong deformation of the overriding lithosphere and the topography builds up mainly on the overriding plate.In contrast,slow convergence of such orogens leads to very limited deformation of the overriding lithosphere and the mountain building mainly occurs on the subducting plate.  相似文献   

11.
The increased depth and volume of melting induced in a higher temperature Archaean mantle controls the stability of the lithosphere, heat loss rates and the thickness of the oceanic crust. The relationship between density distributions in oceanic lithosphere and the depth of melting at spreading centres is investigated by calculating the mineral proportions and densities of residual mantle depleted by extraction of melt fractions. The density changes related to compositional gradients are comparable to those produced by thermal effects for lithosphere formed from a mantle which is 200°C or more hotter than modern upper mantle. If Archaean continental crust formed initially above oceanic lithosphere, the compositional density gradients may be sufficient to preserve a thick Archaean continental lithosphere within which the Archaean age diamonds are preserved. The amount of heat advected by melts at mid-ocean ridges today is small but heat advected by melting becomes proportionally more important as higher mantle temperatures lead to a greater volume of melt and as the rate of production of oceanic plates increases. Archaean tectonics could have been dominated by spreading rates 2–3 times greater than now and with mantle temperatures between ca. 1600°C and 1800°C at the depth of the solidus. Mid-ocean ridge melting would produce a relatively thick but light refractory lithosphere on which continents could form, protected from copious volcanism and high mantle temperatures.  相似文献   

12.
Structural features of the typical continental paleorift in Panxiarea are revealed by seismic tomography. (1) In the profile along the minor axis of Panxi paleorift, we found alternating high and low-velocity strips existing at different depths in the crust, presenting itself as a "sandwich" structure. The existence of these high and low-velocity anomaly strips is related to the basal lithology in the rift area. (2) An addition layer with velocity values of 7.1-7.5 km/s and 7.8 km/s exists from the base of lower crust to uppermost mantle and its thickness is about 20 km. Some study results indicate that the addition layer results from the invasion of mantle material. (3) A lens-shaped high-velocity body surrounded by relatively low-velocity material is observed at depths of 110-160 km between Huaping and Huidong in the axis of the paleorift. This is the first time to discover it in the upper mantle of the paleorift. Based on the results of geology, petrology and geochemistry, we infer that the formation of the addition layer and the lens-shaped high-velocity body in the upper mantle are related to the deep geodynamic process of generation, development and termination of the rift. On the one hand, the upwelling of asthenosphere mantle caused partial melting, and then the basaltic magma from the partial melted material further resulted in underplating and formed the crustal addition layer. On the other hand, the high-density content of mineral facies was increased in the residual melted mass of intensely depleted upper mantle, formed by basalt withdrawing. The solid-melt medium in the depleted upper mantle was mainly an accumulation of garnet and peridotite because the heating effect of lithosphere was relatively weakened in the later riftogenesis, so that a lens-shaped high-density and high-velocity zone was produced in the upper mantle. The results indicate that the energy and material exchange between asthenosphere and lithosphere and remarkable underplating would have an important effect on the material state and propagation of seismic wave in the lower crust, crust-mantle interface, asthenosphere and lithosphere. This process possibly is an important mechanism on the growth of continental crust and the evolution of deep mantle.  相似文献   

13.
Structural features of the typical continental paleorift in Panxi area are revealed by seismic tomography. (1) In the profile along the minor axis of Panxi paleorift, we found alternating high and low-velocity strips existing at different depths in the crust, presenting itself as a “sandwich” structure. The existence of these high and low-velocity anomaly strips is related to the basal lithology in the rift area. (2) An addition layer with velocity values of 7.1-7.5 km/s and 7.8 km/s exists from the base of lower crust to uppermost mantle and its thickness is about 20 km. Some study results indicate that the addition layer results from the invasion of mantle material. (3) A lens-shaped high-velocity body surrounded by relatively low-velocity material is observed at depths of 110-160 km between Huaping and Huidong in the axis of the paleorift. This is the first time to discover it in the upper mantle of the paleorift. Based on the results of geology, petrology and geochemistry, we infer that the formation of the addition layer and the lens-shaped high-velocity body in the upper mantle are related to the deep geodynamic process of generation, development and termination of the rift. On the one hand, the upwelling of asthenosphere mantle caused partial melting, and then the basaltic magma from the partial melted material further resulted in underplating and formed the crustal addition layer. On the other hand, the high-density content of mineral facies was increased in the residual melted mass of intensely depleted upper mantle, formed by basalt withdrawing. The solid-melt medium in the depleted upper mantle was mainly an accumulation of garnet and peridotite because the heating effect of lithosphere was relatively weakened in the later riftogenesis, so that a lens-shaped high-density and high-velocity zone was produced in the upper mantle. The results indicate that the energy and material exchange between asthenosphere and lithosphere and remarkable underplating would have an important effect on the material state and propagation of seismic wave in the lower crust, crust-mantle interface, asthenosphere and lithosphere. This process possibly is an important mechanism on the growth of continental crust and the evolution of deep mantle.  相似文献   

14.
3-D simulations of mantle convection allowing for continental crust are explored to study the effects of crustal thickening on lithosphere stability and of continents on large-scale mantle flow. Simulations begin with a crustal layer within the upper thermal boundary layer of a mantle convection roll in a 1 × 1 × 1 Cartesian domain. Convective stresses cause crust to thicken above a sheet-like mantle downwelling. For mild convective vigor an initial crustal thickness variation is required to induce 3-D lithospheric instability below the zone of crustal convergence. The amplitude of the required variation decreases with increasing convective vigor. Morphologically, instability is manifest in formation of drip-like thermals that exist within the large-scale roll associated with initial crustal thickening. A strong surface signature of the drips is their ability to cause deviations from local Airy compensation of topography. After the initial thickening phase, the crustal accumulation that forms serves as a model analog to a continent. Its presence leads to mantle flow patterns distinctly different from the steady-state roll that results in its absence. Large lateral thermal gradients are generated at its edge allowing this region to be the initiation site for continued small-scale thermal instabilities. Eventually these instabilities induce a restructuring of large-scale mantle flow, with the roll pattern being replaced by a square cell. Although preliminary and idealized, the simulations do show the fluid dynamical plausibility behind the idea that significant mantle variations can be generated along the strike of a largely 2-D mountain chain by the formation of the chain itself. The ability of a model continent to cause a change in fundamental convective planform also suggests that the effects of continental crust on mantle convection may be low-order despite the seemingly trivial volume of crust relative to mantle.  相似文献   

15.
We have studied the problem concerning the onset of convective instabilities below the oceanic lithosphere. A system of linear partial differential equations, in which the background temperature field is time-dependent, is integrated in time to monitor the evolution of incipient disturbances. Two types of rheologies have been examined. One depends strongly on temperature. The other involves a viscosity which is both temperature- and pressure-dependent. The results from this initial-value approach, in which the viscosity profiles migrate downward with time, reveal the importance of considering temperature- and pressure-dependent rheology in issues regarding the development of local instabilities in upper mantle convection. For temperature-dependent viscosity, viscosities of 0(1020P) are required to produce instabilities with growth-rates of 0(.1/Ma). In contrast, these same growth rates can be attained for a temperature- and pressure-dependent viscosity profile with a mean value close to 0(1020P) in the upper mantle, owing to the presence of a low viscosity zone, 0(1020P), existing right below the lithosphere. Unlike the results of temperature-dependent viscosity, whose growth-rates increase with time, the amplification of disturbances in a fluid medium with temperature- and pressure-dependent rheology reaches a maximum at an early age, < 50 Ma, and decreases thereafter with time. This suggests the potential importance played by initial disturbances in the evolution of the oceanic lithosphere.  相似文献   

16.
青藏高原因其复杂的结构和演化历史,一直都是研究大陆碰撞、构造运动及其动力学的热点区域。本文采用三重震相波形拟合技术,基于中国地震观测台网和大型流动台阵记录到的某地震P波垂向记录,获得了包括拉萨、南羌塘和松潘甘孜地块在内的青藏高原上地幔P波速度结构。结果表明:①拉萨和南羌塘地块下方地幔过渡带存在高速异常,推测是俯冲的印度板片滞留体,过渡带底部的板片残余温度较低,使得660-km相变滞后约3~8km。而松潘甘孜地块下方过渡带同样存在高速异常,可能是欧亚岩石圈发生拆沉进入地幔过渡带所致。这说明印度板块俯冲作用的影响已经到达地幔过渡带,其俯冲前缘位于班公怒江缝合带附近。②从拉萨、南羌塘到松潘甘孜地块,200km之上的地幔岩石圈高速盖层速度由南向北逐渐减小,松潘甘孜地块则出现盖层缺失。推测受小规模地幔对流或者热不稳定性的影响,在南羌塘和松潘甘孜地块,增厚的欧亚岩石圈发生拆沉作用,岩石圈被减薄和弱化,造成羌塘地块上地幔低速和松潘甘孜地块上地幔高速盖层缺失。拆沉的冷的欧亚岩石圈可能部分停留在410-km上方,使得410-km抬升约10km,部分沉入地幔过渡带,表现为松潘甘孜地块地幔过渡带中存在高速异常。低温造成660-km下沉约8km,导致地幔过渡带增厚。   相似文献   

17.
We consider results from modeling the crustal and upper mantle velocity structure in Kamchatka by seismic tomography and compare these with gravity data and present-day tectonics. We found a well-pronounced (in the physical fields) vertical and lateral variation for the upper mantle and found that it is controlled by fault tectonics. Not only are individual lithosphere blocks moving along faults, but also parts of the Benioff zone. The East Kamchatka volcanic belt (EKVB) is confined to the asthenospheric layer (the asthenosphere lens) at a depth of 70–80 km; this lens is 10–20 km thick and seismic velocity in it is lower by 2–4%. The top of the asthenosphere lens has the shape of a dome uplift beneath the Klyuchevskoi group of volcanoes and its thickness is appreciably greater; overall, the upper mantle in this region is appreciably stratified. A low-velocity heterogeneity (asthenolith) at least 100 km thick has been identified beneath the Central Kamchatka depression; we have determined its extent in the upper mantle and how it is related to the EKVB heterogeneities. Gravity data suggest the development of a rift structure under the Sredinnyi Range volcanic belt. The Benioff zone was found to exhibit velocity inhomogeneity; the anomalous zones that have been identified within it are related to asthenosphere inhomogeneities in the continental and oceanic blocks of the mantle.  相似文献   

18.
本文通过地震层析成像研究获得了华北克拉通及其东邻地区(30°N-50°N,95°E -145°E)1°×1°的P波速度扰动图像.结果显示,在西太平洋俯冲带地区,上地幔中西倾的板片状高速异常体与其上方的低速异常区构成俯冲带与上覆地幔楔的典型速度结构式样.俯冲板片高速体在约300~400 km深度范围内被低速物质充填,暗示俯冲板片可能发生了断离.在华北克拉通地区的上地幔中发现三个东倾排列的高速异常带.在此基础上,本文构建了华北克拉通及其东邻西太平洋活动大陆边缘地区的上地幔速度结构模式图,并据此探讨克拉通岩石圈减薄与西太平洋活动大陆边缘的深部动力学联系.本文认为,太平洋板片的俯冲(断离),触发热地幔物质上涌并在上覆地幔楔中形成对流,使克拉通岩石圈受到改造(底侵与弱化).随着俯冲板片后撤,地幔楔中的对流场以及对岩石圈改造的影响范围均随之东移,最终导致华北克拉通岩石圈自下而上、从西向东分三个阶段依次拆沉减薄.这一模式能很好地解释现今克拉通岩石圈自西向东呈台阶状减薄的深部现象.  相似文献   

19.
Thermo-mechanical physical modelling of continental subduction is performed to investigate the exhumation of deeply subducted continental crust. The model consists of two lithospheric plates made of new temperature sensitive analogue materials. The lithosphere is underlain by liquid asthenosphere. The continental lithosphere contains three layers: the weak sedimentary layer, the crust made of a stronger material, and of a still stronger lithospheric mantle. The whole model is subjected to a constant vertical thermal gradient, causing the strength reduction with depth in each lithospheric layer. Subduction is driven by both push force and pull force. During subduction, the subducting lithosphere is heating and the strength of its layers reduces. The weakening continental crust reaches maximal depth of about 120 km and cannot subduct deeper because its frontal part starts to flow up. The subducted crust undergoes complex deformation, including indicated upward ductile flow of the most deeply subducted portions and localised failure of the subducted upper crust at about 50-km depth. This failure results in the formation of the first crustal slice which rises up between the plates under the buoyancy force. This process is accompanied by the delamination of the crustal and mantle layers of the subducting lithosphere. The delamination front propagates upwards into the interplate zone resulting in the formation of two other crustal slices that also rise up between the plates. Average equivalent exhumation rate of the crustal material during delamination is about 1 cm/year. The crust-asthenosphere boundary near the interplate zone is uplifted. The subducted mantle layer then breaks off, removing the pull force and thereby stopping the delamination and increasing horizontal compression of the lithosphere. The latter produces shortening of the formed orogen and the growth of relief. The modelling reveals an interesting burial/exhumation evolution of the sedimentary cover. During initial stages of continental subduction the sediments of the continental margin are dragged to the overriding plate base and are partially accreted at the deep part of the interplate zone (at 60-70 km-depth). These sediments remain there until the beginning of delamination during which the pressure between the subducted crust and the overriding plate increases. This results in squeezing the underplated sediments out. Part of them is extruded upwards along the interplate zone to about 30-km depth at an equivalent rate of 5-10 cm/year.  相似文献   

20.
The seismogenic zone of subduction thrust faults   总被引:13,自引:0,他引:13  
Abstract Subduction thrust faults generate earthquakes over a limited depth range. They are aseismic in their seaward updip portions and landward downdip of a critical point. The seaward shallow aseismic zone, commonly beneath accreted sediments, may be a consequence of unconsolidated sediments, especially stable-sliding smectite clays. Such clays are dehydrated and the fault may become seismogenic where the temperature reaches 100--150°C, that is, at a 5--15 km depth. Two factors may determine the downdip seismogenic limit. For subduction of young hot oceanic lithosphere beneath large accretionary sedimentary prisms and beneath continental crust, the transition to aseismic stable sliding is temperature controlled. The maximum temperature for seismic behavior in crustal rocks is ~ 350°C, regardless of the presence of water. In addition, great earthquake ruptures initiated at less than this temperature may propagate with decreasing slip to where the temperature is ~ 450°C. For subduction beneath thin island arc crust and beneath continental crust in some areas, the forearc mantle is reached by the thrust shallower than the 350°C temperature. The forearc upper mantle probably is aseismic because of stable-sliding serpentinite hydrated by water from the underthrusting oceanic crust and sediments. For many subduction zones the downdip seismogenic width defined by these limits is much less than previously assumed. Within the narrowly defined seismic zone, most of the convergence may occur in earthquakes. Numerical thermal models have been employed to estimate temperatures on the subduction thrust planes of four continental subduction zones. For Cascadia and Southwest Japan where very young and hot plates are subducting, the downdip seismogenic limit on the subduction thrust is thermally controlled and is shallow. For Alaska and most of Chile, the forearc mantle is reached before the critical temperature, and mantle serpentinite provides the limit. In all four regions, the seismogenic zones so defined agree with estimates of the extent of great earthquake rupture, and with the downdip extent of the interseismic locked zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号